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Abstract: We study the properties of the image of a rational surface of revolution under a nonsingular
affine mapping. We prove that this image has a notable property, namely that all the affine normal
lines, a concept that appears in the context of affine differential geometry, created by Blaschke in the first
decades of the 20th century, intersect a fixed line. Given a rational surface with this property, which can
be algorithmically checked, we provide an algorithmic method to find a surface of revolution, if it
exists, whose image under an affine mapping is the given surface; the algorithm also finds the affine
transformation mapping one surface onto the other. Finally, we also prove that the only rational affine
surfaces of rotation, a generalization of surfaces of revolution that arises in the context of affine differential
geometry, and which includes surfaces of revolution as a subtype, affinely transforming into a surface of
revolution are the surfaces of revolution, and that in that case the affine mapping must be a similarity.

Keywords: surface of revolution; affine differential geometry; affine equivalence

1. Introduction

Surfaces of revolution are classical objects in differential geometry, generated by rotating a curve
around a fixed line, called the axis of revolution of the surface. These surfaces appear often in
nature, in architecture, and in many common human artifacts, and are widely used in Geometric
Design. Additionally, when the surface of revolution is rational, i.e., admitting a parametrization whose
components are quotients of bivariate polynomials (a rational parametrization ), the strong structure of the
surface allows to perform easily certain operations like implicitizing [1], reparametrizing the surface over
the real numbers [2], or analyzing the surjectivity of the parametrization [3]. We recall that every rational
surface is algebraic, i.e., it is the zeroset of a trivariate polynomial.

In this paper we study how rational surfaces of revolution are transformed when a nonsingular affine
mapping is applied. The resulting surface is certainly rational too, but in general it is not a surface of
revolution. However, some properties of this image can be discovered when elements of affine differential
geometry are used. Classical differential geometry studies objects and notions that behave well when an
orthogonal transformation is applied: for instance, normal lines transform accordingly, and the Gauss
curvature is preserved. Affine differential geometry [4,5], started by Blaschke in the first decades of the 20th
century, however, studies objects and notions that behave well when we consider matrix transformations
of the special linear group SL3(R), i.e., the group of matrices with determinant equal to 1. Thus, in the
context of affine differential geometry, for instance, normals and Gauss curvature are replaced by affine
normals and affine curvature, which have good properties when transformations of the special linear group
are applied.

In the context of affine differential geometry, affine surfaces of rotation [6,7], which generalize classical
surfaces of revolution, are introduced. These surfaces can be of three different subtypes, elliptic, hyperbolic
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and parabolic, the first of them being the classical surfaces of revolution. Theoretical properties of algebraic
affine surfaces of rotation are treated in some recent papers: the elliptic case is studied in [8], the hyperbolic
case is addressed in [9], and the parabolic in [10]. Furthermore, an algorithm for recognizing algebraic
affine surfaces of revolution is provided in [11]. In this regard, a necessary condition, although not
sufficient, for a surface to be an affine surface of rotation is that all the affine normal lines of the surface
intersect a fixed line, called the affine axis of rotation. If the affine normal lines satisfy this property, we say
that the surface is ANIL (Affine Normal lines Intersecting a Line). In particular, surfaces of revolution are
ANIL surfaces.

Using notions of affine differential geometry and Plücker coordinates (see [12]) as fundamental tools, we
prove that the image of every rational ANIL surface, and therefore of every rational surface of revolution,
under a nonsingular affine mapping is also ANIL. Furthermore, we also provide an algorithmic method
to find, given a rational ANIL surface, a rational surface of revolution affinely transforming onto the
first surface, and to compute the mapping itself. This is useful because, as we mentioned before, certain
operations like implicitizing, reparametrizing over the reals or studying surjectivity can be efficiently
performed on surfaces of revolution; via the affine mapping relating the surface of revolution and the
given ANIL surface, the results of these operations can be carried to the original ANIL surface.

Additionally, we also explore under what conditions the image of a rational surface of revolution
under a nonsingular affine mapping is an affine rotation surface. We prove that this is only possible
when the affine rotation surface is another surface of revolution and the mapping is a similarity, i.e.,
the composition of a rigid motion and a scaling. This shows that there are in fact many ANIL surfaces
which however are not affine surfaces of rotation, since the image of any surface of revolution under
an affine mapping that is not a similarity is an ANIL surface, but not an affine surface of rotation.
The observation is of interest since up to our knowledge, the only known examples of ANIL surfaces to
this date are affine surfaces of rotation and affine spheres, i.e., surfaces where all the affine normals intersect
at one point, called the center of the sphere. Affine spheres do not need to be affine surfaces of rotation [11],
and their nature is preserved by affine mappings.

The structure of the paper is the following. In Section 2, we recall several notions and results on affine
differential geometry, and Plücker coordinates. In Section 3, we prove that the image of a rational surface
of revolution is an ANIL surface. In Section 4, we develop an algorithmic method to compute a surface of
revolution affinely equivalent to a given ANIL rational surface, and to find the affine mapping between
the surfaces. In Section 5, we address the conditions for the affine image of a rational surface of revolution
to be an affine surface of rotation. We close in Section 6, where we present our conclusions.

2. Preliminaries

In this section we consider several preliminary notions on affine differential geometry and line
geometry. Along the section, we let S ⊂ R3 be a rational surface. For certain technical reasons, which will
be clear later, we assume that S is not a developable surface, i.e., isometric to the plane, so S has Gaussian
curvature not identically equal to zero.

2.1. Affine Rotation Surfaces

In this subsection we recall several notions and results on affine differential geometry and a special
class of surfaces, called affine rotation surfaces, which appear in the context of affine differential geometry
and generalize surfaces of revolution. First, we recall from [13,14] some notions from affine differential
geometry. The affine co-normal vector at each point of S is defined as

ν = |K|−
1
4 ·N, (1)
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where N is the unit Euclidean normal vector, and K is the Gaussian curvature. The affine co-normal vector
is not defined when K is zero.

The affine normal vector to S at a point p ∈ S is

ξ(p) = [ν(p), νu(p), νv(p)]−1 (νu(p)× νv(p)) , (2)

where •u, •v represent the partial derivatives of •with respect to the variables u, v, and [•, •u, •v] represents
the determinant of •, •u, •v. The affine normal line at p ∈ S is the line through p, parallel to the affine normal
vector. Denoting by SL3(R) the special linear group, i.e., the group of matrices with determinant equal
to 1, the affine normal lines are known to be covariant under affine transformations of SL3(R) (see Prop.
3 in [13]): this means that if h represents an affine transformation of the special linear group and Lp

represents the affine normal line at p, then h(Lp) coincides with Lh(p). Sometimes we will refer to this
property as the covariance property of affine normal lines.

Also in the context of affine differential geometry, affine rotation groups are introduced. An affine
rotation group is a uniparametric matrix group that is a subgroup of SL3(R), and which leaves invariant
exactly one line in 3-space, called the affine axis of rotation. Lee [6] shows that there are only three different
types of such subgroups; in an appropriate coordinate system, these types correspond to the following
uniparametric matrix groups:cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0
0 0 1

 ,

 cosh(θ) sinh(θ) 0
sinh(θ) cosh(θ) 0

0 0 1

 ,

 1 0 0
θ 1 0
θ2

2 θ 1

 . (3)

In the three cases of Equation (3), the invariant line is the z-axis. We name the rotations defined
in each case as elliptic (left-most matrix, which defines a classical rotation about the z-axis), hyperbolic
(center matrix, which defines a hyperbolic rotation about the z-axis), and parabolic (right-most matrix).
The surfaces which, after perhaps an orthogonal change of coordinates T , are invariant under one of the
matrix groups in Equation (3) are called affine rotation surfaces; furthermore, in this case the preimage under
T of the z-axis is called the affine axis of rotation of the surface. We say that an affine rotation surface is of
elliptic, hyperbolic or parabolic type depending on the form of the matrix group. If the surface is algebraic,
then we say that the surface is an algebraic affine rotation surface. Notice that the affine rotation surfaces of
elliptic type are the classical surfaces of revolution.

Every affine rotation surface about the z-axis can be parametrized locally around a regular point
using differentiable functions f (s), g(s) as

x(θ, s) = Qθ · [ f (s), 0, g(s)]T , (4)

where [ f (s), 0, g(s)]T parametrizes a directrix curve and Qθ corresponds to one of the uniparametric matrix
groups in Equation (3). We will refer to this representation as the standard form of the surface. Using the
standard form, the curves x(θ0, s) are called meridians, while the curves x(θ, s0) are called parallel curves.
In particular, the directrix is a meridian. Moreover, according to [6], the parallel curves are (a) in the
elliptic case, circles centered on the z-axis, contained in planes normal to the z-axis; (b) in the hyperbolic
case, equilateral hyperbolae centered on the z-axis, contained in planes normal to the z-axis, with parallel
asymptotes; (c) in the parabolic case, parabolas placed in planes normal to the x-axis, with parallel axes,
whose major axis is parallel to the z-axis.

Affine normals can be used to characterize affine rotation surfaces [11]. Before providing this
characterization, we need to introduce two more properties.
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Definition 1. Let S be a surface which under an orthogonal change of coordinates T , can be locally parametrized as
y(θ, s) = Aθ · [ f (s), 0, g(s)]T , where Aθ is a 3× 3 matrix depending on a parameter θ, and let A be the preimage
of the z-axis under the transformation T . We say that S has the shadow line property with respect to the line A,
if along every meridian y(θ0, s) the tangents to the parallel curves y(θ, s0) are parallel.

For instance, one can see that surfaces of revolution always have the shadow line property with
respect to its axis of revolution.

Definition 2. We say that a non-developable surface S is ANIL (Affine Normals Intersecting a same Line), or that
S has the ANIL property, if all the affine normal lines of S intersect a same line A, called the axis of S.

Then we have the following theorem (see [11] for a proof), which characterizes affine rotation surfaces.

Theorem 1. The surface S is an affine rotation surface with affine axis A if and only if the following two conditions
hold: (1) S is ANIL, with axis A; (2) S has the shadow line property with respect to the line A.

From Theorem 1, it is clear that every affine rotation surface is ANIL. The converse, however, is not
true: in [11] it is observed that there exist affine spheres, i.e., surfaces where all the affine normal lines
intersect at one point (for instance, ellipsoids), called the center of the sphere, which are not affine rotation
surfaces. Since all the affine normals of an affine sphere intersect at the center of the sphere, the affine
normals obviously intersect every line through the center, so every affine sphere is an ANIL surface. In this
paper, however, we will discover that there are many ANIL surfaces which are not affine rotation surfaces,
or affine spheres: in fact, in Section 5 we will see that the images of surfaces of revolution under most
nonsingular affine mappings are exactly like this.

2.2. Plücker Coordinates

Theorem 1 can be used to device an algorithm for detecting whether a given algebraic surface is an
affine rotation surface, and to find the affine axis, in the affirmative case [11]. In order to do so, the key
question is to efficiently exploit Condition (1) in Theorem 1, i.e., the fact that all the affine normal lines
intersect the affine axis. This can be done using Plücker coordinates [12,15], which we recall in this subsection.

Plücker coordinates provide an alternative way to represent straight lines. A line L ⊂ R3 is completely
determined when we know a point P ∈ L and a vector w parallel to L. Therefore, we often write
L = (P, w). Now let w = P×w, where P here denotes the vector connecting the point P with the origin
of the coordinate system. Then the Plücker coordinates of L are (w, w) ∈ R6. Notice that by construction
w ·w = 0; this equation defines a quadric in R6 known as the Klein quadric.

Plücker coordinates of lines are unique up to multiplication by a constant nonzero factor. Moreover
w is independent of the choice of the point P ∈ L, since if Q ∈ L, then (Q− P)×w = 0. Furthermore,
given the Plücker coordinates (w, w) of L, we can recover a point P on L from the relationship

P×w = w, (5)

by writing P = (x, y, z) and solving the system of linear Equations (5) for x, y, z. An alternative to solving
this system of linear equations is simply to compute the pedal point w×w〈w, w〉−1 on the line (w, w).

Let (α, β) be the Plücker coordinates of a line in R3, and consider all the lines (w, w), written in
Plücker coordinates, such that

α ·w + β ·w = 0. (6)
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This equation (see [15,16]) expresses the condition that the lines (w, w) intersect the line (α, β), so these
lines span a hyperplane of R6. Thus, Equation (6) provides an efficient way of managing Condition
(1) in Theorem 1, and therefore of detecting whether a given rational surface is ANIL: given a rational
surface rationally parametrized by x(t, s), one can compute the affine normal line at several points x(ti, si),
where (ti, si) ∈ R2. From Equation (6), each point gives a linear condition on the Plücker coordinates
(α, β) of a potential line A, intersected by all the affine normal lines of the surface. Solving the linear
system of equations corresponding to all these linear conditions, the coordinates (α, β) can be efficiently
computed. This, for instance, is used in [11] in order to detect whether an algebraic surface is an affine
surface of rotation.

3. Affine Image of a Rational Surface of Revolution (I)

The goal of this section is to prove that the image under a nonsingular affine mapping f of a surface
of revolution about an axis A is an ANIL surface of axis Â = f (A). Notice that from Theorem 1, this is a
necessary condition for a surface to be an affine surface of rotation. Later, in Section 5, we will explore in
what cases the image of a surface of revolution under a nonsingular affine mapping is an affine surface
of rotation.

In order to do this, we let S ⊂ R3 be a rational ANIL surface, rationally parametrized by x(t, s),
where t, s are parameters, and we let f (x) = Ax + b, where A ∈ M3×3(R) and b ∈ R3. We denote
Ŝ = f (S). By definition, if S is a surface of revolution about an axis A then S is an affine rotation surface of
elliptic type about the affine axis A. Hence, by Theorem 1 all the affine normals of S intersect the line A,
so S is an ANIL surface of axis A.

For now we will assume that S is not developable; some considerations about developable surfaces
will be made at the end of this section. Observe that a developable surface (see [17]) can always be,
at least locally, parametrized as y(u, v) = a(u) + vc(u) where [a′(u), c(u), c′(u)] = 0, so the vectors
{a′(u), c(u), c′(u)} are coplanar. Since the images of these vectors under a nonsingular mapping g(x) =
Ax are also coplanar, a surface is developable if and only if its image under a nonsingular mapping
g(x) = Ax is also developable. Since translations are isometries, and therefore preserve the property of
being developable, we deduce that a surface is developable if and only if the image of the surface under
every nonsingular affine mapping f (x) = Ax + b is also developable. In particular, and since we are
assuming that S is not developable, Ŝ is not developable either. Thus, the affine normal lines of both S and
Ŝ are well defined.

Furthermore, we will need the following technical lemma.

Lemma 1. Let A ∈ M3×3(R) be nonsingular. Then A = kB, where k ∈ R and det(B) = 1.

Proof. Let k = 3
√

det(A). Since det(A) 6= 0, k 6= 0 too. Let B = 1
k A. Then

det(B) = 1
k3 · det(A) = 1

k3 · k3 = 1.

In order to show that Ŝ = f (S) is an ANIL surface, we first consider the image S̃ of S under a
homothety f̃ (x) = kx with k ∈ R− {0}; we denote S̃ = f̃ (S).

Lemma 2. Let S ⊂ R3 be an ANIL surface of axis A rationally parametrized by x(t, s) which is not developable,
and let S̃ be the image of S under a homothety f̃ (x) = kx, k ∈ R− {0}. Then S̃ = f̃ (S) is an ANIL surface of axis
Ã = f̃ (A).

Proof. First we need to consider the relationship between the affine normal lines of S and S̃. In order to do
this, observe that y(t, s) = kx(t, s) parametrizes S̃. Let us denote by Kx, Nx, Ky, Ny the Gauss curvatures
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and unitary normal vectors of S and S̃. And let us also denote by µx, ξx, µy, ξy the affine co-normal vectors
and the affine normal vectors of S and S̃. One can check that

Ny = Nx, Ky =
1
k2 Kx, µy =

√
|Kx|µx, ξy =

1√
|Kx|

ξx. (7)

Notice that these equalities describe the relationship between the unitary normal, co-normal and
affine normal vector of S̃ at the point y(t, s), and the corresponding vector of S at the point x(t, s); similarly
for the Gaussian curvatures. Furthermore, since by hypothesis S is not developable, the affine normal
vectors of both S and S̃ are well defined.

Now let P ∈ A, and let w be a vector parallel to A. Then (α, β) = (w, P × w) = (α, β), where
P denotes the vector connecting the point P and the origin of the coordinate system, are the Plücker
coordinates of the line A. Thus, the Plücker coordinates of the line Ã = f̃ (A) are (w, kP×w) = (α, kβ).

Since S is an ANIL surface about the axis A, from Equation (6) we have

α(x× ξx) + βξx = 0. (8)

Taking into account that the Plücker coordinates of the line Ã = f̃ (A) are (w, kP×w) = (α, kβ), and using
Equations (7) and (8), we get

α(y× ξy) + kβξy = α

(
kx× 1√

|Kx|
ξx

)
+ kβ

1√
|Kx|

ξx =
Kx√
|Kx|

[α(x× ξx) + βξx] = 0 (9)

Hence, again from Equation (6) we conclude that the affine normal lines of S̃ all intersect the line Ã.

Now we consider the image S? of S under a translation f ?(x) = x + b, with b ∈ R3.

Lemma 3. Let S ⊂ R3 be a ANIL surface of axis A rationally parametrized by x(t, s) which is not developable,
and let S? be the image of S under a translation f ?(x) = x + b, b ∈ R3. Then S? = f ?(S) is an ANIL surface of
axis A? = f ?(A).

Proof. Observing that y(t, s) = x(t, s) + b parametrizes S?, we get that

Ny = Nx, Ky = Kx, µy = µx, ξy = ξx, (10)

where these equalities describe the relationships between the unitary normal, co-normal and affine normal
vector of S? at the point y(t, s), and the corresponding vector of S at the point x(t, s); similarly for the
Gaussian curvatures. Furthermore, since by hypothesis S is not developable, the affine normal vectors of
both S and S? are well defined. Then we argue as in the proof of Lemma 1.

Finally we can prove the main result of this section.

Theorem 2. Let S ⊂ R3 be an ANIL surface of axis A rationally parametrized by x(t, s) which is not developable,
and let Ŝ be the image of S under a nonsingular affine mapping f (x) = Ax + b, A ∈ M3×3(R), b ∈ R3.
Then Ŝ = f (S) is an ANIL surface of axis Â = f (A).

Proof. By Lemma 1, A = kB, where k ∈ R− {0} and det(B) = 1; thus, f (x) = kBx + b. Let f † be the
linear mapping defined by f †(x) = Bx, and let S† be the image of S under f †, i.e., S† = f †(S). By the
covariance property of affine normal lines, the affine normal lines of S† are the images of the affine normal
lines of S under f †. Since by hypothesis all the affine normal lines of S intersect A, and since linear
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mappings preserve incidence, all the affine normal lines of S† intersect the line A† = f †(A). Then the
result follows from Lemma 2 and Lemma 3.

Corollary 1. Let S ⊂ R3 be a rational surface of revolution about an axis A, and assume that S is not developable.
Let f (x) = Ax + b, A ∈ M3×3(R) nonsingular, b ∈ R3. Then the image of S under the mapping f is an ANIL
surface of axis f (A).

Furthermore, since affine mappings preserve incidence, we also have the following corollary of
Theorem 2 on affine spheres.

Corollary 2. Let S ⊂ R3 be an affine sphere of center c rationally parametrized by x(t, s) which is not developable,
and let Ŝ be the image of S under a nonsingular affine mapping f (x) = Ax + b, A ∈ M3×3(R), b ∈ R3.
Then Ŝ = f (S) is an affine sphere of center ĉ = f (c).

The Case of Developable Surfaces

Let S ⊂ R3 be a developable surface, in which case the Gaussian curvature is zero. Since the affine
normal line is not defined when the Gassian curvature is zero, the notion of an ANIL surface is not
applicable to these surfaces. However, some considerations can be done in the case when S is a surface
of revolution. Without loss of generality we assume that the axis of revolution of S is the z-axis. A first
obvious possibility is that S is a cylinder of revolution, and therefore a quadric. If S is not a cylinder of
revolution, then S admits (see Section 15.1 of [17]) an, at least local, parametrization of S as

x(ρ, γ) = (ρ cos γ, ρ sin γ, h(ρ)).

Additionally, imposing that the Gaussian curvature of S is identically zero, one can see (e.g., Section 15.3
of [17]) that h(ρ) = C1ρ + C2, with C1, C2 constants, C1 nonzero, so S is a cone of revolution: indeed,
eliminating ρ, γ in

x = ρ cos γ, y = ρ sin γ, z = C1ρ + C2,

one gets x2 + y2 =
(

z−C2
C1

)2
, which shows that S is a cone of revolution. Since affine mappings preserve

incidence and parallelism, one deduces that the image of a developable surface of revolution under a
nonsingular affine mapping is either cylindrical, i.e., a ruled surface whose generatrices are all of them
parallel, or conical, i.e., a ruled surface whose generatrices intersect at a point, named the vertex of the
surface. Furthermore, since affine mappings preserve the degree of the surface, it must also be a quadric.

4. Computing a Surface of Revolution Affinely Equivalent to an ANIL Surface

Given an ANIL surface S1 ⊂ R3, rationally parametrized by x(t, s), we aim to find an algorithm to
solve the following problem: find, if it exists, a rational surface of revolution S2 ⊂ R3 which is affinely
equivalent to S1, i.e., such that there is a nonsingular affine mapping f (x) = Ax + b, where A ∈ M3×3(R)
and b ∈ R3, satisfying that f (S1) = S2. We say that f is an affine equivalence between S1, S2. Notice that
certainly S2 is not unique, since by composing f with any similarity h, the surface (h ◦ f )(S1) is also a
surface of revolution affinely equivalent to S1; recall that similarities are the composition of a congruence
(also called rigid motion, a mapping preserving distances) and a homothety (which preserves angles and
scales the objects).

In order to solve the problem, it is useful to recall the following theorem, characterizing algebraic
surfaces of revolution. In this theorem we consider classical normals, and not affine normals. We will need
to apply this theorem on the surface S2 we are seeking. Notice that by hypothesis S1 is ANIL; since the
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notion of an ANIL surface is not applicable to developable surfaces, S1 is not developable, and therefore
S2 is not developable either. In particular, S2 is not cylindrical.

Theorem 3. Let S ⊂ R3 be an algebraic surface which is not cylindrical. Then S is a surface of revolution about an
axis A if and only if all the normals to the surface intersect the axis A.

Proof. See Theorem 4.2.1 and Lemma 4.2.2 of [12].

Observe that in Theorem 3 the hypothesis of S being algebraic is necessary: if the surface is not
algebraic, the condition in the theorem implies that the surface is either a surface of revolution, or a
helical surface, i.e., a surface invariant under a helical motion (see Section 3.1.2 of [12]). Helical motions
are the mappings in R3 that can be written in a certain system of coordinates as T(x) = Qθ x + [0, 0, pθ]T ,
where Qθ is the left-most matrix in Equation (3), and p 6= 0 (p is called the pitch). However, helical surfaces
are not algebraic. Notice also in Theorem 3 that the condition on the shadow line property is not necessary.
As it also happened with Theorem 1 and affine rotation surfaces, using Plücker coordinates one can use
Theorem 3 to build an efficient algorithm for detecting surfaces of revolution (see e.g., [16]). In our case,
Theorem 3 will be key in order to solve the problem we are addressing.

We still need some additional observations. First, by applying if necessary a translation followed by a
rotation about a line, we can assume that the axis of S1 is the z-axis. Furthermore, we can also assume that
the axis of revolution of the surface S2 we are looking for is the z-axis as well: since the composition of
nonsingular affine mappings is a nonsingular affine mapping, if there exists a surface of revolution affinely
equivalent to S1, then there also exists a surface of revolution about the z-axis with the same property
(one just needs to apply a congruence to reach this surface). Finally, since the composition of S2 with
any translation by a vector parallel to the z-axis also provides a surface of revolution about the z-axis,
we can assume that the affine equivalence transforming S1 into S2 fixes the origin, so that f (x) = Ax.
Our problem, then, is to find the matrix A: after computing A, the surface S2 is immediately obtained.

Now if S1 is parametrized by x(t, s) and f (S1) = S2, then y(t, s) = Ax(t, s) is a parametrization of S2.
In order to use Theorem 3, we consider the (classical) normals to S2. Since yt = Axt, ys = Axs, and taking
into account the well-known formula Ma × Mb = det(M)M−T(a × b) for M ∈ M3×3(R), a, b ∈ R3,
we get

yt × ys = det(A)A−T(xt × xs). (11)

The Plücker coordinates of a generic normal line of S1 are (α, β) = (xt × xs, x × xt × xs).
From Equation (11), the Plücker coordinates of a generic normal line of S2 are

(yt × ys, y× yt × ys) = (det(A)A−T(xt × xs), Ax× det(A)A−T(xt × xs)). (12)

Notice that since y(t, s) parametrizes a surface of revolution about the z-axis, ky(t, s) with k ∈ R −
{0} parametrizes another surface of revolution about the z-axis too; we can prove it from Theorem 3,
taking into account the relationship between the normals of the surfaces parametrized by y(t, s) and
ky(t, s). This implies that we can assume det(A) = 1. Therefore, and calling α = xt × xs, we get that the
Plücker coordinates of a generic normal line of S2 are

(A−Tα, Ax× A−Tα) (13)
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Additionally, the Plücker coordinates of the z-axis, which is the axis of revolution of S2, are (0, k),
where 0 = (0, 0, 0) and k = (0, 0, 1). From Theorem 3, all normals to S2 intersect the z-axis. Using Plücker
coordinates, from Equation (6) this condition is translated into

A−Tα · 0 + (Ax× A−Tα) · k = 0. (14)

Let Co(A) be the cofactor matrix of A. Since we are assuming that det(A) = 1, A−T = Co(A). Then,
Equation (14) is equivalent to

(Ax× Co(A)α) · k = [Ax, Co(A)α, k] = 0. (15)

By Theorem 2, f (x) = Ax must preserve the z-axis, so Ak = λk for λ 6= 0. Since additionally
det(A) = 1, we get that

A =

a11 a12 0
a21 a22 0
a31 a32 a33

 , (16)

where a33(a11a22 − a12a21) = 1. Since a33 6= 0 (because otherwise A is singular), we can always assume
that a33 = 1. Thus, we get

A =

a11 a12 0
a21 a22 0
a31 a32 1

 , Co(A) =

 a22 −a21 a21a32 − a22a31

−a12 a11 −a11a32 + a12a31

0 0 a11a22 − a12a21

 (17)

Substituting the expressions for A and Co(A) into Equation (15), and adding the equation

a11a22 − a12a21 = 1, (18)

we get cubic equations in a11, a12, a21, a22, a31, a32 which define an algebraic variety V ⊂ C6. Any real
point of V provides a matrix A with the desired property. So throughout the section we have proven the
following result. In turn, this result provides the Algorithm 1, which solves the problem considered in
this section.

Theorem 4. Let S1 ⊂ R3 be an ANIL surface whose axis is the z-axis. Then S1 is affinely equivalent to a surface of
revolution if and only if V ∩R6 6= ∅.

Remark 1. In fact, if V ∩R6 6= ∅ then V must contain at least a real curve, since rotating a surface of revolution
S2 with the desired properties around the z-axis also yields a surface of revolution.

In practice, instead of deriving a system of cubic equations directly from Equation (15), it is cheaper
from the computational point of view to substitute points (ti, si) into Equation (15) to generate equations.
The system of cubic equations derived this way can be solved by using computer algebra methods, e.g.,
Gröbner bases. In our case, we used the computer algebra system Maple 17, and the Groebner package.
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Algorithm 1 Revol.

Require: A non-developable ANIL surface S1, rationally parametrized by x(t, s).
Ensure: A rational surface of revolution S2 affinely equivalent to S1, or a certificate of its non-existence.

1: Substitute the entries of A and Co(A) from Equation (17) into Equation (15).
2: Solve the cubic polynomial system S in aij, i ∈ {1, 2, 3}, j ∈ {1, 2}, consisting of the equations derived

in Step 1, and Equation (18).
3: if the system does not have any real solution then
4: return “there is no surface of revolution affinely equivalent to the surface”
5: else
6: pick a real solution a11, a12, a21, a22, a31, a32 of S .
7: return the surface S2 parametrized by y(t, s) = Ax(t, s), where A is the matrix in the left-hand side

of Equation (17) whose entries correspond to the solution in Step 6.
8: end if

Example 1. Let S1 be the sextic surface, rationally parametrized by

x(t, s) =

(
−2(s3t2 − s3t + s2t2 − s3 + s2 + t2 − t− 1)

t2 + 1
,− (s3 + 1)(t2 − 2t− 1)

t2 + 1
,

− (s3 + 1)(t2 − 4t− 1)
t2 + 1

)
.

Using Plücker coordinates, one can see that S1 is an ANIL surface, and that the axis is the x-axis. Additionally,
one can check that the implicit equation of the surface has the form

F(x, y, z) = (x− 3y + z)6 + l.o.t.,

where l.o.t. stands for lower order terms. Since the form of highest order of an affine surface of rotation has a very
specific structure (see Theorem 6 in [8], Theorem 6 in [10], Theorem 6 in [9]), we deduce that S1 is not an affine
surface of rotation. In order to compute cubic equations defining the variety V , we consider Equation (15) for the
points corresponding to (ti, si) with ti, si ranging from −3 to 3. The first of these equations is

912600a2
11a32 − 912600a11a12a31 + 638820a11a12a32 − 638820a2

12a31 + 912600a2
21a32

−912600a21a22a31 + 638820a− 21a22a32 − 638820a− 222a− 31 + 2332200a2
11

+2464020a11a12 + 582036a2
12 + 2332200a− 212 + 2464020a21a22 + 582036a2

22 = 0.

Adding also Equation (18), we get 50 cubic equations. Maple solves the polynomial system consisting of these
equations in 0.265 s, and yields the following families of real solutions (there are also some complex solutions,
which we do not list):

a11 = λ, a12 = −1
2

a21 −
3
2

λ, a22 = −3
2

a21 +
1
2

λ, a31 = 1, a32 = −3,

where λ satisfies that λ2 + a2
21 − 2 = 0, and

a11 = 0, a12 = −1
2

µ, a21 = µ, a22 = −3
2

µ, a31 = 1, a32 = −3,
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where µ satisfies that µ2 − 2 = 0. Picking a21 = 1, λ = 1 in the first family, we get

A =

1 −2 0
1 −1 0
1 −3 1

 .

The affine mapping f (x) = Ax maps S1 onto the surface S2 parametrized by

y(t, s) =
(
(s3 + 1)(t2 − 1)

t2 + 1
,

2(s3 + 1)t
t2 + 1

,−2s2
)

,

which one can recognize as the surface of revolution generated by rotating the cubic curve parametrized by (s3 +

1, 0,−2s2) about the z-axis.

5. Affine Image of a Surface of Revolution (II)

In this section, we want to explore under what circumstances the image of a surface of revolution
under a nonsingular affine mapping is an affine surface of rotation. In order to do this, we will use the
preceding notations, and we will benefit from certain observations done in Section 4.

Let S1, S2 be two rational surfaces, none of them developable, S1 an ANIL surface, S2 a surface of
revolution, related by a nonsingular affine mapping. Following the observations in Section 4, without loss
of generality we can assume that the the affine axis of S1 is the z-axis, the axis of revolution of S2 is the
z-axis as well, and that the nonsingular affine mapping transforming S1 into S2 has the form f (x) = Ax.
Even more, we can assume that the matrix A has the form in Equation (17), and that the entries of the
matrix A also satisfy Equation (18). We will separately consider the cases when S1 is an elliptic, hyperbolic
or parabolic affine surface of rotation. We begin with the parabolic and the hyperbolic cases, and we
conclude with the elliptic case. In what follows, the reader is invited to review the notion of parallel curve
of an affine rotation surface, recalled in Section 2.1.

5.1. The Parabolic Case

If S1 is a parabolic affine rotation surface about the z-axis, we can assume (see Section 2.1) that the
parallel curves are placed in planes normal to the x-axis, i.e., planes x = x0, x0 ∈ R, that we denote by Πx0 .
Furthermore, in that case the intersection Πx0 ∩ S1 is a union of parabolas lying on planes parallel to the
yz-plane, and whose major axes are parallel to the z-axis. We are interested in finding the images of the
planes Πx0 under the mapping f (x) = Ax. Thus, we havea11 a12 0

a21 a22 0
a31 a32 1

 ·
x0

λ

µ

 =

 a11x0 + a12λ

a21x0 + a22λ

a31x0 + a32λ + µ

 . (19)

Elliminating the parameters λ, µ, and since a11a22 − a12a21 = 1, we get the plane a22x− a12y− x0 = 0,
that is parallel to the z-axis, and which we denote by Π̂x0 . Since f (x) = Ax is an affine mapping Π̂x0 ∩ S2

must be a union of parabolas as well. Since S2 is a surface of revolution about the z-axis, we deduce that
S2 is generated by rotating parabolas around the z-axis, so S2 must be the union of several paraboloids
of revolution. Because S2 is rational and therefore irreducible, we get that S2 must be a paraboloid of
revolution, so S1 = f (S2) must also be a paraboloid. But this is a contradiction, because from Corollary 5
in [10] the only quadrics that are affine surfaces of rotation of parabolic type are either cones (which are
developable surfaces), or hyperboloids. Therefore, we have proved the following result.
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Theorem 5. The affine image of a rational surface of revolution that is not developable cannot be an affine surface of
rotation of parabolic type.

5.2. The Hyperbolic Case

Let S1 be a hyperbolic affine surface of rotation about the z-axis. Then the parallel curves are placed
in planes z = z0, that we denote by Πz0 . Proceeding as in Section 5.1, we can check that f maps Πz0 onto
the plane Π̂z0 , defined by

A13x + A23y + (z− z0) = 0, (20)

where Aij represents the cofactor of the element (i, j) of the matrix A. Since the coefficient of z in
Equation (20) is nonzero, Π̂z0 is not parallel to the z-axis. Furthermore, since f is affine and S2 ∩Πz0 is a
union of equilateral hyperbolae, f (S1 ∩Πz0) = S2 ∩ Π̂z0 must also be a union of hyperbolae. Additionally,
since S2 is a surface of revolution we can see S2 as generated by rotating S2 ∩ Π̂z0 around the z-axis.
We want to see that this cannot be.

In order to do that, assume first that A13 = A23 = 0. Then, Equation (20) corresponds to a horizontal
plane, i.e., normal to the z-axis. Since S2 is a surface of revolution about the z-axis, the horizontal sections
of S2 are unions of circles centered at the points on the z-axis. Since S1 ∩ Π̂z0 is a union of hyperbolas,
this cannot happen. So let us focus on the case where A13, A23 are not both zero, in which case the plane in
Equation (20) is not horizontal. We need the following previous result.

Lemma 4. Let S be a rational surface of revolution about the z-axis, and let D be a rational planar curve contained
in a planar section S ∩Π of the surface S, where Π is not normal to the z-axis. Then S is the surface obtained by
rotating D about the z-axis.

Proof. By rotating D around the z-axis we get a rational surface S′ ⊂ S. Since S and S′ are rational and
therefore irreducible, S = S′.

Now assume that S2 = f (S1), where f is an affinity, is a surface of revolution about the z-axis,
and consider two planes Πz0 and Πz1 , defined by z = z0 and z = z1, where z0 6= z1. Let Π̂z0 , Π̂z1 be
the images of Πz0 , Πz1 under f . Notice that S1 ∩Πz0 , S1 ∩Πz1 are unions of circles, so C0 = f (S1 ∩Πz0),
C1 = f (S1 ∩Πz1) are unions of hyperbolas. Furthermore, since z0 6= z1, C0 6= C1.

From Lemma 4, and since S2 is rational and therefore irreducible, the surface S2 should be obtained
both by rotating a rational component of C0 around z, and by rotating a rational component of C1 around
z. We want to see that this is not possible, i.e., that by rotating such components we generate different
surfaces, not the same surface. For simplicity, we will assume that C0 and C1 are hyperbolae, and not
unions of hyperbolae; were this not the case, it suffices to consider one rational component in each case.

The situation is shown in Figure 1: in more detail, the notation in Figure 1 represents the following:

• C0 = f (S1 ∩Πz0), C1 = f (S1 ∩Πz1).
• P is a horizontal plane, i.e., normal to the z-axis, through one of the vertices of C0.

Furthermore, Figure 2 represents the plane P seen from above. The notation in Figure 2 represents
the following:

• The point P is a vertex of C0. Furthermore, P is the only intersection of P with C0.
• The linesL1 andL2 are the intersections of the planes Π̂z0 , Π̂z1 with the horizontal planeP . These lines

are also shown in blue in Figure 1. Notice that since Π̂z0 , Π̂z1 are parallel, L1,L2 are parallel too.
• The points Q1, Q2 are the intersections of the curve C1 with the plane Π̂z1 ; it could happen that

Q1 = Q2, or even that the intersection of C1 with the plane Π̂z1 was empty, but in those cases we
would obtain contradictions as well.
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• The point C is the intersection of the z-axis with the horizontal plane P .
• The circle in red, C̃, is the circle through the point P, centered at C; this circle is also shown in red in

Figure 1.

The following result certifies that the picture shown in Figure 2 is correct:

P

Π̂z0

Π̂z1

C0

C1

z-axis

Figure 1. The case of hyperbolic affine rotation surfaces (I).

C P

L1 L2

Q1

Q2

C̃

Figure 2. The case of hyperbolic affine rotation surfaces (II).
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Lemma 5. The line connecting C and P is perpendicular to the line L1.

Proof. Assume that the line connecting C, which is the intersection of the z-axis and the plane P , and P,
which is the vertex of the hyperbola C0 contained in the plane P , is not perpendicular to L1. Then the
circle C̃ centered at C through P is not tangent to L1, and therefore there is another intersection point
P′ 6= P of the circle C̃ with the line L1. However, since S2 is generated by rotating the curve C0 around the
z-axis, then P′ ∈ S2. Even more, since C0 = Π̂z0 ∩ S2 and P′ ∈ L1 ⊂ Π̂z0 , we get that P′ ∈ C0. Furthermore,
since L1 ⊂ P , P′ ∈ P , so P′ ∈ C0 ∩ P . However, since P is the horizontal plane through the vertex P,
the only point of C0 ∩ P is P, and therefore P′ = P.

We also need the following lemma.

Lemma 6. Let d(C, Qi), with i = 1, 2, denote the distance between C, Qi, let d(C,Lj), with j = 1, 2,
denote the distance between the point C and the line Lj, and let CP denote the segment connecting C and P.
Then d(C, Qi) > CP.

Proof. SinceL1,L2 are parallel, d(C,L2) > d(C,L1). Furthermore, d(C, Qi) ≥ d(C,L2). Thus, d(C, Qi) >

d(C,L1). But from Lemma 5, d(C,L1) = CP.

Corollary 3. The circle C̃ centered at C of radius CP is not contained in the set generated by rotating C1 around
the z-axis.

Now we can prove the following result. Here we use the preceding notation, and the help of
Figures 1 and 2.

Theorem 6. The affine image of a rational surface of revolution that is not developable cannot be an affine surface of
rotation of hyperbolic type.

Proof. Without loss of generality, we reduce to the situation analyzed before. We have already seen
that A13, A23 cannot be both zero, so we can assume that Equation (20) defines a plane which is neither
horizontal, nor parallel to the z-axis, in which case we can use our last observations. In particular,
if S2 = f (S1), where f is an affinity, is a surface of revolution about the z-axis, S2 is generated by both
curves C0 and C1, defined before. However, the surface obtained by rotating C0 about the z-axis contains
the circle C̃. But from Corollary 3, C̃ is not contained in the surface generated by rotating C1 about the
z-axis. Thus, rotating C0 and C1 around the z-axis provides different surfaces (Notice that by just moving
the value z0, the union of the corresponding circles C̃ gives rise to another surface not contained in S2,
so one can refine the argument to show that the surfaces generated by rotating C0 and C1 about the z-axis
differ not in one curve, but in a whole 2-dimensional subset.), which contradicts our hypothesis.

Remark 2. Notice that the essence of the argument in the proof of Theorem 6 is not altered if the points Qi coincide,
or if C1 ∩ P is empty.

5.3. The Elliptic Case

Assume now that S1 is an affine surface of rotation of elliptic type, i.e., a surface of revolution. Thus,
the sections Πz0 of S1 with planes z = z0 are unions of circles, which are transformed by f (x) = Ax
into unions of ellipses contained in planes Π̂z0 like Equation (20). If A13 and A23 are not both zero,
then Equation (20) defines a plane not normal to the z-axis. In this case, we can argue as in Section 5.2 to
see that this cannot happen: again, we prove that by considering the affine images of different sections
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of S1 normal to the axis, we get planar curves, contained in S2, which generate different surfaces when
rotating about the z-axis. So we focus on the case A13 = A23 = 0. Here, we observe that Π̂z0 is also the
plane z = z0, so f preserves the z-coordinate. Thus, the entries a31, a32 of the matrix A are both zero, so A
can be written as a block matrix

A =

(
Q 0
0 1

)
, Q =

(
a11 a12

a21 a22

)
, (21)

where Q defines a linear transformation g(x) = Qx of the plane, preserving the origin, where det(Q) = 1.
Furthermore, since S2 is by hypothesis a surface of revolution about the z-axis, and f preserves the
z-coordinate, we deduce that f maps circles to circles, and therefore that g maps circles centered at the
origin onto circles centered at the origin. Then we have the following lemma.

Lemma 7. With the preceding notation and hypotheses, g(x) = Qx defines a congruence of the plane.

Proof. Let x = [x, y]T . Then the equation of a circle Cr centered at the origin is

xT · x = r2, (22)

with r > 0. Since g(x) = Qx maps circles to circles and preserves the origin, Cr is mapped onto the circle
CR of equation

xTQT ·Qx = R2, (23)

where R > 0 and x satisfies Equation (22). Multiplying Equation (22) by an appropriate λ, we get
xT · λI · x = R2, where I denotes the 2× 2 identity matrix. Subtracting this expression from Equation (23),
we get that QTQ = λI. Finally, since det(Q) = 1, we deduce that λ = 1, so Q is orthogonal. Therefore
g(x) is an orthogonal transformation, so g(x) defines a congruence.

Lemma 7 provides the following corollary.

Corollary 4. The image of a rational surface of revolution that is not developable under a nonsingular affine
mapping, is another surface of revolution if and only if the affine mapping corresponds to a similarity.

From the algorithmic point of view, notice that given two surfaces of revolution about the same
axis, one can check whether the surfaces are similar by intersecting both surfaces with a same plane,
say, the yz-plane, and then checking whether the resulting planar curves are similar. There are efficient
algorithms for doing this: if the sections are rational, one can use the algorithm in [18]; if the sections are
not rational, one can use the algorithm in [19].

Finally, we summarize all the results of the section in the following theorem.

Theorem 7. The image of a surface of revolution under a nonsingular affine mapping is an affine surface of rotation
if and only if the affine mapping defines a similarity, in which case the image is also a surface of revolution.

Corollary 5. The image of a non-developable rational surface of revolution under a nonsingular affine mapping that
is not a similarity, is an ANIL surface that is not an affine surface of rotation.

Notice that Corollary 5 comes to show that there are many ANIL surfaces that are not affine surfaces
of rotation: in fact, the image of any surface of revolution under a non-orthogonal affine mapping is that
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way. Taking Corollary 2 also into account, we conclude that there are many ANIL surfaces that are not
either affine surfaces of rotation, or affine spheres.

6. Conclusions

Throughout the paper we have proved that the image of a non-developable rational surface of
revolution under a nonsingular affine mapping is an ANIL surface which is not an affine rotation surface
except for certain, well-described, cases. Furthermore, given an ANIL surface, we have provided an
algorithm to determine whether it is the affine image of a surface of revolution, and to recover it, if it exists.

One can wonder whether there exist ANIL surfaces which are not the image of a surface of revolution
or an affine sphere. We do not have an answer to this question. Were the answer negative, it would be nice
to identify notable surfaces with this property. These are problems that we leave here as open questions.
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