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1. Introduction

1.1. Associative Algebra and Its Dual, Coalgebra

An associative algebra is an algebraic structure with compatible operations of additions,
associative multiplications and scalar multiplications by elements in a module or a field. A counital
coalgebra is one of the dual notions of the unital associative algebras; see [1] [page 197] and [2]
[page 803]. Historically, coalgebras occur as the dual of algebras in [3,4] in the category theoretic
approach to dynamical systems and automata. An automaton as a coalgebra was nicely presented and
an early proof that the set of formal languages is a final coalgebra was described in [5]. A bisimulation
as a notion of behavioural equivalence for concurrent processes and a notion of strong extensionality
for the theory of non-well-founded sets were invented in [6—8]. The notion of bisimulation was
generalized to the level of arbitrary coalgebras in [9]. As a consequence, coalgebra is one of the nice
ingredients from mathematics and becomes an extensive field of research.

The axioms of unital associative algebras can be formulated in terms of commutative diagrams
in the category-theoretic sense of reversing arrows. In general, it is well known that a coalgebra
structure gives rise to an algebra structure. Classically, a coalgebra appears naturally in combinatorics,
algebra, and algebraic topology as describing ways one can decompose objects into other objects of the
same type. Moreover, a coalgebra occurs naturally in a number of contexts such as a universal
enveloping algebra and a group scheme. There are also F-coalgebra structures with important
applications in computer science; see [10,11].

One of the classical cohomology algebras is the singular (or simplicial) cohomology algebra
whose multiplication is the usual cup product, and its unit is induced from the unique continuous
function from a topological space to a one-point space. A graded singular homology module of a
Hopf space becomes a graded algebra with a unit element. Moreover, it is well known that, if the
homology modules of a Hopf space is free of a finite type, then it is a commutative and associative
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Hopf algebra over a principal ideal domain, and that the singular homology of a topological space
with coefficients in a field has naturally the coalgebra structure whose coalgebra comultiplication
and counit are induced by the diagonal map via the Kiinneth formula and by the unique continuous
function from the topological space to a one-point space, respectively, as in the case of cohomology.

1.2. Homotopical Viewpoint for a Dual

In classical (or rational) homotopy theory, it is well known that the notion of a (pointed) Hopf
space [12-14] is one of the Eckmann-Hilton dual concepts of a (pointed) co-Hopf space. Co-Hopf spaces
were introduced in [15] and were used to determine whether a pointed CW-space has the same
homotopy type of the suspension of another pointed CW-space or not [16] [Theorem A]; see also [17].
The second author has developed the structures of a wedge of (localized) spheres as the co-Hopf spaces
with various homotopy comultiplications [18-23], and the suspension structure with the standard
comultiplication in the sense of same homotopy n-types [24-28]; see also [29,30] for the topics which
are related to the fundamental concepts of those CW-spaces, and [31] for the equivariant homotopy
theoretic point of view with the behavior of the local cohomology spectral sequence.

1.3. Previous Results and Motivation

In the category of topological spaces and continuous maps, a pair (Z, w) consisting of a space Z
and a function w : Z — Z V Z is said to be a co-H-space if

mowx~ly~mow:2Z —Z,

where 711, 71 : ZV Z — Z are the first and second projections, respectively, and 17 is the identity map
on Z. In this case, w : Z — Z V Z is called a topological comultiplication on the space Z.

Let Lz be the Quillen model of a rational co-Hopf space Z, i.e., a wedge of rational spheres up
to homotopy, and let L LI Lz be the Quillen model of Z VV Z. Then, there exists a bijection of sets
between the set of all homotopy classes of topological comultiplications w : Z — Z V Z and the set of
all homomorphisms ¢ : Ly — Lz LI Lz such that

7'[10([):1LZ:7T2011L7:L2—)L2,

where 711, 712 : Ly U Ly — Lz are the first and second projections; see [32] [Lemma 2.2].

Motivated from the above statements, we raise the following query: Are there any kinds of
coalgebra structures based on a digital image to develop its fundamental properties in itself? To give
an answer to this query, we try to investigate an R-module homomorphism

¢: P dH"(X;R) —» P dH"(X;R) ®r P dH"(X;R)

n>0 n>0 n>0

of digital cohomology modules based on a kx-connected digital image (X, kx) corresponding to
the standard homomorphism ¢ : Ly — Lz LI Ly and to the standard topological comultiplication
w : Z — ZV Z via the bijection above. We can thus construct an R-coalgebra with an R-coalgebra
comultiplication and an R-coalgebra counit. The coalgebra structure in this paper induces a familiar
mathematical structure which is originated from a connected digital image, and offers a method for
how to construct the standard coalgebra as the practical links between the algebraic approach and the
analysis of digital images.

1.4. Digital Images and Our Goals

Digital topological spaces and digital images are highly related to combinatorial topology and
computer science, and it mostly deals with the two-dimensional or three-dimensional digital images.
Digital topology was first studied in the late 1960s by A. Rosenfeld, and digital surfaces (or digital
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manifolds) were also developed in the early 1980s and in 1990s by many authors. In particular,
the formal and informal definitions of a lot of terms in homotopy and simplicial (co)homology theory
based on a digital image on Z? or Z® with adjacency relations were nicely described in [33-38];
see also [22] for digital quasi co-Hopf space, and [39,40] for digital cohomology modules and cone
metric spaces.

We need to develop another theory to study digital topological spaces (or digital images) out
of classical cohomology theory and digital counterparts of those ideas in classical homology and
cohomology theories. In the current paper, we study another consideration of the so-called algebraic
approach from the classical cohomology groups. In fact, the current study deals with coalgebras,
coalgebra comultiplications, counits, and coalgebra homomorphisms of coalgebras over a commutative
ring R with identity 1g based on digital images with adjacency relations. The functorial properties
as one of the digital counterparts to classical cohomology theory originated from the algebraic
invariants and their important properties of cohomology modules in classical cohomology theory will
be discussed.

1.5. Organization

This paper is organized as follows: in Section 2, we briefly review the basic definitions of
digital images with adjacency relations and digital continuous functions. We also examine the digital
homology and cohomology modules over a commutative ring R with identity based on digital images
with some adjacency relations. In Section 3, we consider coalgebras, coalgebra comultiplications,
counits, and coalgebra homomorphisms of coalgebras over a commutative ring R with identity 1z on
digital images with adjacency relations, and find out the relationships between the category of digital
images and digital continuous functions, the category of digital cohomology R-modules and R-module
homomorphisms of digital cohomology R-modules, and the category of coalgebras and coalgebra
homomorphisms based on digital images induced by the digital continuous functions between them.

2. Digital Images and Digital (Co)homology Modules

Let Z be the set of all integers, and let Z" := Z x Z x - -- x Z. For a positive integer u with
—_——

n—times
1 < u < n, we define an adjacency relation in Z" as follows:

Definition 1 ([41]). Two different points p = (p1,p2,...,Pn) and q = (41,92, . ..,qn) in Z" are said to be
k(u, n)-adjacent if

e there are at most u distinct indices i with the property |p; — q;| = 1, and
e for each positive integer i < n, if |p; — q;| # 1, then p; = g;.

Example 1 ([39]).

(1) The set of k(1,1)-adjacent points of 0 in Z! is the set consisting of —1 and 1.

(2)  The set of k(1,2)-adjacent points of (0,0) in Z? is the set consisting of (1,0), (0,1), (—1,0) and (0, —1).

(3)  The set of k(2,2)-adjacent points of (0,0) in Z? is the set consisting of (1,0), (1,1), (0,1), (=1,1),
(-=1,0), (=1,-1), (0,—1), and (1, —1).

We mostly denote a k(u, n)-adjacency relation on a digital image X (see below) by the kx-adjacency
relation for short unless we specifically state otherwise.

A digital image (X, kx) consists of a bounded and finite subset X of Z" and an adjacency relation kx
on X. A digital image (X, kx) in Z" is said to be kx-connected ([42,43]) if, for each set {x,y} consisting
of two distinct points x and y, there exists a subset

P:{x()rxll”-rxs}gx (1)
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consisting of s 4 1 distinct points such that

¢ X=Xy
e x;=y;and
e x;and x;;q are kx-adjacent fori =0,1,...,5s — 1.

Definition 2 ([44]). A function
fZ (X,kx) — (Y,ky) (2)

of digital images (X, kx) and (Y, ky) with kx-adjacency and ky-adjacency relations, respectively, is said to be a
(kx, ky)-continuous function if the image of any kx-connected subset of the digital image (X, kx) under the
function f is a ky-connected subset of (Y, ky); see also [43] [Definition 2.3].

Remark 1 ([39]). We note that if (X, kx), (Y, ky) and (Z,kz) are digital images and if
[ (Xkx) = (Y ky) ®)
is a (kx, ky)-continuous function and
8: (Y ky) = (Z,kz) 4)
is a (ky, kz)-continuous function, then it can be shown that the composite
gof: (X, kx) = (Z,kz) ©)

is also a (kx, kz)-continuous function. Therefore, it is possible for us to consider the category D of k-connected
digital images and digital continuous functions; that is, the object classes of D are k-connected digital images
and the morphism classes are digital continuous functions.

Let ¢g = (1,0,0,...,0), e; = (0,1,0,...,0), ..., and e, = (0,0,...,0,1) be elements of Z"*1,
and let

A" :={eg,e1,...,en} S Vian (6)

be the digital image in Z"*! with the k(2,n + 1)-adjacency relation. It can be seen that it is a
k(2,n + 1)-connected digital image.

Let R be a commutative ring with identity 1g and let (X, kx) be a digital image with a kx-adjacency

relation. For each n > 0, we denote dC,(X; R) as the non-negatively graded free R-module with a
basis consisting of all (kan, kx)-continuous functions

(M (An,kAn) — (X,kx), (7)
and define the so-called digital boundary operator
9y : dCy(X;R) — dC,,_1(X;R) (8)

by

9n0 = < im0 9



Mathematics 2020, 8, 2082 5o0f 21

where €; : A"1 — A" is the i-th face function; see [45,46] for more details. It can be shown that
9y 091 =0 (10)

for all n > 0, and thus Im(9,,41) is automatically an R-submodule of Ker (9, ) for each n > 0. The n-th
digital homology module dH,(X; R) over R of a digital image (X, kx) with a kx-adjacency relation is
defined by

dH,(X;R) = Ker(9,)/Im(0,,+1) (11)
for each n > 0 [45]; see also [36,47].
Definition 3 ([39]). The n-th digital cohomology module dH" (X; R) over R of a digital image (X, kx) is
defined to be the corresponding cohomology module over a commutative ring R with identity of the cochain
complex obtained by the dual R-modules along with the dual R-module homomorphisms, i.e.,

dH™(X; R) = Ker(6" 1) /Im(5™) (12)
forall n > 0, where

8" = Hom(d,,R) : dC"1(X;R) — dC"(X;R) (13)

is the so-called digital coboundary operator which is the dual of the digital boundary operator 9y, : dC,(X;R) —
dC,_1(X;R) for each n > 0.

It can be seen in [39] that, for each digital image (X, kx), dH" (X; R) has the R-module structure
whose scalar multiplication

5=e:RxdH"(X;R) — dH"(X;R) (14)
(r, [x]) — (7, [x]) (15)
is given by
S(r,[x]) =re[x] =[rex] =rex+Im(s"), (16)
where
1. rekR;

2. [x] = x+Im(8") € dH"(X; R) with x € Ker(6"*1); and
3. the second and third bullets ‘e’ in (16) are the scalar multiplications on Ker(6"*1) as an
R-submodule of dC" (X; R).

Indeed, as a quotient R-module, dH"(X; R) has the unitary R-module structure because R is a
commutative ring with identity; see [39] [Theorem 1] for further details.
Let A and B be R-modules. A function /i : A — B is said to be an R-module homomorphism if

1. h(ay +44a2) = h(ay) +ph(ay); and
2. h(rea)=reh(a),

forall ay,ap,a € A and r € R, where

1. +4+4:Ax A — Aisthebinary operation on A;
2. +p:B x B — Bis the binary operation on B;
3. thefirstbullet® : R x A — A is the scalar multiplication on A; and
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4.  thesecond bullet ® : R X B — B is the scalar multiplication on B.

Remark 2. Let D be the category of digital images and digital continuous functions as mentioned earlier in
Remark 1, and let Modg be the category of unitary R-modules and R-module homomorphisms. Then, it can be
seen in [39] [Theorem 1] that the assignment

dH"(—;R) : D — Modg (17)
given by
(X, kx) — dH"(X;R) (18)
is a contravariant functor for each n > 0.

3. Coalgebras, Counits, and Coalgebra Homomorphisms

In this section, two digital images (X, kx) and (Y, ky) are always kx-connected and ky-connected
digital images, respectively, so that the 0-th digital cohomology modules of the digital images are just
the coefficient rings; that is,

dH°(X;R) = R = dH°(Y;R). (19)
Recall that a triple (C, ¢, €) consisting of an R-module C and R-module homomorphisms
p:C—=C®rC (20)
and
e:C—R (21)
is said to be a coalgebra over a ring R (or an R-coalgebra) if the following diagrams

C 9

C®rC (22)

P 1c®re

1
C®RC&>C®RC®RC

and

C (23)

1c®ge e®rlc )

COrR=——C@rC—R®rC

@
ZIE‘

IR

are strictly commutative. Here,

e 1c: C — Cis the identity automorphism;
e j1:C®rR — Cgivenby ji(c ®g r) = c ®ris an R-module isomorphism; and
e j»:R®rC — Cgivenby ja(r ®g c) = r e ¢ is an R-module isomorphism,
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where the bullet multiplications above are coming from the right and left R-module structures on C
with scalar multiplications
o:CxR—=C (24)
and
e:RxC—=C, (25)
respectively. The above R-module homomorphism
p:C—C®rC (26)
is said to be an R-coalgebra comultiplication on C, and the R-module homomorphism
€e:C—=R (27)
is said to be an R-coalgebra counit.
A pointed digital Hopf space Y := (Y, yo, ky, my) consists of a pointed digital image (Y, o) with an

adjacency relation ky and a (kyy, ky)-continuous function my : Y x Y — Y which is called a digital
homotopy multiplication (or digital multiplication for short) such that the following diagrams

A ey, X1
Y — vy yxy
XN/
Y
and
1y><8y0

Y — o yxy Y x Y
X - /
Y
commutate up to pointed digital homotopy, where Ay : Y — Y X Y is the diagonal function; see [48,49]
for more details.

Let X := (X, x0,kx,mx) and Y := (Y, o, ky, my) be pointed digital Hopf spaces with digital
multiplications mx : X x X — X and my : Y XY — Y, respectively. A base point preserving
(kx, ky)-continuous function f : (X,x9) — (Y,yo) is said to be a digital Hopf function (compare
with [50,51]) if f o mx and my o (f x f) are pointed digital (kx«x, ky)-homotopicin (Y, o).

It can be shown that, if (Y, yo, ky, my) is a pointed digital Hopf space with digital multiplication

my : Y x Y =Y, then the digital multiplication my provides the graded digital cohomology module
{dH"(Y;R) | n > 0} with the structure of coalgebra over the commutative ring R with identity 1g.

Remark 3. Since R is a commutative ring with identity 1, we have the R-module structure of the tensor
product dH" (X; R) ®g dH" (X; R), n > 0 whose scalar multiplication

o:Rx (dH"(X;R) ®r dH"(X;R)) - dH"(X;R) @ dH" (X; R) (28)
is given by

re([x1] ®r [x2]) = (r e [x1]) @R [x2] = [x1] @R (7 ® [x2]) (29)
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forall [x1] ®g [x2] € dH"(X; R) ®g dH" (X; R), where the second bullet in (29)
e: RxdH"(X;R) —» dH"(X;R) (30)
is the scalar multiplication on the R-module structure of dH" (X; R), n > 0; see the Formula (16).

For a path connected Hopf space Y with a multiplication m : Y X Y — Y, it can be seen that
the diagonal map A : Y — Y X Y and the multiplication m : Y X Y — Y induce homomorphisms of
classical homology and cohomology modules as follows:

~

o A iH.(Y;R) 2 H,(Y x Y;R) —= H,(Y;R) ®g H.(Y;R) ;
o it Hi(Y;R) @ Hi(Y;R) —— Ho(Y X Y;R) —> H.(Y;R) ;

o i : H*(Y;R) > H*(Y x Y;R) —= H*(Y;R) @ H*(Y;R) ; and

A

o A":H*(Y;R)®H*(Y;R) —> H*(Y x Y;R) —*> H*(Y;R),
where

e H.(Y;R):=,>0Hu(Y;R);

e H'(Y;R):=,>0H"(Y;R);

e X is the homology and cohomology cross products; and

e the homology and cohomology modules are free modules of finite ranks.

It is well known in algebraic topology that H,(Y; R) has the structure of an R-algebra with 7.,
and H*(Y : R) has the structure of an R-coalgebra with 71*. Similarly, the algebraic structure arising
from the diagonal map A : ¥ — Y x Y has the coalgebra structure on homology and the algebra
structure on cohomology together with the Kiinneth formula; see [52,53].

Let Rcoal(C) be the set of all R-coalgebra comultiplications on an R-coalgebra C and let |Rcoal (C)|
be its cardinality. In general, there exist (infinitely) many types of R-algebra comultiplications on an
R-coalgebra C; that is, |Rcoal (C)| < co.

We now focus on the development of an R-coalgebra based on a kx-connected digital image
(X, kx). To do so, we define one of the R-coalgebra comultiplications on the direct sum @, dH" (X; R)
of digital cohomology modules to construct the R-coalgebra structure on it as follows.

Definition 4. Let (X, kx) be any kx-connected digital image. Then, we define an R-module homomorphism

¢: P dH"(X;R) - P dH"(X;R) ®@r P dH"(X;R) (31)
n>0 n>0 n>0
by
i >

e([x]) = {5’: glI:ll]Iz +1g ®R [¥] iZ - ;and M 1y in R & dHO(R) (32)

for all [x] € @,>0dH"(X; R), where 1y is the identity element of the ground ring
R = dH°(X;R) (33)

corresponding to the unique element 1g ® 1g odeO(X; R)® dHO(X; R); that is,
dH(X;R) = R = dH°(X; R) ® dH°(X; R) (34)

1g +— 1g ® 1. (35)
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Indeed, by Remark 3, we can show that ‘¢’ preserves the scalar multiplication and the addition
as follows:

p(rex]) =re[x]@rlr+1r ®rre[x] by (32)
=re([x]@rlg)+re(lr®r[x]) by (29) 36)
=re([x] ®g 1r + 1gr ®r [x]) by the module structure
— o g([x) by (32

forallr € Rand [x] € @,>¢0dH"(X;R) and
e([x1] + [x2]) = ([x1] + [x2]) ®r 1r + 1r @& ([x1] + [x2])
= ([x1] ®r 1g + [x2] ®r 1) + (1gr ®R [x1] + 1r @R [x2]) (37)
= ([x1] ®r 1g + 1gr @R [x1]) + ([x2] ®r 1r + 1R @R [x2])

= ¢([x1]) + ¢([x2])

for all ¥ € R and [x1],[x2] € @,>0dH"(X;R) and this is similar for the 0-dimensional digital
cohomology case. Moreover, we can show that the R-module homomorphism ¢ is indeed an
R-coalgebra comultiplication; that is, ¢ € Rcoal (@, dH"(X; R)); see Theorem 1 below.

Remark 4. We can also define another R-module homomorphism

¥ : @PdH"(X;R) - P dH"(X;R) @r P dH"(X;R) (38)
n=0 n>0 n>0
by
Va] @R IR + 1R @R [yn] + Y il @ [y;] ifn>1
¥([yn]) = i+j=n (39)

1g ®r 1r ifn = 0and [yo] = 1g in R = dH°(X; R)

forall [ys] € @,>0dH*(X;R),s = 0,1,2,.... The R-module homomorphism 1 is sometimes called a diagonal
or coproduct in the sense of Hatcher [53] [page 283].

Let A : Z — Z x Z be the diagonal map. In classical homology and cohomology theories,
an element z of H,(Z; R) is said to be a primitive homology class if

A(z)=z®1+1®z (40)

in Hy,(Z; R) ®g Hy(Z; R). Similarly, if Y is a connected Hopf space with multiplicationm : Y X Y — Y,
then an element y of H"(Y; R) is said to be a primitive cohomology class if

m(y) =y®1+1xy (41)

in H"(Y; R) ®g H"(Y; R). We note that the element [x] € @,,>odH"(X; R) in Definition 4 looks like a
primitive cohomology class.

Moreover, it can be seen that the R-module homomorphisms ¢ in Definition 4 and 1 in Remark 4
are completely different from any types of the above homomorphisms A, on homology and A* on
cohomology induced by the diagonal map A : Y — Y X Y on a topological space Y (or even a digital
image (X, kx)).

Definition 5. We define an R-module homomorphism

e: @ dH"(X;R) — R (42)
n>0
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by

() 0 ifn>1
el|X]) =
1g ifn=0and [x] = 1g in R = dH°(X; R)

for [x] € @,>0dH"(X; R).

Similarly, we have

e(refx]) =e([rex])

_Jo ifn>1

a {rolR —r ifn=0and [x] = 1g in R = dHO(X;R)

_Jre0= ifn>1

a {rolR —r ifn=0and [x] = 1g in R = dHO(X;R)

=roe([x])

and
e(lr+1r) =e€(201R) by the ring addition on R

=20¢(1g) by (44)
=201p by Definition 5
=1r+ 1y

=€(1g) +€(1g)

10 of 21

(43)

(44)

(45)

forall 7 € Rand [x] € @,>¢0dH"(X;R), where o is the ring multiplication on R. By extending the

linearity, we can see that ‘e’ preserves the addition.

Convention. From now on, we make use of the notation dH*(X;R) to denote the direct sum

@,>0dH"(X; R) of digital cohomology modules; that is, dH*(X; R) := @,,>9dH"(X; R).

We now have the following.
Theorem 1. Let (X, kx) be a kx-connected digital image, and let
¢ :dH*"(X;R) - dH"(X;R) @ dH*(X; R)

and
e€:dH*(X;R) - R

be the R-module homomorphisms in Definitions 4 and 5, respectively. Then, the triple
(dH™(X;R), ¢,€)

is an R-coalgebra.

Proof. If n > 1, then we have

(Lar(x;r) ®R @) © @([x]) (1dH*(XR @R ¢)([x] ®r 1g + 1r ®R [x])

= [x] ®r (1 ®r 1r) + 1g @ ([x] ®r 1R + 1g @R [x])
[x] ®r 1R ®R 1R + 1R @R [x] @R 1R + 1r @R 1 ®R [*]
([x] ®r 1Ir + 1gr @R [x]) @R 1R + 1R ®R 1R @R [*]

= (¢ ®r Lyp+(x;r)) ([x] @R 1R + 1R @R [*])

= (¢ ®r Lap=(x;r)) © ¢([x])

(46)

(47)
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for all [x] € dH*(X;R). If n = 0, then we obtain

(Lino(x;r) ®r @) © 9(1r) = (Lgpo(x;r) ®r ¢)(1r ¥R 1R)
= 1gr ®r (1r ®r 1r)
= (1 ®r 1r) ®r 1 (43)
= (¢ ®r 1gpo(x;r)) (1R ®r 1R)
= (¢ ®r Lgpo(x;r)) © P(1r)

satisfying the condition in (22).
If n > 1, then we also obtain

j2o (€ ®r Lyp(x;r)) © ([x]) = j20 (€ ®r Lyp+(x;r)) ([x] ®r 1k + 1R @R [x])
= j2(0®r 1r + 1r ®r [x])

:OolR—l-lRo[x] (49)
=0+ [x]
= [«]
for all [x] € dH*(X; R), where
o : R x dH*(X;R) — dH"*(X; R) (50)

is the scalar multiplication on a left unitary R-module dH*(X; R). The above Equation (49) shows that
the triangle on the right-hand side of (23) is commutative. Similarly, we have

j10 (Lap(x;r) ®r €) 0 9([x]) = j1 0 (Lyp=(x;r) ®r €)([x] ®r 1r + 1R ®R [x])
=7 ([ ]®R1R—|—1R®RO)
= [x] e 1R+1R.0 (51)
= [x] +
= [+]
forall [x] € dH*(X;R), where
o . dH*(X;R) x R — dH*(X; R) (52)

is the scalar multiplication on a right unitary R-module dH*(X;R) which is equal to the scalar
multiplication on dH*(X; R) as a left unitary R-module in (50) by defining

refx] =[x]er. (53)
If n = 0, then we have

j2o (€ ®r 1gpo(x;r)) © P(1R) = j2 0 (€ ®r 1gpo(x;r)) (1R ®r 1R)
- j2(1R QR 1R) (54)

and

j10 (Lapo(x;ry ®R€) © @(1R) = j1 0 (Lgpo(x;r) @R €) (1R ®R 1R)
= jl(lR QR 1R) (55)
=1
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Indeed, it is possible for us to do so because the ground ring R is commutative. The above Equations (49),
(51), (54), and (55) show that the two triangles in (23) are strictly commutative, as required. [

We now give an example of the digital cohomology modules of some digital images, and then
present another example of an R-coalgebra based on the same digital images as follows.

Example 2. Let X := {0,1}and Y := {x; |i = 1,2,...,8} bedigital images in Z and 7> with 2-adjacency and
4-adjacency relations, respectively, where x; = (1,0),x, = (1,1),x3 = (0,1), x4 = (-1,1), x5 = (—1,0),
x¢ = (—1,—-1),x7 = (0,—1),x3 = (1,—1); see Figures 1 and 2. Then, it can be shown that X and Y are
2-connected and 4-connected digital images, respectively. Moreover, we have

R ifn=0
dH"(X;R) = ¢ " (56)
0 ifn>1
and
R ifn=0,1
dH"(Y;R) =4 " ©7)
0 ifn>2.
We note that
dH°(Y;R) = Ker(6' : dC°(Y; R) — dC'(Y;R)) (58)

because there are no digital coboundaries in dimension 0; that is, the module of digital 0-coboundaries in (Y, ky)
is trivial.

2—adjacency

X2
‘ 1 ;
l ! .
| '4—adjacency
| |
| |
L X5 LXq
¢ 0 17 x
|
! |
| |
! l
|
Xe ‘x] 7777777 ‘xg
-1

Figure 2. A digital image Y with the 4-adjacency relation along with the 8-dotted lines.
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Example 3. Let X := {0,1} and Y := {x; | i = 1,2,...,8} be digital images in Z* with 2-adjacency and
4-adjacency relations, respectively, in Example 2. We consider an R-coalgebra comultiplication

given by
(PdH*(Y;R)([y]) - {gyR] zll: i11: s i: i (1) and [y] = 1g in R = dH°(Y; R) &9
forall [y] € dH*(Y; R) in Definition 4. We also define an R-coalgebra counit
€qr+(vir) P 4H"(Y;R) — R
to be the Formula (43) in Definition 5. Therefore, it can be seen that the triple
(dH"(Y;R), @ap(v:R), €ar (v;R))
has the R-coalgebra structure, and similarly for the digital image (X, kx ), where kx = 2.
Definition 6. Let A := (A, @a,€a) and B := (B, ¢p,€p) be coalgebras over a commutative ring R
with identity. An R-module homomorphism
h:A—B (60)
is said to be an R-coalgebra homomorphism if the following diagrams
A— S AcrA (61)
h h®@grh
B ” B®r B
and
A L B (62)
R
are strictly commutative.
For digital images (X, kx) and (Y, ky), we let
®an+(x;r) P dH (X;R) = dH*(X; R) ®r dH*(X; R) (63)
and
Pap=(vr) P AH" (Y;R) — dH*(Y;R) @ dH*(Y; R) (64)

be R-coalgebra comultiplications on dH*(X; R) and dH*(Y; R), respectively. Let
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and
edH*(Y;R) : dH*(Y, R) — R (66)

be R-coalgebra counits on dH*(X; R) and dH*(Y; R), respectively.
We note that if
o (A" kpn) = (X, kx)

is a (kan, kx)-continuous function and if
[ (X kx) = (Y, ky)
is a (kx, ky)-continuous function, then it can be shown that
foo: (A" kan) — (Y, ky)

is a (kan, ky)-continuous function. Therefore, by using the linear property, we have an R-module
homomorphism of R-modules
fi :dCy(X;R) — dCy(Y;R)

defined by
ft(Zraoa) = Zr(,o (foo),

where 7, is an element of the commutative ring R with identity, and the bullets e are the scalar
multiplications on the R-modules dC, (X; R) and dC,,(Y; R) with the same notation.
Let

[ (X kx) = (Y ky) (67)
be a (kx, ky)-continuous function between digital images. Then, we define a map
f#:dC"(Y;R) — dC"(X;R) (68)
by
fiy) =yof; (69)
for every y € dC"(Y; R); that is, the following triangle

fy

dCy(X;Z) dCy(Y;Z) (70)
Fiy) /
R
is strictly commutative, where Z is the ring of integers.
Lemma 1. Let
f(Xkx) = (Y, ky) (71)

be a (kx, ky)-continuous function. Then, the map

f* =dH"(f) : dH"(Y;R) — dH"(X; R) (72)
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given by
) =1FWl=lyo £
is an R-module homomorphism, where
ly] =y +Im(6") € dH"(Y;R)
and y is an element of the kernel of
o" 1 dC"(Y; R) — dC"T(Y;R).
Proof. See [39] [Lemma 2] for further details. [J
Theorem 2. Let
[ (Xkx) = (Y, ky)
be a (kx, ky)-continuous function between digital images. Then, the homomorphism
[ (dH*(Y;R), 941+ (v;r): €an+(v:r)) — (AH"(X; R), @ap+(x;R), €41 (X:R))
induced by f is an R-coalgebra homomorphism.
Proof. It can be shown in [39] [Lemma 2] that

f*:dH*(Y;R) — dH*(X;R)

15 of 21

(73)

(74)

(75)

(76)

(77)

(78)

is an R-module homomorphism; that is, f* preserves the scalar multiplication and the addition

as follows:

frrefyl) =ref ()

and

Syl + va]) = £ (wa]) + £ ([y2))-

allr € Rand [y], [y1], [y2] € dH*(Y; R).
If n > 1, then we have

(f* ®@r f*) o @ar=(v;r)(ly)) = (f* @r f*)([y] ®r 1Ir + 1r ®r [y])
= (f*([v]) ®r f*(1r)) + (f*(1r) @& f*([v]))
f([yD@RlR) (1r ®@r f*([y)))
R (f* (W)
*XR)Of*([y])

—~

forall [y] € dH*(Y;R).

(79)

(80)

(81)
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If n = 0, then we obtain

(f* ®r f*) © @aroviry(Ir) = (f* ®@r f*)(1r ®r 1R)
= f*(1r) ® f*(1r)
=1r ®r 1r
= @aro(x;r) (1R)
= @aro(x;r) (f " (1r))
= Pamo(x;r) © f*(1R),

(82)

where
f*:dH(Y;R) — dH°(X;R) (83)

is the identity automorphism on R.
For the R-coalgebra counits, if n > 1, then we have

€ar=(x;R) © f*([¥]) = €m=(x;r)([yo fz]) byLemmal
—0 by (43) (84)

= edH*(Y;R)([yD

for all [y] € dH*(Y; R). Similarly, if n = 0, then

€arox;r) © f(IR]) = €qpo(x;r) ([1r]) by (43)
=1z (85)

= €4p0(v;r) ([1R]),
where
f*:dH(Y;R) — dH°(X;R) (86)
is the identity automorphism on R, as required. O

Example 4. Let X := {0,1}and Y := {x; | i = 1,2,...,8} be digital images in 7 and 7? with 2-adjacency
and 4-adjacency relations, respectively, in Example 2. Let

f: (X,kx) — (Y,ky) (87)
be any (kx, ky)-continuous function between digital images. Then, it can seen that the map
f* 1 (@H"(Y;R), @apr(v:r), €an+(v:r)) = (AH"(X;R), @apr+ (x;R), €41 (X;R)) (88)
is an R-coalgebra homomorphism.

Indeed, if n > 1, then, by Example 2, we obtain

(f* ®r f) © @ar=(v;r)(y]) = (f* @r f*)([y] ®r 1r + 1r @R [y])
=0®r1r +1x ®r 0
-0 (89)
= (PdH*(X;R)(O)
= @iH*(X;R) o f*([yl)
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for any element [y] of dH*(Y; R). If n = 0, then

(f* ®r f*) © Papo(y;ry (1) = (f* ®r f*)(1r ®r 1)
=1r ®r1r
= @aro(x;r) (1R) (90)
= PaHO(X;R) (f*(1r))
= @ano(x;r) © f* (IR)-

Similarly, we have

ear=(x;) © f(Y]) = ean=x;r)(ly o fi])

L ifn>1 1)
- |1z ifn=0and[yof;] = 1g = [y] in dH(X;R) = R = dH"(Y;R)

= €4H*(Y;R) (v,

as required.
Let A := (A, 9a,€4), B:= (B, ¢p,€ep) and C := (C, ¢c, ec) be coalgebras over a commutative
ring R with identity 1g. If

hy:A—B (92)
and
hy:B—C (93)
are R-coalgebra homomorphisms, then it can be shown that
hpohi: A—C (94)

is also an R-coalgebra homomorphism. Therefore, we can consider the category Coalgr of R-coalgebras
and R-coalgebra homomorphisms of R-coalgebras; that is, the class of objects of the category Coalgr
consists of R-coalgebras and the class of morphisms of Coalgr consists of R-coalgebra homomorphisms
of R-coalgebras.

Corollary 1. For each object class (X, kx) in D, the assignment
E:D — Coalgr (95)
given by
(X, kx) = (dH"(X; R), 941+ (x;R) €41+ (X:R)) (96)
is a contravariant functor.

Proof. Let f : (X,kx) — (Y, ky) be any (kx, ky)-continuous function. Then, by applying the
contravariant functor

dH*(—,R) : D — Modg, 97)
we have an R-module homomorphism [39] [Theorem 1]

dH*(f;R) = f* : dH*(Y;R) — dH*(X; R). (98)
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Let
F: Modgr — Coalgr (99)
be the covariant functor assigning to each unitary R-module dH*(X;R) the R-coalgebra
(dH*(X; R), @apr(x;R), €a4r+(x;R))- Then, by using Theorems 1 and 2, we have an R-coalgebra
homomorphism

f*=F(f"): F(dH*(Y;R)) — F(dH*(X;R)) (100)

by putting the R-coalgebra comultiplications and the R-coalgebra counits into the digital cohomology
modules (with the same notation f* = F(f*)), where

F(dH*(Y;R)) = (dH"(Y;R), @an(v.R), €ar*(viR)) (101)
and
F(dH"(X;R)) = (dH" (X R), 9arr(x;R) €41+ (X;R))- (102)
Therefore, it can be shown that, if
1y : (X, kx) = (X, kx) (103)
is the identity function on any digital image (X, kx), and if
fi (X kx) = (Y, ky) (104)
and
§: (Y. ky) = (Z,kz) (105)

are morphism classes in D; that is, (kx, ky)-continuous and (ky, kz)-continuous functions, respectively,
then we have

E(lx) = 1(dH*(X/'R)/(Pdh!*(X;R)/edH*(X;R)) (106)

which is the identity morphism on (dH*(X; R), @ap+(x;R), €41+ (x;r)) s the unique morphism class of
Coalgg, and

E(go f) =E(f) 0 E(g) : (dH"(Z;R), @ap+(z;r) €ar(z;r)) = (@H™(X;R), @apr(x;R) €am (x;r) ), (107)
as required. 0O
Remark 5. Let
F: Modgr — Coalgr (108)

be the covariant functor assigning to each unitary R-module dH*(X;R) the R-coalgebra
(dH*(X; R), @arr(x;R) €41+ (x;R)) 45 described in the proof of Corollary 1, and let

G : Coalgr — Modpg (109)
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be the forgetful functor, which assigns to each R-coalgebra (dH*(X; R), @ap+(x:R), €an+(x:R)) its underlying
unitary R-module dH*(X; R) (forgetting the R-coalgebra comultiplication and the R-coalgebra counit). Then,
it can be shown that the following triangle

dH*(—;R)
D Modg (110)

O
Coalgr

is commutative as natural transformations; that is,

e E=FodH*(—;R);
e GoE=dH*(—;R);and
L4 GOF: 1M0dR

of (covariant or contravariant) functors.

4. Conclusions and Applications

In applied mathematics or computer science, digital topology deals with features and properties
of digital images in Z", especially, the two-dimensional or three-dimensional digital images
corresponding to the topological features and properties of object classes. In mathematics,
coalgebras have the structures that are dual to unital associative algebras in the sense of category
theory by reversing objects and arrows as objects classes and morphism classes, respectively.

In this paper, we have investigated some fundamental properties of the coalgebras,
coalgebra comultiplications, counits, and coalgebra homomorphisms of coalgebras based on digital
images with some adjacency relations. We have explored the functorial properties as one of the
digital counterparts to classical cohomology theory originated from the algebraic invariants and
their important properties of cohomology modules in classical cohomology theory. We have also
developed the relationship between the category of digital images and digital continuous functions,
the category of digital cohomology R-modules and R-module homomorphisms of digital cohomology
R-modules, and the category of R-coalgebras and R-coalgebra homomorphisms induced by the digital
continuous functions.

We have also constructed an R-module homomorphism ¢ : dH*(X; R) — dH*(X; R) ®g dH*(X; R)
of digital cohomology modules based on a kx-connected digital image (X, kx) as an R-coalgebra
comultiplication to give dH*(X; R) the R-coalgebra structure on it. We do hope that our results will
be applied to the world of Lie algebras and rational homotopy theory to develop the Lie algebra
comultiplications based on graded vector spaces.
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