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Abstract: In this work, multivariate heterogeneous autoregressive-realized volatility (HAR-RV)
models are discussed with their least squares estimations. We consider multivariate HAR models
of order p with q multiple assets to explore the relationships between two or more assets’ volatility.
The strictly stationary solution of the HAR(p, q) model is investigated as well as the asymptotic
normality theories of the least squares estimates are established in the cases of i.i.d. and correlated
errors. In addition, an exponentially weighted multivariate HAR model with a common decay rate
on the coefficients is discussed together with the common rate estimation. A Monte Carlo simulation
is conducted to validate the estimations: sample mean and standard error of the estimates as well
as empirical coverage and average length of confidence intervals are calculated. Lastly, real data
of volatility of Gold spot price and S&P index are applied to the model and it is shown that the
bivariate HAR model fitted by selected optimal lags and estimated coefficients is well matched with
the volatility of the financial data.

Keywords: multivariate HAR models; least squares estimation; asymptotic normality; exponentially
weighted HAR models

1. Introduction

Volatility in financial asset returns is one of the most important components in the financial
market for optimization decisions such as portfolio selection, risk management and asset pricing.
Over recent decades, extensive research works by statisticians and econometricians have analyzed
volatility alongside time series modelings. In particular, because multiple assets are correlated with
each other in the financial markets, the cross-correlation of two or more asset returns and the spillover
effect of the volatility have been represented in multivariate time series models rather than the
univariate models. Probabilistic properties such as long-memory of the volatility, which means that
historical volatility has a persistent impact on future volatility, have been imposed efficiently to time
series models through various statistical techniques.

In order to capture the long-memory persistence of the volatility, Corsi [1] suggested a simple
but remarkably efficient time series model with additive cascades defined on different time periods
by incorporating the daily, weekly and monthly volatility components. Corsi’s model [1] called a
heterogeneous autoregressive-realized volatility model of order 3, (HAR-RV(3) or simply HAR(3)),
is a type of linear autoregression with heterogeneous regressors, which are previous lag, lagged
weekly moving average, and lagged monthly moving average. Since its introduction, various adaptive
versions of the HAR model are used to analyze the volatility along with empirical data analysis.
Here, we refer to [2–5] for univariate data and [6–11] for multivariate data.
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In particular, Bubak et al. [6] used a multivariate extension of the HAR model to uncover volatility
transmission between Central European currencies and the EUR/USA foreign exchange rate, whereas
Soucek and Todorova [8] employ a bivariate HAR model to explore the relationship between equity
and oil market volatility. Cubadda et al. [9] proposed a vector HAR index model for detecting the
presence of co-movements and analyzing the joint behavior in a set of daily realized volatility measures.
Cech and Barunik [10] proposed a generalized HAR model for dynamic covariance matrix modelling
and forecasting.

All of the references above empirically only dealt with the multivariate HAR models, but they
have not presented theoretical results of the HAR model. Indeed, there is only a few of theoretical
analysis of the HAR model, even in the univariate case. Furthermore, the least squares estimate (LSE)
method has been popularly used as a tool of estimation in time series data analysis. The LSEs are
used often in the literature to analyze the multivariate data in the multivariate HAR models and good
performances on the volatility forecasting are obtained with forecast accuracy, for instance, see [9,12].
However, in the multivariate HAR models, rigorous formulation of asymptotic multivariate normality
theory of the LSE has not yet been established in spite of the frequent uses of the LSEs. The earlier
studies motivate us to consider multivariate HAR models of order p with q multiple assets, and look
into theoretical analysis of the LSEs. In this work we provide, as a main result, strictly stationarity of
the HAR(p, q) model and asymptotic normality theories of LSEs for the parameters in the multivariate
HAR models. The multivariate normalities of the LSEs are established in two cases of i.i.d. and
correlated errors of the models. In addition, we consider an exponentially weighted multivariate HAR
model and discuss the estimation of a common decay rate on coefficients in the exponentially weighted
HAR model.

A Monte Carlo experiment is conducted to illustrate performance of the estimations. Sample mean
and standard error of the LSEs as well as empirical coverage and average length of confidence intervals
are calculated. In addition, we model volatility of Gold spot price and S&P500 index using a bivariate
HAR model and estimate the coefficient parameters. The parameter estimates and confidence intervals
are computed according to the asymptotic normality we derived. Finally, the bivariate HAR fitting is
demonstrated to the market data with optimally selected lags under some criterion rules.

The remainder of the paper is organized as follows: In Section 2, the multivariate HAR model
is presented with discussion on strictly stationary solution and in Section 3 the LSEs and their
multivariate normalities are derived. Section 4 deals with the exponentially weighted multivariate
HAR model. A Monte-Carlo experiment is performed and an application with market data is given in
Sections 5 and 6, respectively. We conclude in Section 7, where the main conclusion and discussion on
future works are stated.

2. Multivariate HAR(p, q) Models

We consider the following HAR-RV model {Y1,t : t ∈ Z} with multivariate data
{Yj,t : t ∈ Z, j = 2, . . . , q} which has been discussed in [8] as an extension of the HAR-RV(3) model
in [1].

Y1,t ≡ Y(d)
1,t = β0 + ∑

i=d,w,m
β
(i)
1 Y(i)

1,t−1 + ∑
i=d,w,m

β
(i)
2 Y(i)

2,t−1 + · · ·+ ∑
i=d,w,m

β
(i)
q Y(i)

q,t−1 + ε1,t (1)

where {ε1,t, t ∈ Z} are random variables for error terms and {β0, β
(i)
j , j = 1, . . . , q; i = 1, . . . , p} are

coefficient parameters. For each jth-asset, j = 1, 2, . . . , q, three volatility components Y(i)
j,t−1, i = d, w, m,

corresponding to time horizons of one day (d), one week (w), one month (m) are given by the realized
volatility Yj,t−1 on day t− 1 if i = d, and

Y(i)
j,t−1 =

1
hi

(
Y(d)

j,t−1 + · · ·+ Y(d)
j,t−hi

)
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weakly and monthly averages of realized volatility if i = w, m; j = 1, . . . , q; and hd = 1, hw = 5, hm = 22.
Soucek and Todorova [8] examined the volatility linkages of oil with three considered equity markets
in three separate bivariate models in the bivariate case of assets j = 1, 2, with q = 2 in model (1).

Motivated from the above, we consider a general multivariate HAR-RV(p, q) model
{Yj,t : t ∈ Z, j = 1, . . . , q}:

Y(1)
j,t = β j0 +

p

∑
i=1

β
(i)
j1 Y(i)

1,t−1 +
p

∑
i=1

β
(i)
j2 Y(i)

2,t−1 + · · ·+
p

∑
i=1

β
(i)
jq Y(i)

q,t−1 + εj,t (2)

where {εj,t, t ∈ Z, j = 1, . . . , q} are random variables for errors with mean zero and finite
variance, {hi, i = 1, 2, . . . , p } are assumed to satisfy 1 = h1 < h2 < · · · < hp < ∞,

and {β0, β
(i)
jk , j, k ∈ {1, . . . , q}; i ∈ {1, . . . , p} } are parameters to be estimated. Volatility components

are given in the same as above. For i = 1, . . . , p and j = 1, . . . , q, Y(i)
j,t−1 = 1

hi

(
Y(1)

j,t−1 + · · ·+ Y(1)
j,t−hi

)
.

Model (2) is more general than model (1) and thus we consider model (2) in this work. As main
results we investigate the strict stationarity of the model and develop the estimation of parameters.

Let Yt = (Y1,t, Y2,t, . . . , Yq,t)> with Yj,t ≡ Y(1)
j,t , for j = 1, . . . , q. Model (2) can be written as follows:

Yj,t = β j0 +
hp

∑
k=1

φ
(j,1)
k Y1,t−k +

hp

∑
k=1

φ
(j,2)
k Y2,t−k + · · ·+

hp

∑
k=1

φ
(j,q)
k Yq,t−k + εj,t

where, for j, ` ∈ {1, 2, . . . , q}, (with h1 = 1), φ
(j,`)
1 = ∑

p
i=1 β

(i)
j` /hi, φ

(j,`)
h1+1 = · · · = φ

(j,`)
h2

= ∑
p
i=2 β

(i)
j` /hi,

φ
(j,`)
h2+1 = · · · = φ

(j,`)
h3

= ∑
p
i=3 β

(i)
j` /hi, . . . , φ

(j,`)
hp−1+1 = · · · = φ

(j,`)
hp

= β
(p)
j` /hp. We write, for each

j = 1, 2, . . . , q, Yj,t = β j0 + ∑
hp
k=1 φ>j,kYt−k + εj,t where φj,k = (φ

(j,1)
k , φ

(j,2)
k , . . . , φ

(j,q)
k )> and thus

Yt = B0 +H∗t−1 + Et = B0 +HY∗t−1 + Et

where B0 = (β10, β20, . . . , βq0)
>, Et = (ε1,t, ε2,t, . . . , εq,t)> and

H∗t−1 =


∑

hp
k=1 φ>1,kYt−k

∑
hp
k=1 φ>2,kYt−k

...

∑
hp
k=1 φ>q,kYt−k

 =


φ>1,1 φ>1,2 · · · φ>1,hp

φ>2,1 φ>2,2 · · · φ>2,hp
...

...
...

φ>q,1 φ>q,2 · · · φ>q,hp




Yt−1

Yt−2
...

Yt−hp

 =: HY∗t−1.

Note thatH = (φ>j,k), j = 1, . . . , q; k = 1, 2, . . . , hp, is a matrix in Rq×qhp and Y∗t−1 is a column vector in

Rqhp . Furthermore note thatHY∗t−1 is written as

HY∗t−1 = Φ1Yt−1 + Φ2Yt−2 + · · ·+ ΦhpYt−hp

where, for k = 1, 2, . . . , hp,

Φk =


φ>1,k
φ>2,k

...
φ>q,k

 =


φ
(1,1)
k φ

(1,2)
k · · · φ

(1,q)
k

φ
(2,1)
k φ

(2,2)
k · · · φ

(2,q)
k

...
...

...

φ
(q,1)
k φ

(q,2)
k · · · φ

(q,q)
k

 ∈ Rq×q.

Therefore we have the following vector-autoregression of order hp:

Yt = B0 + Φ1Yt−1 + Φ2Yt−2 + · · ·+ ΦhpYt−hp + Et (3)
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which is written as
(Iq −Φ1L−Φ2L2 − · · · −Φhp Lhp)Yt = B0 + Et

with lag operator L and the identity matrix Iq ∈ Rq×q.
We make the following assumption:
(A1) The roots of det(Iq − Φ1z − Φ2z2 − · · · − Φhp zhp) = 0 lie outside the complex unit

circle (have modulus greater than one), or equivalently, the eigenvalues of the companion matrix
(of dimension qhp × qhp)

F =


Φ1 Φ2 · · · Φhp−1 Φhp

Iq O · · · O O
O Iq O
...

. . .
...

O Iq O


have modulus less than one.

Denote [A]qq by the q× q submatrix of a square matrix A, consisting of the first q rows and the
first q columns of A, that is [A]qq = Iq AI>q where Iq = (Iq, O) ∈ Rq×qhp . I is the identity matrix with
compatible dimension.

Theorem 1. Assume (A1) holds. Then there exists a unique strictly stationary solution with a finite first-order
moment to the model and the solution has the form of

Yt = [(I −F )−1]qqB0 +
∞

∑
j=0

[F j]qqEt−j. (4)

Proof of Theorem 1. From (3) we write
Yt

Yt−1

Yt−2
...
Yt−hp−1

 =


B0

O
O
...
O

+


Φ1 Φ2 · · · Φhp−1 Φhp

Iq O · · · O O
O Iq O
...

. . .
...

O Iq O




Yt−1

Yt−2
...
Yt−hp−1

Yt−hp

+


Et

O
O
...
O


which is denoted by

Y∗t = B∗0 +FY∗t−1 + E∗t . (5)

Let λi(F ) be the ith eigenvalue of the matrix F and ρ := maxi |λi(F )|. Under (A1), we have
ρ < 1. Furthermore it follows that limm→∞ ∑m

j=1 F jE∗t−j exists and Y∗t = (I −F )−1B∗0 + ∑∞
j=0 F jE∗t−j

exists. Thus {Y∗t } is strictly stationary and satisfies (5). It can be given straightforwardly.
Let [A]q denote q× 1 column vector consisting of the first q components of a column vector A.

Since [Y∗t ]q = Yt, [B∗0 ]q = B0 and [E∗t ]q = Et, {Yt} is also strictly stationary and

Yt = [Y∗t ]q = [(I −F )−1B∗0 ]q +
[

∞

∑
j=0
F jE∗t−j

]
q

= [(I −F )−1]qqB0 +
∞

∑
j=0

[F j]qqEt−j

that is the desired result in (4). Now we show the uniqueness of the strictly stationarity solution (4).
Assume that {Y̆t} is another strictly stationary solution of the vector autoregression (3) with E‖Y̆t‖ <
∞. Then we have Y̆∗t = B∗0 +F Y̆∗t−1 + E∗t in the same way as above in (5). For any positive integer m
we have Y̆∗t = ∑m−1

j=0 F
j(B∗0 + E∗t−j) +FmY̆∗t−m, and we observe

E‖Y∗t − Y̆∗t ‖ = E

∥∥∥∥∥ ∞

∑
j=m
F j(B∗0 + E∗t−j)−FmY̆∗t−m

∥∥∥∥∥ ≤ Cρm
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where C is a constant independent of t and m. Since m is arbitrary, we see
E‖Yt − Y̆t‖ ≤ E‖Y∗t − Y̆∗t ‖ = 0 and thus Yt = Y̆t almost surely. This completes the uniqueness.

3. The Least Squares Estimation

We consider two cases on the error processes to discuss the least squares estimates : In the
first case, we assume that {εj,t} are i.i.d. random variables with mean zero and variance σ2 for all
j = 1, 2, . . . , q, that is, E[EtE>t ] = σ2 Iq. As a second but more general case, we adopt correlated error
processes with E[EtE>t ] = (σjl) ∈ Rq×q where σjl = Cov(εj,t, εl,t) 6= 0.

First, the case of i.i.d. error processes are stated on assumption as follows and the ordinary least
squares estimator (OLSE) of the parameters in model (2) is investigated.

(A2) {εj,t} are i.i.d. random variables with mean zero and variance σ2 for all j = 1, 2, . . . , q,
that is, E[EtE>t ] = σ2 Iq. Under (A1) and (A2), let µ = (µ1, . . . , µq)> = E[Yt] with µj = E[Yj,t] and
Γ(`) = Cov(Yt,Yt−`), lag-` autocovariance matrix function. Note that, by using (4),

µ = [(I −F )−1]qqB0 = (Iq −Φ1 −Φ2 − · · · −Φhp)
−1B0, Γ(0) = σ2

∞

∑
j=0

[F j]qq[F j]>qq,

Γ(`) = σ2
∞

∑
j=0

[F j+`]qq[F j]>qq for ` > 0, Γ(`) = σ2
∞

∑
j=0

[F j]qq[F j−`]>qq for ` < 0.

Suppose that data {Y−hp+1, . . . ,Y−1,Y0,Y1, . . . ,Yn} are observed where

Yt = (Y1,t, Y2,t, . . . , Yq,t)> with Yj,t ≡ Y(1)
j,t for j = 1, . . . , q.

Let
β j =

(
β j0, β

(1)
j1 , . . . , β

(p)
j1 , β

(1)
j2 , . . . , β

(p)
j2 , . . . , β

(1)
jq , . . . , β

(p)
jq

)>
∈ R(1+pq)

Xt−1 =
(

1, Y(1)
1,t−1, . . . , Y(p)

1,t−1, Y(1)
2,t−1, . . . , Y(p)

2,t−1, . . . , Y(1)
q,t−1, . . . , Y(p)

q,t−1

)>
∈ R(1+pq)

=
(

1, Ȳ>1,t−1, Ȳ>2,t−1, · · · , Ȳ>q,t−1

)>
with Ȳj,t−1 = (Y(1)

j,t−1, . . . , Y(p)
j,t−1)

>.

Then Equation (2) is, for each j, given by

Yj,t = β>j Xt−1 + εj,t = X>t−1β j + εj,t (6)

and its matrix form is
Yt = BXt−1 + Et, Y>t = X>t−1B> + E>t , (7)

where B = (β1, β2, . . . , βq)>, q× (1 + pq) matrix, and Et = (ε1,t, ε2,t, . . . , εq,t)>. The matrix form with
t = 1, 2, . . . , n is given by

Y = XB> + E

where Y = (Y1, . . . ,Yn)> ∈ Rn×q, X = (X0,X1, . . . ,Xn−1)
> ∈ Rn×(1+pq) and

E = (E1, . . . , En)> ∈ Rn×q. The ordinary least squares estimator (OLSE) of B is obtained by

B̂ = (β̂1, β̂2, . . . , β̂q)
> = arg min(β1,β2,...,βq)

q

∑
j=1

n

∑
t=1

ε2
j,t.

Its transpose is given by

B̂> =
(
X>X

)−1 (
X>Y

)
=

(
n

∑
t=1

Xt−1X>t−1

)−1( n

∑
t=1

Xt−1Yt

)
.
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Equivalently, from (6) with Yj,t = X>t−1β j + εj,t, whose matrix form with t = 1, 2, . . . , n, is given by

Ỹj := (Yj,1, Yj,2, . . . , Yj,n)
> = (X0,X1, . . . ,Xn−1)

>β j + ε̃j

Ỹj = Xβ j + ε̃j

where ε̃j = (εj,1, εj,2, . . . , εj,n)
>, we obtain OLSE of β j for each j as follows.

β̂ j =
(
X>X

)−1 (
X>Ỹj

)
=

(
n

∑
t=1

Xt−1X>t−1

)−1( n

∑
t=1

Xt−1Yj,t

)
.

The following theorem states the asymptotic normality of the OLSE. We need the notations for
the theorem:

Under the strictly stationary condition in (A1), for j, l ∈ {1, . . . , q}, let µj = E[Yj,t] and

γjl(k1, k2) = Cov(Yj,t−k1 , Yl,t−k2), γ̄jl(i1, i2) =
1

hi1 hi2

hi1

∑
k1=1

hi2

∑
k2=1

γjl(k1, k2).

Furthermore let Jp be p× p matrix with all components as ones and vec(·) the usual operator,
stacking the columns of a given matrix.

Theorem 2. Assume that (A1) and (A2) holds, and the matrix X>X is of full rank. (a) For each j = 1, 2, . . . , q,
as n→ ∞ we have √

n(β̂ j − β j)
d−→ N(0, σ2Σ−1)

where Σ is given by

Σ = E[X0X>0 ] =


1 S01 · · · S0q

S10 S11 · · · S1q
...

...
. . .

Sq0 Sq1 · · · Sqq

 ∈ R(1+pq)×(1+pq)

with Sj0 = (µl , · · · , µl)
> = S>0j ∈ Rp and

Sjl =


γ̄jl(1, 1) · · · γ̄jl(1, p)

...
. . .

...
γ̄jl(p, 1) · · · γ̄jl(p, p)

+ µjµl Jp ∈ Rp×p.

(b) As n→ ∞ we have
√

n
σ

[vec(B̂)− vec(B)] d−→ N(0, Iq ⊗ Σ−1)

where ⊗ is the Kronecker product.

Proof of Theorem 2. For (a), β̂ j is written as

β̂ j = β j +

(
n

∑
t=1

Xt−1X>t−1

)−1( n

∑
t=1

Xt−1εj,t

)
,
√

n(β̂ j − β j) =
√

n Σ̂−1
x Σ̂xe,j
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where

Σ̂x =
1
n

n

∑
t=1

Xt−1X>t−1, Σ̂xe,j =
1
n

n

∑
t=1

Xt−1εj,t. (8)

For the desired result, it suffices to show that as n→ ∞,

Σ̂x
p−→ Σ and

√
n Σ̂xe,j

d−→ N(0, σ2Σ).

First, we prove the convergence of Σ̂x.

Σ̂x =
1
n

n

∑
t=1

Xt−1X>t−1 =
1
n

n

∑
t=1

[
1 Σ̂12,t

Σ̂21,t Σ̂22,t

]
(9)

where
Σ̂12,t = (Ȳ>1,t−1, Ȳ>2,t−1, · · · , Ȳ>q,t−1) = Σ̂>21,t, 1× pq row vectors

Σ̂22,t = Σ̂21,tΣ̂12,t, pq× pq matrix.

It can be shown straightforwardly that the right-hand side of (9) converges to Σ as n→ ∞ by the
WLLN of the stationary sequences.

Second, we verify the convergence of
√

n Σ̂xe,j

(
= 1√

n ∑n
t=1 Xt−1εj,t

)
in distribution. For this

purpose, it is enough to show that

1√
n

n

∑
t=1

η>Xt−1εj,t
d−→ N(0, σ2η>Ση) (10)

for any η ∈ R1+pq. Fix j and let ξt = 1√
n η>Xt−1εj,t and F ∗t = σ{εj,s, −∞ < s ≤ t}. Let Mt =

∑t
s=1 ξs. Note that E[Mt|F ∗t−1] = E[∑t

s=1 ξs|F ∗t−1] = E[ξt + ∑t−1
s=1 ξs|F ∗t−1] = Mt−1 and thus {Mt} is a

martingale sequence with respect to {F ∗t }.
Similar to the proof of the convergence of Σ̂x, we can show that E[(η>Xt−1)(X>t−1η)]2 < ∞, which

implies that for any δ > 0

n

∑
t=1

E[ξ2
t I(|ξt > δ)|F ∗t−1] ≤

1
δ2

n

∑
t=1

E[ξ4
t |F ∗t−1] ≤

C
n2δ2

n

∑
t=1

(η>Xt−1X>t−1η)2 p−→ 0

for some constant C > 0. Furthermore ∑n
t=1 E[ξ2

t |F ∗t−1] = σ2

n ∑n
t=1 η>Xt−1X>t−1η

p−→ σ2η>Ση as
n→ ∞. Hence, by the central limit theorem for martingale difference sequences (see [13]), the desired
convergence of Mn to N(0, σ2η>Ση) in (10) in distribution holds. We complete the proof of (a).

For (b), we observe covariance matrix Cov
(√

n(β̂ j − β j),
√

n(β̂l − βl)
)

for j 6= l, which is equal to

nE
[
(β̂ j − β j)(β̂l − βl)

>
]
= nE

[
E
[
(β̂ j − β j)(β̂l − βl)

>|Yt, t = −hp + 1, . . . , n
]]

By (8), nE
[
(β̂ j − β j)(β̂l − βl)

>∣∣Yt, t = −hp + 1, . . . , n
]
=

nE
[

Σ̂−1
x Σ̂xe,j(Σ̂−1

x Σ̂xe,l)
>
∣∣∣Yt, t = −hp + 1, . . . , n

]
= Σ̂−1

x

(
1
n

n

∑
t=1

n

∑
s=1

Xt−1E[εj,tεl,s]X>s−1

)
Σ̂−1

x

which is zero because {εj,t, j = 1, 2, . . . , q} are independent. Thus the covariance matrix is zero,
and therefore the desired asymptotic multivariate normality of vec(B̂) is obtained with the covariance
matrix Iq ⊗ Σ−1.

Now we adopt correlated error processes by assuming the following:
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(A3) {εj,t, j = 1, 2, . . . , q, t ∈ Z} are correlated random variables with mean zero and
Cov(εj,t, εl,t) = σjl 6= 0, that is, the covariance matrix Ψ is assumed to be Ψ := E[EtE>t ] = (σjl) ∈ Rq×q.

The covariance matrix Ψ is nonsingular and positive definite so there exists a nonsingular
symmetric matrix Ψ

1
2 ∈ Rq×q and Ψ

1
2 Ψ

1
2 = Ψ.

Under (A1) and (A3), note that lag-` autocovariance matrix functions Γ(`) of Yt are given by
Γ(0) = ∑∞

j=0[F j]qqΨ[F j]>qq and

Γ(`) =
∞

∑
j=0

[F j+`]qqΨ[F j]>qq for ` > 0, Γ(`) =
∞

∑
j=0

[F j]qqΨ[F j−`]>qq for ` < 0.

In this case the generalized least squares estimator (GLSE) is computed by minimizing the sum of
squared standardized errors. The GLSE B̂GLS = (β̂1,GLS, . . . , β̂q,GLS)

> of B is given as follows: From (7)
we have

Ψ−
1
2 Yt = Ψ−

1
2BXt−1 + Ψ−

1
2 Et, Y>t Ψ−

1
2 = X>t−1B>Ψ−

1
2 + E>t Ψ−

1
2 .

Let Yt,Ψ = Ψ−
1
2 Yt, BΨ = Ψ−

1
2B and Ut = Ψ−

1
2 Et. Note that E[UtU>t ] = Iq and we have

Yt,Ψ = BΨ Xt−1 + Ut, Y>t,Ψ = X>t−1B>Ψ + U>t . (11)

The GLSE is obtained by

B̂GLS = arg min
B

n

∑
t=1
U>t Ut = arg min

B

n

∑
t=1

(Yt −BXt−1)
>Ψ−1(Yt −BXt−1).

The matrix form of (11) with t = 1, 2, . . . , n is given as YΨ = XB>Ψ + U where

YΨ = (Y1,Ψ, . . . ,Yn,Ψ)
> ∈ Rn×q, X = (X0,X1, . . . ,Xn−1)

> ∈ Rn×(1+pq), U = (U1, . . . ,Un)
> ∈ Rn×q.

The least squares estimator of BΨ is of the form B̂>Ψ =
(
X>X

)−1 (X>YΨ
)
, which is the estimator

of (Ψ−
1
2B)> = B>Ψ−

1
2 . Furthermore note that YΨ = YΨ−

1
2 . Hence the GLSE of B is given as

B̂>GLS =
(
X>X

)−1 (
X>Y

)
that is of the same form as the OLSE. The following theorem presents the asymptotic normality of
the GLSE.

Theorem 3. Assume that (A1) and (A3) hold, and the matrix X>X is of full rank.
(a) For each j = 1, 2, . . . , q, as n→ ∞ we have

√
n(β̂ j,GLS − β j)

d−→ N(0, σ2
j Σ−1)

where Σ is given as in Theorem 2 and σ2
j = σjj.

(b) As n→ ∞ we have

√
n[vec(B̂GLS)− vec(B)] d−→ N(0, Ψ⊗ Σ−1).

Theorem 3 includes the following case of the uncorrelated but heterogeneous variance of the error
processes with Cov(εj,t, εl,t) = σ2

j if j = l, and zero if j 6= l.
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Corollary 1. Assume (A1) and if E[Et] = O and E[EtE>t ] = diag(σ2
j ) ∈ Rq×q, then as n→ ∞,

√
n(β̂ j,GLS−

β j)
d−→ N(0, σ2

j Σ−1) and
√

n[vec(B̂GLS)− vec(B)] d−→ N(0, Σdiag) where Σdiag is given by

Σdiag =


σ2

1 Σ−1 O · · · O
O σ2

2 Σ−1 · · · O
...

. . .
O · · · O σ2

q Σ−1

 .

Proof of Theorem 3. The proof is similar to that of the Theorem 2, except for the limit of the covariance
matrix Cov

(√
n(β̂ j,GLS − β j),

√
n(β̂l,GLS − βl)

)
for j 6= l. Following what we’ve done in the proof of

Theorem 2, we get nE
[
(β̂ j,GLS − β j)(β̂l,GLS − βl)

>∣∣Yt, t = −hp + 1, . . . , n
]
=

nE
[

Σ̂−1
x Σ̂xe,j(Σ̂−1

x Σ̂xe,l)
>
∣∣∣Yt, t = −hp + 1, . . . , n

]
= Σ̂−1

x

(
1
n

n

∑
t=1

n

∑
s=1

Xt−1E[εj,tεl,s]X>s−1

)
Σ̂−1

x

which is equal to Σ̂−1
x

(
1
n ∑n

t=1 Xt−1σjlX>t−1

)
Σ̂−1

x = σjlΣ̂−1
x

p−→ σjlΣ−1. Thus the desired asymptotic

multivariate normality of vec(B̂GLS) is completed with the covariance matrix Ψ⊗ Σ−1.

We have discussed parameter estimation by means of the least squared method and have
established the multivariate normalities in multivariate HAR(p, q) models. For a univariate HAR model,
Hwang and Shin [3] proposed infinite-order, long-memory HAR model to capture the long-memory
property and studied the asymptotic theories of the LSE. In the work of [3,14], it was assumed that
HAR coefficients decrease exponentially, and it was shown that, under the exponential decay condition,
the autocorrelation function of the HAR model is algebraically decreasing and thus the model is of
long-memory. For this reason, additionally we consider the exponentially weighted multivariate
HAR model with exponential decay rate, and develop its asymptotic normality of the rate estimator.
As a simple case we assume that multiple assets have a common rate on coefficients, and the rate
estimation problem is investigated in the following section. A general case of the exponentially
weighted multivariate HAR model will be dealt in the future study.

4. Exponentially Weighted Multivariate HAR Model

In this section, as a special case of model (2), we consider an exponentially weighted multivariate
HAR model with common rate on the parameters of common regressors as follows: In model (2),
for j, k ∈ {1, 2, . . . , q}, and for i ∈ {1, 2, . . . , p}, β

(i)
jk = cjkλi−1 for some cjk and |λ| < 1. The parameters

cjk and λ are estimated using the LSE β̂
(i)
jk in Section 3 as follows:

ĉjk = β̂
(1)
jk and λ̂n =

∑
q
k=1 ∑

q
j=1 β̂

(2)
jk

∑
q
k=1 ∑

q
j=1 β̂

(1)
jk

.

We write Σ−1 =
(

$
(−1)
l1,l2

)
, which is given in the asymptotic variances in Theorems 2 and 3,

for l1, l2 ∈ {1, 2, . . . , 1 + pq}, that is, $
(−1)
l1,l2

is (l1, l2)-component of Σ−1. By Theorem 2 for each i, j, k,

we have
√

n(β̂
(i)
jk − β

(i)
jk )

d−→ N(0, $
(i)
jk ) for some $

(i)
jk which is the corresponding component of the

matrix σ2Σ−1 in Theorem 2. Indeed, $
(i)
jk is the same variance for all j, say, $

(i)
k , and we can easily

represent $
(i)
k = σ2$

(−1)
l,l with l = (k − 1)p + 1 + i. The following theorem states the asymptotic

normality of the estimates for the common rate.
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Theorem 4. Assume (A1) and (A2) hold. In model (2) with β
(i)
jk = cjkλi−1, as n→ ∞, we have

√
n(λ̂n − λ)

d−→ N(0, v2)

where v2 = Var(∑
q
k=1 ∑

q
j=1 Z∗jk)/C2 with C = ∑

q
k=1 ∑

q
j=1 cjk and Z∗jk following normal distribution with

mean zero and variance

v∗jk = σ2
[
$
(−1)
(k−1)p+3,(k−1)p+3 + λ2$

(−1)
(k−1)p+2,(k−1)p+2 − 2λ$

(−1)
(k−1)p+2,(k−1)p+3

]
.

Proof of Theorem 4. By Theorem 2 for each i, j, k, we have
√

n(β̂
(i)
jk − β

(i)
jk )

d−→ N(0, $
(i)
jk ) for

some $
(i)
jk which is the corresponding component of the matrix σ2Σ−1 in Theorem 2,

where $
(i)
jk = $

(i)
k = σ2$

(−1)
(k−1)p+1+i,(k−1)p+1+i. We may write

q

∑
k=1

q

∑
j=1

β̂
(i)
jk = Cλi−1 +

1√
n

q

∑
k=1

q

∑
j=1

Z(i)
jk + op(1/

√
n)

where Z(i)
jk s are normal random variables with mean zero and variance $

(i)
k for each j and we have

λ̂n =
λ + 1

C
√

n ∑
q
k=1 ∑

q
j=1 Z(2)

jk + op(1/
√

n)

1 + 1
C
√

n ∑
q
k=1 ∑

q
j=1 Z(1)

jk + op(1/
√

n)
,

√
n(λ̂n − λ) =

1
C

q

∑
k=1

q

∑
j=1

(Z(2)
jk − λZ(1)

jk ) + Op(1/
√

n).

Note that Z(2)
jk − λZ(1)

jk has asymptotically normal distribution with mean zero and variance $
(2)
k +

λ2$
(1)
k − 2λCov(Z(2)

jk , Z(1)
jk ) = σ2

[
$
(−1)
(k−1)p+3,(k−1)p+3 + λ2$

(−1)
(k−1)p+2,(k−1)p+2 − 2λ$

(−1)
(k−1)p+2,(k−1)p+3

]
.

Therefore, the desired asymptotic normality of
√

n(λ̂n − λ) is obtained.

Remark 1. As pointed out by [3], the exponential decay condition β
(i)
jk = cjkλi−1 is a condition for the

long-memory property of HAR models. Ref. [3] discussed the HAR model of infinity order and its approximation
of finite orders, where it has been shown that the exponential decay condition is equivalent to algebraically decay
autocorrelation functions along with a mild lag condition. We are interested in testing whether or not the model
is the exponentially weighted multivariate HAR model with common rate λ. For example, we construct the
following hypothesis and test statistic: the null hypothesis H0 : β

(i)
jk = cjkλi−1 for some cjk and common rate

|λ| < 1, for each j, k, versus. the alternative hypothesis HA: the model does not have the common rate nor the
exponentially weighted multivariate HAR model. For i = 1, 2, . . . , p− 1, let

λ̂(i),n =
∑

q
k=1 ∑

q
j=1 β̂

(i+1)
jk

∑
q
k=1 ∑

q
j=1 β̂

(i)
jk

and note that asymptotic normality of λ̂(i),n holds like Theorem 4 by that of the OLSEs. A collection of the

differences
{

λ̂(i1),n − λ̂(i2),n : for all pairs (i1, i2), i1 6= i2
}

is considered. In the collection, all distinct elements
in absolute values are at most (p− 1)(p− 2)/2 ( =: p∗). These are relabelled as {Λ` : ` = 1, 2, . . . , p∗}.
Let Λ̄n = ∑

p∗

`=1 Λ`/p∗ or some related statistics of {Λ`}. Similarly to Theorem 4, we can find the limiting
distribution of Λ̄n under the null hypothesis H0. The null H0 might be rejected if |Λ̄n| is large or if max` Λ` is
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large. In a future work, a specific test statistic related to Λ` will be constructed and the limiting distribution of
the test will be investigated.

5. A Monte-Carlo Study

We present simulation results for model (2) with p = 3 and q = 2, which is a bivariate case of two

assets, using parameters β1 =
(

β10, β
(d)
11 , β

(w)
11 , β

(m)
11 , β

(d)
12 , β

(w)
12 , β

(m)
12

)>
= (0.3, 0, 2, 0.1, 0.05, 0.1, 0.05, 0.02)>,

β2 =
(

β20, β
(d)
21 , β

(w)
21 , β

(m)
21 , β

(d)
22 , β

(w)
22 , β

(m)
22

)>
= (−0.3, 0.07, 0.04, 0.01, 0.25, 0.07, 0.1)>. We consider

both independent errors and correlated ones for {εj,t}, j = 1, 2: (i) i.i.d. normal distribution N(0, 1)
with E[EtE>t ] = I2 and (ii) correlated normal distribution with E[EtE>t ] = (σjl) ∈ R2×2 with
σ11 = σ2

1 = 1, σ22 = σ2
2 = 1.21, σ12 = ρσ1σ2 with ρ = 0.5. The bivariate HAR(3,2) processes are generated

according to (2) with sample size n = 1000.
We compute the LSEs for the parameters with replication numbers 500 and give the sample means

and standard errors of the 500 estimates in Tables 1 and 2 with n = 300, 600, 1000. It is reported in
Tables that sample means are closer to the real values of parameters as well as standard errors decreases
as n increases. Additionally, Figures 1 and 2 illustrate plots of sample means (a), (b) and standard
errors (c), (d) of the LSEs of the parameters as n increases on the horizontal axis: Figures 1a,c and 2a,c
for the estimates of β1 and Figures 1b,d and 2b,d for the estimates of β2.

Confidence intervals using the normal approximations in Theorems 2 and 3 with confidence
level 95% are constructed: 0.95 = P(β̂− z0.975 ŝe ≤ β ≤ β̂ + z0.975 ŝe), for each parameter component
β, with its LSE β̂ and standard-error estimate ŝe = σ̂/

√
n, where σ̂2 is the corresponding (diagonal)

component of estimate of asymptotic covariance matrix in Theorems 2 and 3. The confidence intervals
of 500 samples as well as the empirical coverage probabilities and average lengths in the i.i.d. error
case by the normal approximations are demonstrated in Figure 3, where sample size n = 1000 and
replication number 500 are used. To illustrate the multivariate asymptotic normality, plots of the
normal approximations for estimates of some parameters are depicted in Figure 4, and the bivariate
normalities of some pairs of two chosen estimates also can be seen in Figure 5. The three figures
support normality results established in the theory.

Table 1. Sample mean and standard error of 500 estimates in i.i.d. case.

Parameter
Sample Mean (Standard Error)

n = 300 n = 600 n = 1000

β10 0.30 0.36 (0.17) 0.33 (0.12) 0.32 (0.08)
β
(d)
11 0.20 0.19 (0.07) 0.20 (0.04) 0.20 (0.03)

β
(w)
11 0.10 0.08 (0.14) 0.09 (0.10) 0.10 (0.07)

β1 β
(m)
11 0.05 −0.05 (0.26) 0.00 (0.18) 0.02 (0.13)

β
(d)
12 0.10 0.10 (0.07) 0.10 (0.04) 0.10 (0.03)

β
(w)
12 0.05 0.06 (0.13) 0.06 (0.09) 0.06 (0.07)

β
(m)
12 0.02 0.04 (0.25) 0.02 (0.17) 0.02 (0.12)

β20 −0.30 −0.37 (0.16) −0.34 (0.12) −0.32 (0.08)
β
(d)
21 0.07 0.06 (0.07) 0.07 (0.05) 0.07 (0.04)

β
(w)
21 0.04 0.06 (0.14) 0.05 (0.09) 0.05 (0.07)

β2 β
(m)
21 0.01 0.01 (0.27) 0.01 (0.18) 0.01 (0.14)

β
(d)
22 0.25 0.24 (0.06) 0.25 (0.05) 0.25 (0.04)

β
(w)
22 0.07 0.05 (0.14) 0.06 (0.10) 0.06 (0.07)

β
(m)
22 0.10 0.00 (0.24) 0.05 (0.16) 0.08 (0.12)
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Table 2. Sample mean and standard error of 500 estimates in correlated case.

Parameter
Sample Mean (Standard Error)

n = 300 n = 600 n = 1000

β10 0.30 0.36 (0.30) 0.33 (0.20) 0.32 (0.15)
β
(d)
11 0.20 0.18 (0.09) 0.19 (0.07) 0.19 (0.05)

β
(w)
11 0.10 0.07 (0.22) 0.09 (0.15) 0.10 (0.12)

β1 β
(m)
11 0.05 −0.04 (0.44) 0.00 (0.29) 0.01 (0.22)

β
(d)
12 0.10 0.11 (0.09) 0.11 (0.07) 0.11 (0.05)

β
(w)
12 0.05 0.05 (0.21) 0.05 (0.14) 0.04 (0.11)

β
(m)
12 0.02 0.03 (0.44) 0.03 (0.28) 0.04 (0.21)

β20 −0.30 −0.38 (0.33) −0.33 (0.21) −0.31 (0.15)
β
(d)
21 0.07 0.06 (0.11) 0.06 (0.07) 0.06 (0.06)

β
(w)
21 0.04 0.04 (0.25) 0.05 (0.16) 0.05 (0.12)

β2 β
(m)
21 0.01 0.06 (0.48) 0.02 (0.31) 0.01 (0.22)

β
(d)
22 0.25 0.25 (0.10) 0.25 (0.07) 0.26 (0.06)

β
(w)
22 0.07 0.05 (0.23) 0.06 (0.15) 0.06 (0.11)

β
(m)
22 0.10 −0.03 (0.47) 0.05 (0.30) 0.08 (0.21)
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Figure 1. Sample mean (a,b) and standard error (c,d) of the 500 estimates in i.i.d. case.
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Figure 2. Sample mean (a,b) and standard error (c,d) of the 500 estimates in correlated case.
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Figure 3. Empirical coverage and average length (in parenthesis) of 95% confidence intervals for seven
components of β1 (left column) and β2 (right column) in i.i.d. error case. The horizontal dotted line
indicates the true value of the parameter in each plot. Confidence intervals that do not contain the
parameter are depicted as red color.
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Figure 4. Normal approximation of estimates β̂
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11 , β̂
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11 in i.i.d.case (a–c) and correlated case (d–f).
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Figure 5. Bivariate normal approximation of some pairs of two chosen estimates (β̂
(d)
11 , β̂

(d)
21 ),

(β̂
(w)
11 , β̂

(w)
21 ), (β̂

(m)
11 , β̂

(m)
21 ) in i.i.d.case (a–c) and correlated case (d–f).

As for the exponentially weighted multivariate HAR(3,2) model with β
(i)
jk = cjkλi−1 in Section 4,

the estimates for the common rate are given in Table 3, from which we see that sample means of
estimated values are close to the true ones with reasonable standard errors.

Table 3. Sample mean and standard error of 500 estimates in exponentially weighted HAR model.

Parameter
Sample Mean (Standard Error)

n = 300 n = 600 n = 1000

β10 0.10 0.11 (0.09) 0.10 (0.06) 0.10 (0.05)
c11 0.30 0.29 (0.05) 0.29 (0.04) 0.30 (0.03)
c12 0.20 0.20 (0.05) 0.20 (0.04) 0.20 (0.03)
β20 −0.30 −0.33 (0.09) −0.32 (0.07) −0.31 (0.05)
c21 0.10 0.10 (0.05) 0.10 (0.04) 0.10 (0.03)
c22 0.25 0.24 (0.05) 0.25 (0.04) 0.25 (0.03)
λ 0.50 0.49 (0.23) 0.52 (0.19) 0.50 (0.15)

6. Application

This section addresses empirical data analysis on the Gold spot price and S&P500 index.
Their volatility is modeled by bivariate HAR model, using three years of daily closing price,
from 18 September 2017 to 17 September 2020, of Gold and S&P500. The three years of Gold price
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and S&P500 index movement and their log return are shown in Figure 6 while their volatility and
autocorrelation coefficients functions (ACFs) in Figure 7.

0 100 200 300 400 500 600 700 800

1200

1400

1600

1800

2000

Go
ld

 sp
ot

 p
ric

e 
in

 U
SD

Gold

0 100 200 300 400 500 600 700 800

2200

2400

2600

2800

3000

3200

3400

3600

S&
P5

00
 In

de
x

S&P

0 100 200 300 400 500 600 700 800

−0.04

−0.02

0.00

0.02

0.04

0.06

Re
tu

rn
 o

f g
ol

d 
sp

ot
 p

ric
e

Gold

0 100 200 300 400 500 600 700 800

−0.100

−0.075

−0.050

−0.025

0.000

0.025

0.050

0.075

0.100

Re
tu

rn
 o

f S
&P

50
0 

In
de

x

S&P

Figure 6. Gold spot price in USD and its return (in red) and S&P500 index and its return (in blue)
against number of days starting from 18 September 2017 to 17 September 2020.
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We list some critera of MSE, R2, AIC, BIC in Table 4 for the OLSEs (ordinary least squares
estimators) of the bivariate HAR model of order p = 3, 4 by examining the volatility of Gold and
S&P500. Conventionally lags of order p = 3, 4 are used for a day (h1 = 1), a week (h2 = 5), a month
(h3 = 22) and a quarter (h4 = 66) in a HAR model. Nevertheless, in this work, we consider optimal lags
in the sense of minimizing MSE of OLSEs for Gold and S&P500 volatility simultaneously. For order
p = 3, 4, we choose lags h2, . . . , hp to satisfy the condition, 1 = h1 < h2 < · · · < hp < h̄ for some
large h̄, so that the sum of the two mean squared residuals of the OLSEs for the volatility of Gold
and S&P500 is minimized. As a result, we found optimal lags (h1, h2, h3) = (1, 5, 6) for p = 3 with
(MSEGold, MSES&P) = (0.0461, 0.0387) and (h1, h2, h3, h4) = (1, 3, 6, 7) for p = 4 with (MSEGold,
MSES&P) = (0.0488, 0.0410). In Table 4, we compare our optimal lags with the conventional lags in
different criteria. In all cases considered, our selection of optimal lags (h1, h2, h3) = (1, 5, 6) with p = 3
turns out to be the best.

Table 4. OLSEs in the bivariate HAR(p, 2) model on volatility of Gold and S&P500.

Gold S&P500

MSE R2 AIC BIC MSE R2 AIC BIC

p = 3 (1, 5, 22) 0.0492 0.790 −117.0 −84.68 0.0420 0.910 −236.6 −204.2
(1, 5, 6) 0.0461 * 0.801 * −169.8 * −137.3 * 0.0387 * 0.916 * −303.2 * −270.7 *

p = 4 (1, 5, 22, 66) 0.0519 0.789 −73.30 −32.24 0.0448 0.909 −180.3 −139.3
(1, 3, 6, 7) 0.0488 0.791 −128.1 −86.28 0.0410 0.912 −264.4 −222.6

* Denotes the best.

Therefore we report estimation results of the HAR(3,2) model with (h1, h2, h3) = (1, 5, 6) for
the volatilities of Gold and S&P500 in Table 5, where coefficients estimates, standard errors and 95%
confidence intervals are provided. In Figure 8, two plots of the bivariate HAR(3,2) fitted model by
the OLSEs for this optimal case on the datasets of Gold and S&P volatilities are depicted along with
residuals. We see that the bivariate HAR(3,2) fittings are similar to the real volatility plots of both
datasets as reported upon the criterions.

Table 5. Estimation results for Gold and S&P500 using HAR(3,2) with (h1, h2, h3) = (1, 5, 6).

Gold S&P

Parameter (j = 1) (j = 2)

Coeff. est.(s.e.) (95% C.I.) Coeff. est.(s.e.) (95% C.I.)

β j0 0.0790 (0.016) (0.047, 0.111) −0.0088 (0.015) (−0.038, 0.021)

β
(1)
j1 0.9751 (0.038) (0.901, 1.049) 0.0534 (0.034) (−0.014, 0.121)

β
(2)
j1 −1.0822 (0.187) (−1.450, −0.714) −0.4278 (0.172) (−0.765, −0.091)

β j β
(3)
j1 0.9301 (0.175) (0.586, 1.274) 0.4458 (0.161) (0.130, 0.761)

β
(1)
j2 0.1478 (0.039) (0.071, 0.225) 1.1153 (0.036) (1.045, 1.186)

β
(2)
j2 −0.6484 (0.198) (−1.036, −0.261) −1.1196 (0.181) (−1.475, −0.764)

β
(3)
j2 0.5879 (0.179) (0.237, 0.939) 0.9338 (0.164) (0.612, 1.256)
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Figure 8. Fitted HAR model and residual using OLSE for the volatility of Gold and S&P500.

7. Conclusions

Due to the cross-correlation of multiple assets and spillover effect of volatility in the financial
market, a multivariate heterogeneous autoregressive-realized volatility (HAR-RV) model has attained
much attention recently. In the multivariate HAR model, its stationarity is discussed and estimation
problems are studied. We first investigate the strictly stationarity solution of the multivariate HAR
model and second develop the asymptotic normality theory for the least squares estimates (LSEs) with
i.i.d. and correlated errors, respectively. Third, we propose an exponentially weighted multivariate
HAR model and estimate its common exponential decay rate. In a Monte-Carlo experiment,
performances of the LSEs are numerically illustrated with sample mean and standard error of the
estimates as well as empirical coverage and average length of confidence intervals by using the normal
approximation. In addition, as a real data example, volatilities of Gold spot price and S&P500 index
during recent three years are used to analyze in a bivariate HAR model. The coefficient estimates
and confidence intervals are found in the bivariate HAR model of volatility of Gold and S&P500,
along with choosing optimal lags, and it is shown that the bivariate HAR model with the proposed
optimal lags is well matched with the volatility of the financial data.

We suggest some problems on the multivariate HAR model. As we proposed before,
the exponentially weighted HAR models with decay rates are of interest owing to reduced numbers of
parameters as well as the long-memory property. In modeling the multivariate HAR model, testing
whether the HAR coefficients have exponentially weighted decay rates or not and furthermore whether
multiple assets have a common decay rate or not might provide statistically useful tools to analyze the
time series model. In follow-up studies we will deal with the hypotheses tests by constructing the test
statistics and establishing the null limiting distribution. Finally, we mention that in a multivariate HAR
model with heteroscedasticity errors, asymptotic properties of the estimates differ from the existing



Mathematics 2020, 8, 2083 18 of 18

results, and thus we will derive the asymptotic theory on the HAR models in the presence of dynamic
heteroscedasticity. In this case, financial market data can be represented more remarkably and hence
forecasting volatility with forecast accuracy will be carried out in the further research.
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