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Abstract: Let (M, g) be a Riemannian manifold equipped with a pair of dual connections (∇,∇∗).
Such a structure is known as a statistical manifold since it was defined in the context of information
geometry. This paper aims at defining the complete lift of such a structure to the cotangent bundle
T∗M using the Riemannian extension of the Levi-Civita connection of M. In the first section,
common tensors are associated with pairs of dual connections, emphasizing the cyclic symmetry
property of the so-called skewness tensor. In a second section, the complete lift of this tensor is
obtained, allowing the definition of dual connections on TT∗M with respect to the Riemannian
extension. This work was motivated by the general problem of finding the projective limit of a
sequence of a finite-dimensional statistical manifold.
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1. Introduction

Information geometry originally dealt with parameter spaces of families of probability densities
viewed as differentiable manifolds [1,2]. More specifically, let E be a measure space and let S = {pθ , θ ∈
M} be a parameterized family of densities on E satisfying:

1. M is a topological manifold (in most cases, it is simply an open subset of Rn).
2. The topology of S induced by the L1 norm is compatible with the topology of M.
3. It exists a probability measure µ on E such that for any θ ∈ M, pθ << µ.
4. θ 7→ (x ∈ E→ pθ(x)) is smooth uniformly in x.
5. ∂θEµ[log p(x, θ)] = Eµ [∂θ log p(x, θ)].
6. The moments up to order 3 of x 7→ ∂θ log p(x; θ) exist and are smooth.

7. The matrix F with entries Fij(θ) = Epθ

[
∂θi log p(x, θ)∂θj log p(x, θ)

]
is positive definite.

The last assumption allows to endow M with the structure of a Riemannian manifold with metric:

gθ

(
∂θi , ∂θj

)
= Fij(θ) (1)

Parameterized families of the so-called exponential type, the densities of which can be written as:

p(x; θ) = exp (−〈θ, T(x)〉 − ψ(θ) + h(x))

play a special role in statistics and have a well behaved Riemannian structure. When T(x) = x,
the family is said to be natural and is defined entirely by ψ. In such a case, the Fisher information
matrix takes the form:

Fij(θ) = −Epθ

[
∂2

∂θi∂θj

]
so that the Riemannian metric is Hessian. The structure of such manifolds has been thoroughly
studied in [3]. Finally, from considerations arising in statistical estimation, a pair of dual connections
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∇,∇∗ with respect to the Fisher metric can be constructed [4]. They possess vanishing torsion and are
related by the skewness tensor:

g (∇XY, Z)− g (∇∗XY, Z) = T(X, Y, Z)

with:
Tijk = Epθ

[
∂θi log p(x, θ)∂θj log p(x, θ)∂θk log p(x, θ)

]
As a generalization, a smooth Riemannian manifold (M, g) equipped with a pair (∇,∇∗) of

torsionless dual connections is called a statistical manifold. It can be defined equivalently by (M, g, T)
where T is a fully symmetric (0, 3)-tensor. It turns out [5] that any statistical manifold can be embedded
as a statistical model, i.e., one related to a parameterized family of densities.

For a Riemannian manifold (M, g), lifting geometric objects to the tangent bundle TM (resp.
cotangent bundle T∗M) is a classical problem [6–8] that relies most of the time on the Whitney
sum TTM = HTM ⊕ VTM (resp. TT∗M = HT∗M ⊕ VT∗M) with VTM the vertical bundled
obtained from the kernel of the canonical projection dπ : TTM → TM (resp. dπ : TT∗M → T∗M
and HTM the horizontal subspace arising from a fixed affine connection ∇. In the tangent bundle,
Reference [8] introduces a lift based on horizontal and vertical lifts of vector fields and relies on
a quasi-complex structure on TM. For T∗M, the preferred method involves complete lifts [9]
and Riemann extensions [10], which are pseudo-Riemannian metrics of neutral signature defined
on the cotangent bundle and associated in a canonical way to affine connections with vanishing
torsion. The complete lift of the connection is defined to be the Levi-Civita one with respect to its
Riemann extension. Complete and vertical lifts of different kinds of tensors are also presented in [6].
Finally, horizontal lifts of connections are presented in [7].

In this paper, the complete lift of dual connections is defined and yields a pair of dual connections,
which have vanishing torsion if the original connections do. The strategy adopted is to lift the skewness
tensor, here defined in a more general setting as a (0, 3)-tensor with cyclic symmetry. The procedure
described in [6] is adapted to this case, effectively allowing to get a skewness tensor on TT∗M. The first
step is the symmetric lift presented in Definition 6, which yields a (1, 2)-tensor on TT∗M. Applied to the
skewness tensor of a pair of dual connections, it yields the mutual torsion of the lifted dual connections.
The action of this tensor on vertical and complete lifts of vector fields is given in Proposition 14 and
Equation (38). Finally, lifted connections are studied with respect to vertical and complete lifts of forms
and vector fields, showing their relationship with mutual curvatures of original dual connections.
For a couple of fields X, Y solutions of the equation ∇∗∇ = 0, the action of a lifted connection on the
complete lifts Xc, Yc can be simplified, allowing in a future work a projective limit to be defined.

2. Statistical Structures

In information geometry, dual connections are the basic objects defining the so-called statistical
manifold structure [4]. The purpose of this section is to recap some properties of statistical structures
and to introduce the (0, 3)-skewness tensor in the context of dual connections with or without torsion.
It has the cyclic symmetry property, which is exactly what is needed to lift it as a (1, 2)-tensor on the
cotangent bundle.

In the sequel, M is a smooth n-dimensional manifold endowed with a Riemann metric g.

Definition 1. Let ∇,∇∗ be affine connections on TM. They are said to be dual if for any triple X, Y, Z of
vector fields:

Z (g(X, Y)) = g (∇ZX, Y) + g (X,∇∗ZY) . (2)

The torsion of a connection ∇ is the tensor T defined as: T(X, Y) = ∇XY−∇YX− [X, Y]. If the
torsion of T vanishes, so does the torsion of T∗.
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Proposition 1. Let ∇,∇∗ be dual connections. Then for any triple (X, Y, Z):

(∇Zg)(X, Y) = g (X,∇∗ZY)− g (X,∇XY)

Proof. The covariant derivative of the tensor g is given, for any triple (X, Y, Z) of vector fields by:

(∇Zg)(X, Y) = Z(g(X, Y))− g (∇ZX, Y)− g (X,∇ZY) .

By Definition 1:
Z(g(X, Y)) = g (∇ZX, Y) + g (X,∇∗ZY) .

So that:
(∇Zg)(X, Y) = g (X,∇∗ZY)− g (X,∇ZY) .

Exchanging ∇ and ∇∗, one also has:

(∇∗Zg)(X, Y) = g (X,∇ZY)− g (X,∇∗ZY) .

Thus:
∇g = −∇∗g

Proposition 2. If ∇,∇∗ are without torsion then the tensor:

(X, Y, Z) 7→ (∇Zg)(X, Y)

is fully symmetric.

Proof. Symmetry in X, Y is obvious from the symmetry of g, while symmetry in Z is obtained from
the relations:

∇ZY = ∇YZ− [Y, Z]

∇∗ZY = ∇∗YZ− [Y, Z]

Definition 2. Let ∇1,∇2 be affine connections on TM. Their mutual torsion is the tensor:

D∇1,∇2(X, Y) = ∇1
XY−∇2

YX− [X, Y].

Remark 1. The divergence tensor is defined for dual connections ∇,∇∗ as ∇XY −∇∗XY. For torsion-less
connections, the two notions agree, i.e., D∇,∇∗ = ∇XY−∇∗XY.

In the case of dual connections with vanishing torsion, the commutation defect of the divergence
is related to the mutual curvature of the connections.

Definition 3. Let (∇1,∇2) be a pair of connections. Their mutual curvature is the tensor (1, 3)-tensor:

R∇1∇2(X, Y, Z) = ∇1
X∇2

YZ−∇1
Y∇2

XZ−∇1
[X,Y]Z. (3)

As in the case of the curvature, it is often useful to introduce the (0, 4)-tensor:

R∇1∇2(X, Y, Z, U) = g (R∇1∇2(X, Y, Z), U) .
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The curvature and the mutual curvature of dual connections enjoy symmetry properties.

Proposition 3. Let (∇,∇∗) be a pair of dual connections. Then, for any vector fields X, Y, Z, U;{
R(X, Y, Z, U) = R∗(X, Y, U, Z)

R∇∗∇(X, Y, Z, U) = R∇∇∗(X, Y, U, Z).
(4)

Proof. The proof of the first property is found in, for example, [4]. For the second, the definition of
R∇∇∗ is written as:

R∇∗∇(X, Y, Z, U) = g(∇∗X∇YZ, U)− g(∇∗Y∇XZ, U)− g(∇∗[X,Y]Z, U).

Using the duality property:

R∇∗∇(X, Y, Z, U) =X (g(∇YZ, U))− g(∇YZ,∇XU)

−Y (g(∇XZ, U)) + g(∇XZ,∇YU)

− g(∇∗[X,Y]Z, U).

Using duality once again:

R∇∗∇(X, Y, Z, U) =XY (g(Z, U))− Xg(Z,∇∗YU)−Y (g(Z,∇∗XU)) + g(Z,∇∗Y∇XU)

−YX (g(Z, U)) + Y (g(Z,∇∗XU))

+ X (g(Z,∇∗XU))− g(Z,∇∗X∇YU)

− [X, Y]g(Z, U) + g
(

Z,∇[X,Y]U
)
= −R∗∇∇∗(Y, X, U, Z) = R∗∇∇∗(X, Y, U, Z).

In the case of dual connections without torsion, the definition of D(X, Y) simplifies to∇XY−∇∗XY.
Letting DX : Y→ D(X, Y), the next proposition relates the commutation defect to the curvatures.

Proposition 4. For any vector fields X, Y, Z:

DXDYZ− DYDXZ = R(X, Y, Z) + R∗(X, Y, Z)− R∇∇∗(X, Y, Z)− R∇∗∇(X, Y, Z).

Proof. By simple computation:

DXDYZ− DYDXZ = (∇X −∇∗X) (∇YZ−∇∗YZ)− (∇Y −∇∗Y) (∇XZ−∇∗XZ)

= ∇X∇YZ−∇X∇∗YZ−∇∗X∇YZ +∇∗X∇∗YZ

−∇Y∇XZ +∇Y∇∗XZ +∇∗Y∇XZ−∇∗Y∇∗XZ

and the claims follows by identification of the terms.

Proposition 5. Let ∇,∇∗ be dual affine connections on TM. Then, for any triple X, Y, Z of vector fields:

g (∇XY, Z) = g
(
∇lc

XY, Z
)
+

1
2
[g (D∇,∇∗(Z, X), Y)− g (D∇,∇∗(Y, Z), X) + g (D∇,∇∗(X, Y), Z)] (5)

where ∇lc is the Levi-Civita connection.

Proof. Since the two connections are dual:

X (g(Y, Z)) = g (∇XY, Z) + g (Y,∇∗XZ)
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Using the definition of D∇,∇∗ it becomes:

X (g(Y, Z)) = g (∇XY, Z) + g (Y,∇ZX)− g (D∇,∇∗(Z, X), Y)− g([Z, X], Y).

Then, using an alternating sum over the cyclic permutations of (X, Y, Z) and the Koszul formula:

2g
(
∇lc

XY, Z
)
=X (g(Y, Z))− Z (g(X, Y)) + Y (g(Z, X))

+ g(Y, [Z, X]− g(X, [Y, Z]) + g(Z, [X, Y])

yields the result.

Remark 2. Proposition 5 is the analogue of the Kozsul formula for dual connections. It is a defining property
given D∇,∇∗ .

Notation 1. The (0, 3)-tensor:

U∇1,∇2(X, Y, Z) = g
(

D∇1,∇2(Z, X), Y
)
− g

(
D∇1,∇2(Y, Z), X

)
+ g

(
D∇1,∇2(X, Y), Z

)
(6)

is the skewness tensor associated to the connections ∇1,∇2. When no confusion is possible in the case of dual
connections, the subscripts will be dropped so that U(X, Y, Z) stands for U∇,∇∗(X, Y, Z)

Remark 3. The formula of Proposition 5 can be rewritten to give the expression of ∇∗:

g (∇∗XY, Z) = g
(
∇lc

XY, Z
)
− 1

2
U(Y, X, Z).

Proposition 6. For any triple (X, Y, Z):

U(X, Y, Z) = U(Y, X, Z) + 2g (T(X, Y), Z) (7)

where T is the torsion of ∇.

Proof. Using the definition:
∇XY = ∇YX + [X, Y] + T(X, Y)

and the fact that the Levi-Civita has vanishing torsion:

g (∇XY, Z) = g
(
∇lc

XY, Z
)
+

1
2

U(X, Y, Z).

Thus:

g (∇YX, Z) = g
(
∇lc

Y X, Z
)
− g (T(X, Y), Z) +

1
2

U(X, Y, Z)

= g
(
∇lc

Y X, Z
)
+

1
2

U(Y, X, Z)

and so:
U(X, Y, Z) = U(Y, X, Z) + 2g (T(X, Y), Z) .

Proposition 7. The tensor U has the cyclic symmetry propery, that is for any triple (X, Y, Z) of vector fields:

U(X, Y, Z) = U(Z, X, Y). (8)
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Proof. Using the symmetry of the Riemann metric, the same derivation as in Proposition 5 but applied
to the terms X(g(Z, Y), Y(g(X, Z), Z(g(Y, X) yields:

2g
(
∇lc

XZ, Y
)
=2g (∇XZ, Y)

− g (Z, D(Y, X)) + g (X, D(Z, Y))− g (Y, D(X, Z)) .
(9)

By identification it becomes:
U(X, Z, Y) = U(Y, X, Z). (10)

Proposition 8. Let U be a tensor with cyclic symmetry, then the connections defined by:

g (∇XY, Z) = g
(
∇lc

XY, Z
)
+

1
2

U(X, Y, Z)

g (∇∗XY, Z) = g
(
∇lc

XY, Z
)
− 1

2
U(Y, X, Z).

(11)

are dual

Proof. For any triple (X, Y, Z) of vector fields:

X (g(Y, Z)) = g
(
∇lc

XY, Z
)
+ g

(
Y,∇lc

XZ
)

Under the assumption of Equation (10), it becomes:

X (g(Y, Z)) =g (∇XY, Z) +
1
2

U(X, Y, Z)

+ g((Y,∇∗XZ)− 1
2

U(Z, X, Y)

and since U has cyclic symmetry:

X (g(Y, Z)) = g (∇XY, Z) + g((Y,∇∗XZ) .

Proposition 9. Let ∇1,∇2 be a pair of affine connections. For any triple (X, Y, Z) of vector fields:

g
(
Y, D∇1,∇2(Z, X)

)
=

1
2
[
U∇1,∇2(X, Y, Z) + U∇1,∇2(Z, X, Y)

]
. (12)

Proof. Direct computation from the definition of U.

Remark 4. Proposition 9 shows that the mutual torsion of a pair of dual connections is uniquely defined by
a cyclic symmetric tensor. Conversely, for a pair ∇1,∇2 of connections, the cyclic symmetry defect of the
tensor U∇1,∇2 , namely A(X, Y, Z) = U∇1,∇2(X, Y, Z)−U∇1,∇2(Z, X, Y) is the obstruction of being dual.
Please note also that the torsion for a pair of dual connections can be seen as the obstruction for the tensor U to
be totally symmetric.

Remark 5. A statistical manifold may be defined as a quadruple (M, g,∇, U) with M a smooth manifold, g a
Riemannian metric, ∇ an affine connection and U a tensor with cyclic symmetry. It slightly more general than
the usual definition since U is not required to be totally symmetric, thus allowing connections with torsion.
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3. Dual Connections Lifts

Let U be a coordinate neighborhood in M and let π : T∗M → M be the canonical projection.
φ−1(U) is a coordinate neighborhood in T∗M with coordinates denoted as (x1, . . . , xn, p1, . . . , pn).

The lift of connections on the cotangent bundle has been studied in [6,7] using the Riemann
extension defined in [10]. Another kind of lift is introduced in [11] along with a metric on T∗M.
Let (M, g) be a smooth Riemannian manifold and let ∇ be an affine connection. The kernel of
dπ : TT∗M → T∗M defines an integrable distribution, called the vertical distribution, hereafter
denoted by VT∗M. It is spanned by the vectors:

ej+n = δj =
∂

∂pj
, j = 1 . . . n. (13)

Complementary to it, there is a horizontal distribution spanned by the vectors:

ej = ∂j + Γk
ji pkδi, j = 1 . . . n (14)

with:
∂j =

∂

∂xj .

These basis vectors are conveniently put into a matrix form, following the convention of [11]:

L =

(
Id 0
Γ Id

)
(15)

where Γ is the matrix with entries:
Γji = Γk

ji pk. (16)

Definition 4. The Riemannian extension of a torsion-free affine connection ∇ on TM is the symmetric
(0, 2)-tensor with a component matrix:

∇R =

(
−2Γ Id

Id 0

)

where Γ is the matrix defined in (16).

Proposition 10. Let ∇ be a torsion-free affine connection on M and let (ej)1,...,2n be its adapted frame in
TT∗M. With respect to it, the component matrix of the Riemannian extension is:(

0 Id
Id 0

)
.

Proof. In the adapted frame, the expression of the component matrix of the Riemannian extension is:

Lt

(
−2Γ Id

Id 0

)
L

which is equal to: (
−2Γ + Γ + Γt Id

Id 0

)
.

using the assumption that ∇ is torsion-free, Γt = Γ and the claim follows.
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Definition 5. The Levi-Civita connection with respect to the Riemannian extension, denoted by ∇c, is called
the complete lift of the connection ∇.

Proposition 11. The Christoffel symbols of the complete lift ∇c are given by:

cΓk
ji = Γk

ji,
cΓk+n

ji = pl Rl
kij,

cΓk+n
j(i+n) = −Γi

jk, i, j, k = 1, . . . , n.

When∇ = lc∇, the torsion-free assumption is automatically satisfied, so that in an adapted frame
the Riemannian extension reduces to the one of Proposition 10.

Proposition 12. Let (∇,∇∗) be a pair of dual affine connections on TM. Then, with respect to the Riemannian
extension lc∇R of lc∇, the following relations hold:

Lt∇RL∗ = L∗t∇RL =

(
0 Id
Id 0

)
(17)

Lt∇RL =

(
1
2
(

D̃ + D̃t) Id
Id 0

)
(18)

L∗t∇RL∗ =

(
− 1

2
(

D̃ + D̃t) Id
Id 0

)
(19)

where D̃ is the matrix with entries:
D̃ji = pkDk

ji.

and L (resp. L∗) is the component matrix of the adapted frame to ∇ (resp. ∇∗).

Proof. In the case of dual connections, Equation (12) yields:

g (D(X, Y), Z) = U(X, Y, Z)

and so:

∇ = lc∇+
1
2

D (20)

∇∗ = lc∇− 1
2

Dt (21)

where Dt(X, Y) = D(Y, X). From (20) (resp. (21)), it comes:

Γ = lcΓ +
1
2

D̃ (22)

Γ∗ = lcΓ− 1
2

D̃t. (23)

We then have:

∇RL =

(
−lcΓ + D̃

2 Id
Id 0

)
(24)

and:

L∗t∇RL =

(
− D̃

2 + D̃
2 Id

Id 0

)
=

(
0 Id
Id 0

)
.

The other equations are proved the same way.
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The above relations show that the horizontal subspaces of∇ and∇∗ are related by the Riemannian
extension in a very simple way. Let X, Y be a vector in Tx,pT∗M with decomposition X = XV + XH
(resp. Y = YV∗ + YH∗ ) according to the horizontal subspace of ∇ (resp. ∇∗), then:

∇R(Y, X) = 〈YV∗ , XH〉+ 〈XV , YH∗〉.

with 〈·, ·〉 the Euclidean inner product.
Another interesting fact is that with respect to the adapted frames of∇ (resp. ∇), the Riemannian

extension becomes a modified Riemannian extension in the sense of [12]. To a given modified
Riemannian extension, it is thus possible to associate a pair of dual connections with a given
torsion (this last restriction comes from the fact that only the symmetric part of the tensor D enters
the expression).

Since duality is related to metric, it is not so obvious how to lift a pair of mutually dual connections
in a canonical way since the complete lifts of ∇ and ∇∗ involve different Riemannian extensions.
The preferred approach will be thus to lift the mutual torsion D to a (0, 3)-tensor, which can be done
by extending the approach of [6], and to exploit the fact that it has a cyclic symmetry property.

In the sequel, the symmetric (resp. anti-symmetric) part with respect to the contravariant indices
of the (1, 2)-tensor D will be denoted by sD (resp. aD), i.e.,:

sDk
ij =

1
2

(
Dk

ij + Dk
ji

)
aDk

ij =
1
2

(
Dk

ij − Dk
ji

)
.

Proposition 13. The expression:

σ =
1
2

pk
aDk

ijdxi ∧ dxj

defines a 2-form on TT∗M. Its exterior derivative dσ is given by:

dσ =
1
2

pl
∂aDl

ij

∂xk dxk ∧ dxi ∧ dxj +
1
2

aDk
ijdpk ∧ dxi ∧ dxj.

Rearranging the terms, the form dσ can be rewritten as:

6dσ =pl

(
∂aDl

ij

∂xk +
∂aDl

ki
∂xj +

∂aDl
jk

∂xi

)
dxi ∧ dxj ∧ dxk

+ aDk
ijdpk ∧ dxi ∧ dxj + aDi

jkdxk ∧ dpi ∧ dxj + aDj
kidxk ∧ dxi ∧ dpj.

(25)

It turns out that the above tensor has cyclic symmetry since it is (0, 3) and skew-symmetric.
This can be made more explicit by first noticing that the first line on the right hand side obviously has
this property. In the second line, considering as an example the first term aDk

ijdpk ∧ dxi ∧ dxj, a cyclic

permutation of the arguments yields aDk
ijdxj ∧ dpk ∧ dxi. Now, the indices change j→ k, k→ i, i→ j

gives aDi
jkdxk ∧ dpi ∧ dxj, which is exactly the original second term. The remaining terms can be

worked the same way.
Considering now the symmetric part of D, a similar procedure can applied to obtain a fully

symmetric (0, 3)-tensor. Let us denote by � the symmetric tensor product, that is:

x� y = (x⊗ y + y⊗ x)/2.

From sD, a symmetric tensor on TT∗M can be defined as:

θ =
1
2

pk
sDk

ijdxi � dxj.
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Following the construction of Proposition 13 and the formula of [13], a fully symmetric lift can
be defined.

Definition 6. The symmetric lift of sD is the (0, 3)-tensor with components:

1
6

(
pl

(
∂sDl

ij

∂xk +
∂sDl

ki
∂xj +

∂sDl
jk

∂xi

)
dxi � dxj � dxk

+sDk
ijdpk � dxi � dxj + sDi

jkdxk � dpi � dxj + sDj
kidxk � dxi � dpj

)
.

(26)

Gathering things together, both the symmetric and the anti-symmetric part of D can be lifted to a
cyclic symmetric (0, 3)-tensor. In the sequel, the notation of [6] is adopted: Latin letters i, j, . . . refer to
x components, overlined letters i, j, . . . refers to p components and capital letters can be used for both.
As an example, dxi = dpi, δi = ∂i.

Definition 7. The cyclic symmetric complete lift of the (1, 2)-tensor D, denoted Uc, is the (0, 3)-tensor with
components uc

ABCdxA ⊗ dxB ⊗ dxC:
uc

ijk = pl

(
∂Dl

ij

∂xk +
∂Dl

ki
∂xj +

∂Dl
jk

∂xi

)
uc

ijk
= Di

jk; uc
ijk

= Dj
ki; uc

ijk
= Dk

ij

uc
ijA

= uc
iAj

= uc
Aij

= 0.

Let lc∇R be the Riemann extension of the Levi-Civita connection. From Uc, the complete lift of D
can be defined as the (1, 2)-tensor Dc such that for any triple of vector fields:

lc∇R (X, Dc(Y, Z)) = Uc(X, Y, Z). (27)

Given the matrix form of the Riemannian extension for the Levi-Civita connection:

lc∇R =

(
−2lcΓ Id

Id 0

)

its inverse is readily obtained as:

lc∆ =

(
0 Id
Id 2Γ

)
.

The components of Dc in coordinates can be obtained by composing the matrix A, yielding:

Dc C
AB = lc∆CDuDAB

Dc i
jk = Di

jk

Dc i
jk = pl

(
∂Dl

ij

∂xk +
∂Dl

ki
∂xj +

∂Dl
jk

∂xi

)
+ 2lcΓi

l D
l
jk

Dc i
jk
= Dj

ki

Dc i
jk
= Dk

ij

Dc i
jk
= Dc i

jk
= Dc i

jk
= Dc i

jk
= 0

(28)

with the notation lcΓi
l =

lcΓil . Please note that the above relations are different from the one given
in [6] for the complete lift of a skew-symmetric (1, 2)-tensor since here the Riemann extension is used
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in place of the canonical (1, 1)-tensor ε and only the cyclic symmetry is assumed. This last fact can be
noticed in the third and fourth lines of Equation (28).

The next definitions are recalled for the sake of completeness.

Definition 8. Let ω = ωidxi be a degree 1 differential form. Its vertical lift to TT∗M is the vector field:

ωV = ωiδ
i.

The vector fields admit both a vertical and a complete lift. Only the later will be used here.

Definition 9. Let X = Xi∂i be a vector field on M. Its complete lift to TT∗M is the vector field:

Xc = Xi∂i − pl
∂Xl

∂xk δk.

Finally (1, 1)-tensors can be lifted in a quite obvious way:

Definition 10. Let F be a (1, 1)-tensor field. Its vertical lift to TT∗M is the vector field:

FV = pl Fl
kδk.

The action of Dc on vertical and complete lift can now be obtained.

Proposition 14. Let X be a vector field and ω, θ be 1-forms. Then:{
Dc(ωV , θV) = 0

Dc(ωV , Xc) = (ωDX)
V , Dc(Xc, ωV) =

(
ωDX)V (29)

where DX (resp. DX) is the (1, 1)-tensor defined by: DX(Y) = D(X, Y) (resp. DX(Y) = D(Y, X)).

Proof. Let ω = ωidxi, θ = θjdxj. Then D(ωv, θV) = ωiθ jDc A
ij

= 0. Let X be vector field and Xc its
complete lift. By linearity:

Dc A(ωV , Xc) = ωiX jDc A
ij − pl

∂Xl

xk Dc A
ik

Since Dc A
ik

= 0, the second term in the right hand side vanishes. For the fist one, only Dc k
ij

= Di
jk

is non-zero, so that:
Dc(ωV , Xc) = ωiX jDi

jkδk.

The tensor DX has expression DX(Y) = Dk
ijX

iY j∂k, so that ωDX is the form ωDX = ωkXiDk
ijdxj,

of which the vertical lift is ωkXiDk
ij∂

k.

Please note while the expression obtained is similar to the one of [6], the sign is opposite.
The case of the action on two complete lifts is a little bit more complicated. First of all, given two

vector fields X = Xi∂i, Y = Y j∂j, a simple computation yields:

Dc(Xc, Yc) = XiY jDk
ij∂k + XiY j pl

(
∂Dl

ij

∂xk +
∂Dl

ki
∂xj +

∂Dl
jk

∂xi

)
δk

+ 2pl
lcΓkl Dl

ijX
iY jδk − Xi pl

∂Yl

∂xj Dj
kiδ

k −Y j pl
∂xl

∂xi Di
jkδk.

(30)
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After rewriting, Equation (30) becomes:

Dc(Xc, Yc) = XiY jDk
ij∂k + Xi pl

(
Y j ∂Dl

ki
∂xj −

∂Yl

∂xj Dj
ki

)
δk

+ Y j pl

(
Xi

∂Dl
jk

∂xi −
∂Xl

∂xi Di
jk

)
δk + XiY j pl

∂Dl
ij

∂xk δk + 2pl
lcΓkl Dl

ijX
iY jδk.

(31)

Let us consider, for X, Y fixed vector fields, the (1, 1)-tensor lc∇D(X, Y):

Z 7→ lc∇Z(D(X, Y)) = Zk
∂Dl

ijX
iY j

∂xk
+ lcΓl

kmDm
ij XiY jZk.

Its vertical lift is then:

(
lc∇D(X, Y)

)V
= pl

∂Dl
ijX

iY j

∂xk δk + pl
lcΓl

kmDm
ij XiY jδk. (32)

On the other hand, the complete lift of the vector field D(X, Y) is:

(D(X, Y))C = Dk
ijX

iY j∂k − pl
∂Dl

ijXiYj

∂xk δk. (33)

Combining Equations (32) and (33) yields:

2pl
lcΓkl Dl

ijX
iY jδk + XiY jDk

ij∂k = 2
(

lc∇D(X, Y)
)V

+ (D(X, Y))C − pl
∂Dl

ijXiYj

∂xk δk. (34)

Putting the expression in Equation (31) yields:

Dc(Xc, Yc) = 2
(

lc∇D(X, Y)
)V

+ (D(X, Y))C + Xi pl

(
Y j ∂Dl

ki
∂xj −

∂Yl

∂xj Dj
ki

)
δk

+ Y j pl

(
Xi

∂Dl
jk

∂xi −
∂Xi

∂xi Di
jk

)
δk − pl Dl

ij
∂Xl

∂xk Y jδk − pl Dl
ijX

i ∂Yj

∂xk δk.

(35)

Let K be a (1, 1)-tensor K. Its Lie derivative can be written [14] (p. 32, Proposition 35):

LXK(Y) = [X, K(Y)]− K([X, Y]).

It thus becomes:
LYDX(Z) = [Y, DX(Z)]− DX([Y, Z]), (36)

which can be written in coordinates:

LYDX(Z)l = Y j ∂Dl
ikXiZk

∂xj − Dj
ikXi ∂Yl

∂xj Zk −Y j ∂Zk

∂xj XiDl
ik + Zj ∂Yk

∂xj XiDl
ik

= Xi

(
Y j ∂Dl

ik
∂xj
− Dj

ik
∂Yl

∂xj

)
Zk +

∂Yk

∂xj XiDl
ikZj.

(37)
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Plugging it into Equation (35) finally gives the reduced expression:

Dc(Xc, Yc) = 2
(
(lc∇D)(X, Y)

)V
+ (D(X, Y))C

+ (LYDX + LXDY)
V

+ 2(A(X, Y) + B(X, Y))V

(38)

where A(X, Y), B(X, Y) are the tensors defined in coordinates by:

A(X, Y)(Z)l = Dl
ij

lcΓi
mkZkXmY j

B(X, Y)(Z)l = Dl
ij

lcΓj
mkZkYmXi

(39)

The Equation (38) completely defines the tensor Dc.
From the complete lift Dc, dual connections with respect to the Riemannian extension can

be obtained: {
∇̃ = ∇c + 1

2 Dc

∇̃∗ = ∇c − 1
2 Dc t.

(40)

The pair (∇̃, ∇̃∗) defines the complete lift of the original statistical structure to the pseudo-Riemannian
manifold (T∗M,∇R). When∇ is without torsion, then D is symmetric. Using Equation (38) and the fact
that in such a case DX = DX show that Dc is itself symmetric, proving that ∇̃ has vanishing torsion.

4. Relation with Curvature

From [6], the complete lift lc∇c of the Levi-Civita connection with respect to the Riemann extension
has components in coordinates:

lcΓ̃i
jk =

lcΓi
jk

lcΓ̃i
jk = pl

(
∂lcΓl

jk
∂xi
−

∂lcΓl
ki

∂xj
−

∂lcΓl
ij

∂xk

)
+ 2lcΓi

l
lcΓl

jk

lcΓ̃i
jk
= −lcΓj

ki
lcΓ̃i

jk
= −lcΓk

ij
lcΓ̃i

jk
= lcΓ̃i

jk
= lcΓ̃i

jk
= lcΓ̃i

jk
= 0

(41)

Using the expression (40), and assuming that the connections ∇,∇∗ are without torsion,
the components Γ̃ of the lift ∇̃ in coordinates are:

Γ̃i
jk = Γi

jk

Γ̃i
jk = pl

(
∂Γl

jk
∂xi
−

∂Γ∗lki
∂xj
−

∂Γ∗lij
∂xk

)
+ Γi

lΓ
l
jk + Γ∗il Γl

jk

Γ̃i
jk
= −Γ∗j

ki

Γ̃i
jk
= −Γ∗kij

Γ̃i
jk
= Γ̃i

jk
= Γ̃i

jk
= Γ̃i

jk
= 0

(42)

with Γ (resp. Γ∗) the components of ∇,∇∗. The components of ∇̃∗ are obtained by exchanging Γ and
Γ∗ in the above expression. The effect of Γ̃ on vertical and complete lifts of vector fields and forms can
be computed as:
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
∇̃θv ωv = 0

∇̃Xc ωv = (∇∗Xω)v

∇̃θvYc = −(θ(∇Y))v

∇̃XcYc = (∇Y
X)

c + Wv
X,Y

(43)

where WXY is the tensor:

Z 7→ ∇∇∗ZYX +∇∇∗ZXY− R∇∇∗(X, Z, Y)− R∇∇∗(Y, Z, X)

Let (X, Y, Z) be vector fields and define ∇∗∇ as:

(∇∗Z∇)XY = ∇∇∗ZX −∇X∇∗ZY

A field Y solution of ∇∗∇Y = 0 is such that for any couple (Z, X):

∇∇∗ZXY = ∇X∇∗ZY

The set of solutions of the above equation will be denoted as J∇∗∇, following the convention
of [15]. When both X, Y are in J∇∗∇, the tensor WX,Y simplifies to:

WX,YZ = ∇Z (∇∗XY +∇∗YX)

It turns out that [6]:
(∇∗XY +∇∗YX)v = −∇∗R(Xc, Yc)

where ∇∗R is the Riemann extension of ∇∗. The solutions of the equation ∇∗∇ = 0 can thus be
transposed to the cotangent bundle using Riemann extensions.
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