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Abstract: In this paper, we study the problem of defining statistical parameters when the uncertainty
is expressed using a fuzzy measure. We extend the concept of monotone expectation in order to
define a monotone variance and monotone moments. We also study parameters that allow the joint
analysis of two functions defined over the same reference set. Finally, we propose some parameters
over product spaces, considering the case in which a function over the product space is available and
also the case in which such function is obtained by combining those in the marginal spaces.
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1. Introduction

Fuzzy measures [1], also known as capacities [2], non-additive measures or monotone
measures [3], have shown to be a valuable tool for representing uncertainty, since they are able
to cope with more general scenarios than probability measures do. Even though fuzzy measures have
been successfully applied in a wide range of applications [4], no theory analogous to mathematical
statistics has emerged around them in the general case, due to the difficulty of defining statistical
parameters with a clear interpretation when additivity is replaced by monotonicity.

A remarkable exception is the case of the so-called imprecise probabilities [5,6], characterized by
upper and lower expectations that provide rich semantics and interpretability. Dempster–Shafer belief
functions [7,8], for instance, can be formulated as special cases of imprecise probabilities.

The field of fuzzy probability and statistics [9–14] has received significant attention during the
last two decades. The contributions in this field can be classified into two basic groups according
to the underlying approach they follow [15]. One of the groups include the methods that deal with
the analysis of classical (non-fuzzy) data using methods based on fuzzy set theory, while the other
group focuses on analyzing fuzzy data using statistical methods. In this context, fuzzy data refers to
data in which the values correspond to fuzzy numbers [16], characterized by a membership function
that returns a value between 0 and 1 indicating to which extent a given real number matches a given
fuzzy number.

Examples within the first group include fuzzy clustering [17], fuzzy linear regression [18],
testing fuzzy hypothesis from non-fuzzy data [19], fuzzy statistical quality control [20], time series
forecasting based on fuzzy logic [21] and making statistical decisions with fuzzy utilities [22].

The second group includes methods for maximum likelihood estimation from fuzzy data [23],
classification when data are labeled with Dempster–Shafer belief functions [24], distance-based
statistical analysis [25], statistical hypothesis testing from fuzzy data [26], principal component
analysis [27], discriminant analysis [28] and clustering [29].

In this paper, we are interested in the definition of statistical parameters when the uncertainty
is represented by a general fuzzy measure. More precisely, our starting point is a measurable space
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and a measurable real-valued function defined on the reference set of the space. We also assume that
the measurable space is endowed with a fuzzy measure, and we will study the definition of statistical
parameters over the measurable function, in a similar way as statistical parameters over a random
variable can be defined from a probability measure. In this way, we attempt to handle more general
scenarios than the ones covered by probability measures. To achieve this, we rely on the concept
of monotone expectation [30]. We consider the case of marginal spaces as well as product spaces,
and take advantage of recent advances in the construction of fuzzy measures over product spaces [31].
Our study is restricted to discrete reference sets.

The rest of the paper is organized as follows. Section 2 establishes the basic notation and definitions,
and highlights the fundamental properties of product measures that are used throughout the paper.
Section 3 contains the original contributions in this paper, in what concerns the definition of parameters
in a marginal measurable space, while Section 4 describes our proposals for product spaces. The paper
ends with conclusions in Section 5.

2. Preliminaries and Notation

Definition 1. [1] Let X be a set and A be a non-empty class of subsets of X so that X ⊂ A and ∅ ⊂ A.
A function µ : A −→ [0, 1] is a fuzzy measure if:

1. µ(∅) = 0.
2. µ(X) = 1.
3. ∀A, B ∈ A such that A ⊆ B it holds that µ(A) ≤ µ(B).

4. If {An}n∈N ∈ A such that A1 ⊆ A2 ⊆ . . . and
∞⋃

n=1

An ∈ A, then limn µ(An) = µ (
⋃∞

n=1 An) .

5. If {An}n∈N ∈ A such that A1 ⊇ A2 ⊇ . . . and
∞⋂

n=1

An ∈ A, then limn µ(An) = µ (
⋂∞

n=1 An) .

The triplet (X,A, µ) is a measurable space, and X is called the reference set. We will only work with
finite reference sets [4] in this paper. By default, we will assume that A is the power set of X.

Example 1 (Modified from [32]). Imagine there is a vehicle covering the connection between the harbor and
the railway station in a city. This vehicle has four compartments: one for a car, one for a van, one for a motor-bike
and another one for a bike. Assume that the gas tank of this vehicle has exactly the capacity necessary to carry
the vehicle, with the four compartments busy, from the harbor to the railway station. Then we can regard this
capacity to be equal to 1 unit. In this example, X = {c, v, m, b}, where c stands for car compartment busy,
v for van compartment busy, m for motor-bike compartment busy and b for bike compartment busy.
Assume also that the vehicle does not start the trip unless at least one of the compartments is busy. All the
possible transportation situations are then the elements in A = P(X) (P(X) stands for the power set of (X).
In these conditions, for every A ⊆ X, µ(A) can be interpreted as the proportion of gas consumed if A happens.
A possible specification of a fuzzy measure for this problem is as follows.

µ({b}) = 0.1, µ({v}) = 0.4, µ({c}) = 0.3, µ({m}) = 0.2,

µ({c, v}) = 0.6, µ({c, b}) = 0.35, µ({c, m}) = 0.45,

µ({b, v}) = 0.42, µ({b, m}) = 0.21, µ({v, m}) = 0.68,

µ({c, v, b}) = 0.7, µ({c, v, m}) = 0.75, µ({c, b, m}) = 0.5, µ({v, b, m}) = 0.69.

Note how the fuzzy measure in Example 1 is non-additive. Therefore, the same information
cannot be represented by a single probability distribution.

Every fuzzy measure over a reference set of cardinality n can be characterized by n! probability
functions (not necessarily different) [33], each one of them corresponding to one possible permutation



Mathematics 2020, 8, 2015 3 of 20

of the reference set. Given a permutation σ of the set of indices {1, . . . , n}, we will denote by Xσ the
ordering of the elements of X according to permutation σ, i.e., Xσ = {xσ(1), . . . , xσ(n)}. When it is clear
from the context, we will drop σ from the subscripts and write Xσ = {x(1), . . . , x(n)}.

Definition 2. [33] Let (X,A, µ) be a measurable space. The probability function associated with µ and
Xσ is defined as the set Pσ = {pσ(x(1)), . . . , pσ(x(n))} such that

pσ(x(i)) =

{
µ(A(i))− µ(A(i+1)) if i < n,

µ(x(n)) if i = n,
(1)

where A(i) = {x(i), . . . , x(n)}.

Definition 3. [33] Let (X,A, µ) be a measurable space and let Pσ be the probability function associated with
µ and Xσ. The probability measure generated by µ and Xσ is

Pσ(A) = ∑
x∈A

pσ(x), ∀A ∈ A. (2)

We will use Pσ for both the probability function and the probability measure when it is clear from
the context.

We will consider measures over marginal spaces (X,A) as well as product spaces (X1 ×
X2,AX1×X2) resulting from composing the marginal spaces (X1,AX1) and (X2,AX2), with AX1×X2 =

P(X1 × X2), which is not the same as P(X1)×P(X2).
Of particular interest are the elements of a product class that can be obtained from sets in the

marginal space. They are called rectangles and are formally defined as follows:

Definition 4. Let (X1,AX1) and (X2,AX2) be two spaces where AX1 and AX2 are classes defined on X1 and
X2, respectively. The class of rectangles of AX1×X2 is

R = {H ∈ AX1×X2 | H = A× B, where A ∈ AX1 , B ∈ AX2}. (3)

Our proposals in this paper will be based on the product measures described in [31], which make
use of the concept of triangular norm and conorm.

Definition 5. [34] An operator T : [0, 1]2 −→ [0, 1] is a triangular norm or t-norm for short, if it satisfies
the following conditions:

1. T(0, a) = 0, T(a, 1) = a for all a ∈ [0, 1]. (Boundary conditions)
2. T(a, b) = T(b, a). (Commutativity)
3. If a ≤ c and b ≤ d, then T(a, b) ≤ T(c, d). (Monotonicity)
4. T(T(a, b), c) = T(a, T(b, c)). (Associativity)

Definition 6. [34] An operator T : [0, 1]2 −→ [0, 1] is a triangular conorm or t-conorm for short, if it
satisfies the following properties:

1. S(1, a) = 1, S(a, 0) = a for all a ∈ [0, 1]. (Boundary conditions)
2. S(a, b) = S(b, a). (Commutativity)
3. If a ≤ c and b ≤ d, then S(a, b) ≤ S(c, d). (Monotonicity)
4. S(S(a, b), c) = S(a, S(b, c)). (Assocciativity)

The usual way of integrating real functions with respect to a fuzzy measure is by means of the
so-called Choquet integral, which is a generalization of Lebesgue integral to monotone measures.
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Definition 7. [2] Let (X,A, µ) be a measurable space, and let h be a measurable real function of X.
The Choquet integral of h with respect to µ is

C
∫

A
h ◦ µ =

∫ 0

−∞
(µ(Hα ∩ A)− 1) dα +

∫ ∞

0
µ(Hα ∩ A) dα (4)

where A ∈ A and Hα are the α-cuts of h, defined as

Hα = {x ∈ X/h(x) ≥ α}. (5)

If the reference set is finite, the integral can be expressed as

C
∫

h ◦ µ = h(x(1))µ(A(1)) +
n

∑
i=2

µ(A(i))[h(x(i))− h(x(i−1))], (6)

where Xσ is an ordering such that h(x(1)) ≤ h(x(2)) ≤ . . . ≤ h(x(n)) and the sets A(i) are of the form
{x(i), x(i+1), . . . , x(n)}. Furthermore, if h is non-negative, it can be computed as

C
∫

h ◦ µ =
n

∑
i=1

h(x(i))pσ(x(i)), pσ ∈ Ph, (7)

where Ph is the probability function associated with the ordering Xσ induced by h (see Definition 2).
Given two measurable spaces (X1,AX1 , µ1) and (X2,AX2 , µ2) , the concept of product fuzzy

measure is defined as follows.

Definition 8. [31] A product fuzzy measure of µ1 and µ2 is a function µ12 : AX1×X2 −→ [0, 1] satisfying:

1. µ12(∅) = 0, µ12(X1 × X2) = 1.
2. For all A, B ∈ AX1×X2 such that A ⊆ B it holds that µ12(A) ≤ µ12(B).
3. For all A ∈ AX1 , it holds that µ12(A× X2) = µ1(A).
4. For all B ∈ AX2 , it holds that µ12(X1 × B) = µ2(B).

The next definitions particularize the concept of a fuzzy measure product, so that it is guaranteed
to be compatible with the intuitive idea of independence, in the sense that if two fuzzy measures are
independent, their fuzzy measure product should be possible to be obtained using exclusively the two
original fuzzy measures.

Definition 9. [31] Let (X1,AX1 , µ1) and (X2,AX2 , µ2) be measurable spaces. µ1 and µ2 are �-independent
fuzzy measures if there exists a product fuzzy measure µ�12 such that for any H ∈ R,

µ�12(H) = µ1(A)� µ2(B), (8)

where H = A× B and � is a t-norm. µ�12 is called the �-independent product of µ1 and µ2.

Definition 10. [31] Let (X1,AX1 , µ1) and (X2,AX2 , µ2) be measurable spaces. The �-exterior product
measure for any H ∈ AX1×X2 is defined as

µ�12(H) = min
A×B⊇H

µ1(A)� µ2(B), (9)

where � is a t-norm.

Definition 11. [31] Let (X1,AX1 , µ1) and (X2,AX2 , µ2) be measurable spaces. The �-interior product
measure for any H ∈ AX1×X2 is defined as
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µ�
12
(H) = max

A×B⊆H
µ1(A)� µ2(B), (10)

where � is a t-norm.

Both measures conform to lower and upper bounds for any�-independent product fuzzy measure.

Proposition 1. [31] Let (X1,AX1 , µ1) and (X2,AX2 , µ2) be measurable spaces. Given any �-independent
product of µ1 and µ2, it holds that for all C ∈ AX1×X2 ,

µ�
12
(C) ≤ µ�12(C) ≤ µ�12(C). (11)

Note that, for the particular case of the classR, both measures coincide [31], i.e., for all H ∈ R,

µ�
12
(H) = µ�12(H) = µ�12(H). (12)

Product fuzzy measures can also be defined in terms of the associated probability measures [31].

Definition 12. [31] Let (X1,AX1 , µ1) and (X2,AX2 , µ2) be measurable spaces and Pµ1
σ1 and Pµ2

σ2 be the
probability functions associated with Xσ1

1 and Xσ2
2 , respectively. The lower product p-measure is defined as

m12(C) = min
σ1,σ2

[
Pµ1

σ1 ⊗ Pµ2
σ2 (C)

]
, (13)

for all C ∈ AX1×X2 , where ⊗ is the standard probabilistic product, i.e., Pµ1
σ1 ⊗ Pµ2

σ2 (C) = Pµ1
σ1 (C)Pµ2

σ2 (C).

Definition 13. [31] Given the conditions in Definition 12, the upper product p-measure is defined as

m12(C) = max
σ1,σ2

[
Pµ1

σ1 ⊗ Pµ2
σ2 (C)

]
, (14)

where ⊗ is the standard probabilistic product.

3. Parameters over One Measurable Space

In this section we propose statistical parameters aimed to characterize the behavior of functions
defined on a measurable space endowed with a fuzzy measure. We will separately address the case of
analyzing a single function and the case of simultaneously analyzing two functions.

3.1. The Case of Only One Function

Our proposals rely on the extension of the concept of mathematical expectation associated with
probability measures, to the more general case of fuzzy measures. Consider a measurable space
(X,A, µ) where µ is a fuzzy measure, and the class P of all the additive measures over X. One way to
extend the concept of mathematical expectation [5,35] is based on defining the set

MP(µ) = {P ∈ P|P(A) ≥ µ(A), ∀A ∈ A} (15)

of all the probability measures that dominate the fuzzy measure µ.
Since all the elements in MP(µ) are additive measures, the expectation of a function h with

respect to a fuzzy measure µ can be defined as

Eµ(h) = min
P∈MP(µ)

EP(h), (16)

where EP(h) is the mathematical expectation of h with respect to the probability measure P.
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The problem of this definition is that it is not always well defined, since there can exist a fuzzy
measure µ for whichMP(µ) = ∅. It happens, for instance, when the sum of the fuzzy measure µ over
the unitary subsets of X is greater than 1, as it is not possible to find a probability measure bounding µ

from above.
A class of fuzzy measures that are compatible with the definition of expectation in Equation (16)

are those that conform a lower envelope of a set of probability measures [6], i.e., µ(A) = min{P(A)|P ∈
M ⊆ P}, because in that caseMP(µ) 6= ∅.

A more general definition of expectation, based on Choquet integral [2], was given in [30] with
the aim of extending the probabilistic concept of expectation to non-additive settings.

Definition 14. [30] Let (X,A, µ) be a measurable space and let h be a non-negative, real valued measurable
function of X. The monotone expectation of h with respect to the fuzzy measure µ is defined as

Eµ(h) = C
∫

h ◦ µ. (17)

Since a fuzzy measure can always be characterized by a set of probability measures, it is clear from
Definition 14 and Equation (7) that the monotone expectation is equal to the mathematical expectation
obtained with the probability function associated with the fuzzy measure µ and the ordering induced
by the function h (see Definition 2), i.e.,

Eµ(h) = EPµ,h(h), (18)

where Pµ,h denotes the probability function associated with µ and the ordering induced by h. In the
particular case of considering a finite reference set, the monotone expectation can be expressed as

Eµ(h) =
n

∑
i=1

h(x(i))pσ(x(i)), pσ ∈ Pµ,h. (19)

The relation between the monotone expectation and the mathematical expectation is also illustrated
in Proposition 2.

Proposition 2. [30] Let (X,A, µ) be a measurable space and let {Pσ, σ ∈ Sn} be the set of all the probability
functions associated with the fuzzy measure µ. Then, for any non-negative real valued, measurable function h of
X it holds that

min
σ

EPσ (h) ≤ Eµ(h) ≤ max
σ

EPσ (h). (20)

3.1.1. Monotone Variance

In the same way as the monotone expectation extends in a natural way the concept of mathematical
expectation to non-additive measures, we will pursue the extension of other statistical parameters in a
similar way.

We will start off considering the extension of the concept of variance to a non-monotone context.
A direct approach is to define an extension of the variance using Choquet integral, as in the case of the
monotone expectation, which yields

Varµ(h) = Eµ[(h− Eµ(h))2]. (21)

However, the definition of variance in Equation (21) is problematic, since the distribution
associated with µ and the ordering induced by h is not, in general, the same as the one induced
by (h− Eµ(h))2. The reason is that functions h and (h− Eµ(h))2 are not comonotone, and therefore
they may induce different orderings of the reference set. Hence, the monotone variance defined in this
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way could not be considered as a measure of dispersion with respect to the monotone expectation,
as the underlying probability distribution can be different (see Definition 2).

Taking this into account, we propose a definition of monotone variance that preserves the
underlying probability measure associated with µ and the ordering induced by h.

Definition 15. Let (X,A, µ) be a measurable space and let h be a non-negative real valued measurable function
of X. We define the monotone variance of h with respect to the fuzzy measure µ as

Varµ(h) = VarPµ,h(h), (22)

where Pµ,h is the probability function associated with µ and the ordering induced by h.

It is clear from the definition that Varµ(h) ≥ 0 and that it is equal to the traditional variance when
µ is a probability measure.

Example 2. Consider the fuzzy measure over the reference set X = {x1, x2, x3} and its associated probability
distributions in Table 1, and the function h defined as h(x1) = 0.4, h(x2) = 0.1 and h(x3) = 0.7. The ordering
of X induced by h is thus (x2, x1, x3), i.e., the ordering induced by permutation σ = (2, 1, 3), which corresponds
to the probability distribution P(2,1,3). Therefore, according to Equation (22), the monotone variance of h is just
the variance of h computed using probability distribution P(2,1,3), resulting in

Varµ(h) = 0.0621.

Table 1. A fuzzy measure and the associated probability distributions corresponding to all the possible
permutations of the indices (1, 2, 3).

A µ P(1,2,3) P(1,3,2) P(2,1,3) P(2,3,1) P(3,1,2) P(3,2,1)

x1 0.2 0.6 0.6 0.3 0.2 0.4 0.2
x2 0.1 0.1 0.1 0.4 0.4 0.1 0.3
x3 0.3 0.3 0.3 0.3 0.4 0.5 0.5

x1, x2 0.5 0.7 0.7 0.7 0.6 0.5 0.5
x1, x3 0.6 0.9 0.9 0.6 0.6 0.9 0.7
x2, x3 0.4 0.4 0.4 0.7 0.8 0.6 0.8

Our definition of monotone variance preserves some properties of the traditional variance,
likewise the monotone expectation preserves some properties of the mathematical expectation.
In particular, the result in Theorem 1 is of practical value as it simplifies the calculation, and it
is also of interest because it links the concepts of monotone variance and monotone expectation.

Theorem 1. Let (X,A, µ) be a measurable space and let h be a non-negative real valued measurable function of
X, then it holds that

Varµ(h) = Eµ(h2)− E2
µ(h). (23)

Proof. According to Equation (22),

Varµ(h) = VarPµ,h(h),

i.e., the variance of h computed according to probability distribution Pµ,h, which can be calculated as

VarPµ,h(h) = EPµ,h(h
2)−

[
EPµ,h(h)

]2
,

and thus
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Varµ(h) = EPµ,h(h
2)−

[
EPµ,h(h)

]2
. (24)

The functions h and h2 are comonotone, and therefore they induce the same ordering of
the reference set and hence yield the same associated probability distribution (see Definition 2).
Thus, it holds that Pµ,h = Pµ,h2 and therefore,

EPµ,h(h
2) = EP

µ,h2 (h
2).

In addition, according to Equation (18), Eµ(h2) = EP
µ,h2 (h

2) = EPµ,h(h
2) and Eµ(h) = EPµ,h(h).

Now, replacing EPµ,h(h
2) by Eµ(h2) and EPµ,h(h) by Eµ(h) in Equation (24) we obtain Equation (23).

Example 3. As a continuation of Example 2, we will compute Varµ(h) using Equation (23).

Eµ(h2) = EP(2,1,3)
(h2)

= 0.3 · 0.42 + 0.4 · 0.12 + 0.3 · 0.72 = 0.199.

Eµ(h) = EP(2,1,3)
(h)

= 0.3 · 0.4 + 0.4 · 0.1 + 0.3 · 0.7 = 0.37.

Hence,
Varµ(h) = 0.199− 0.372 = 0.0621.

The next result shows that the monotone variance behaves in a similar way as traditional variance
in relation to affine transformations.

Proposition 3. Assume the conditions in Theorem 1 and let t be a function defined as t = ah + b with a ∈ R+
0

and b ∈ R. It holds that
Varµ(t) = a2Varµ(h). (25)

Proof. First, we have to show that t and h are comonotone, i.e., that for all x, y ∈ X, (h(x)− h(y)) and
(t(x)− t(y)) have the same sign:

(h(x)− h(y))(t(x)− t(y)) = (h(x)− h(y))(ah(x) + b− ah(y)− b) = a(h(x)− h(y))2 ≥ 0,

since a ∈ R+
0 . Therefore, the probability distribution associated with the measure µ is the same for

both functions, i.e., Pµ,t = Pµ,h and thus

Varµ(t) = VarPµ,t(t) = VarPµ,h(t) = a2VarPµ,h(h) = a2Varµ(h).

The next results analyze when the monotone variance is equal to 0.

Theorem 2. Let (X,A, µ) be a measurable space and let h be a non-negative real valued measurable function of X.
Let Pµ,h be the probability function associated with µ and h. Then, the following three conditions are equivalent:

1. Varµ(h) = 0.
2. ∃!i (1 ≤ i ≤ n) such that pσ(xi) = 1 and pσ(xj) = 0, ∀j 6= i, with pσ ∈ Pµ,h.
3. ∃i (1 ≤ i ≤ n) such that

µ(Hαj) = 1, ∀j ≤ i and µ(Hαj) = 0, ∀j > i
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where Hαi = {x ∈ X|h(x) ≥ h(xi)}, i = 1, . . . , n.

Proof. Let us assume without loss of generality that

h(x1) ≤ h(x2) ≤ · · · ≤ h(xn). (26)

(1) =⇒ (2)

Since pσ(xi) ≥ 0, i = 1, . . . , n, and
n

∑
i=1

pσ(xi) = 1, there must be at least one i ∈ {1, . . . , n} such

that pσ(xi) 6= 0.
Suppose that Varµ(h) = 0 and there exist two different j, k ∈ {1, . . . , n}, j < k, such that pσ(xj) 6= 0

and pσ(xk) 6= 0. Then it holds that

Varµ(h) = Varpσ (h) = pσ(xj)(h(xj)− Eµ(h))2 + pσ(xk)(h(xk)− Eµ(h))2 = 0,

which means that h(xj) = Eµ(h) and h(xk) = Eµ(h). However, according to the assumption in
Equation (26), it holds that h(xj) ≤ h(xj+1) ≤ · · · ≤ h(xk−1) ≤ h(xk). Hence,

Eµ(h) = h(xj) ≤ h(xj+1) ≤ · · · ≤ h(xk−1) ≤ h(xk) = Eµ(h),

which means that

h(xj) = h(xj+1) = · · · = h(xk) = Eµ(h) ⇒ Hαj = Hαj+1 = · · · = Hαk

⇒ pσ(xj) = pσ(xj+1) = · · · = pσ(xk−1) = 0,

which is a contradiction with the assumption that pσ(xj) 6= 0. Thus, there is only one pσ(xi) 6= 0 and
furthermore, pσ(xi) = 1.
(2) =⇒ (3)

Assume ∃!i such that pσ(xi) 6= 0. Then,

pσ(x1) = pσ(x2) = · · · = pσ(xi−1) = pσ(xi+1) = · · · = pσ(xn) = 0

and therefore
µ(Hα1) = µ(Hα2) = · · · = µ(Hαi )

and
µ(Hαi+1) = µ(Hαi+2) = · · · = µ(Hαn).

On the other hand, since µ(Hαi )− µ(Hαi+1) = 1, it follows that µ(Hαj) = 1 if j ≤ i and µ(Hαj) = 0
if j > i. (3) =⇒ (1)

It is straightforward from the definition of monotone variance.

Corollary 1. If h is constant, then Varµ(h) = 0, for any fuzzy measure µ.

Example 4. Assume a function h defined on X = {x1, x2, x3} as h(x1) = 0.4, h(x2) = 0.1 and h(x3) = 0.7,
and an associated probability distribution pσ such that pσ(x1) = 1, pσ(x2) = 0 and pσ(x3) = 0. We will see
how the monotone variance is equal to 0. However, first we need to calculate the monotone expectation.

Eµ(h) = 1 · 0.4 + 0 · 0.1 + 0 · 0.7 = 0.4.

Thus,
Varµ(h) = 1 · (0.4− 0.4)2 + 0 · (0.1− 0.4)2 + 0 · (0.7− 0.4)2 = 0.
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Now we will calculate the value of the measure µ over the sets Hαi = {x ∈ X|h(x) ≥ h(xi)}, i = 1, 2, 3,
i.e., Hα1 = {x1, x3}, Hα2 = {x1, x2, x3} and Hα3 = {x3}.

We can obtain the values of µ from pσ using Definition 2. The result is

µ({x3}) = pσ(x3) = 0,

µ({x1, x3}) = pσ(x1) + µ({x3}) = 1 + 0 = 1,

µ({x1, x2, x3}) = pσ(x2) + µ({x1, x3}) = 0 + 1 = 1.

Therefore, µ(Hα1) = 1, µ(Hα2) = 1 and µ(Hα3) = 0.

3.1.2. Monotone Moments

Following the same idea underlying the definition of monotone variance, we can extend the
concepts of central and non-central moments from a probabilistic setting to a monotone one.

Definition 16. Let (X,A, µ) be a measurable space and let h be a non-negative real valued measurable function
of X. We define the k-th non-central monotone moment of h with respect to µ as

gk
µ(h) = Eµ(hk). (27)

Note that Equation (27) is well defined, since h and hk are comonotone, and therefore the
corresponding probability function is the same for both of them, regardless of the value of k.

The definition of central monotone moments is, however, more problematic. If we follow the
same idea as in Definition 16, and define the central monotone moment as Eµ(h− Eµ(h))k, we find the
problem that functions h and (h− Eµ(h))k are not comonotone, and that would mean that different
underlying probability distributions would be used to compute Eµ(h) and Eµ(h− Eµ(h))k. We will
therefore generalize the definition of monotone variance to values of k 6= 2, utilizing the probability
function associated with µ and h.

Definition 17. Let (X,A, µ) be a measurable space and let h be a non-negative real valued measurable function
of X. We define the k-th central monotone moment of h with respect to µ as

γk
µ(h) = EPµ,h

[
(h− Eµ(h))k

]
, (28)

where Pµ,h is the probability function associated with µ and h.

The following result establishes the relation between central and non-central monotone moments.

Proposition 4. Let (X,A, µ) be a measurable space and let h be a non-negative real valued measurable function
of X. It holds that

γk
µ(h) =

k

∑
j=0

(−1)j
(

k
j

) [
gµ(h)

]j gk−j
µ (h). (29)
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Proof. Assume X = {x1, . . . , xn}.

γk
µ(h) = EPµ,h

[
(h− Eµ(h))k

]
=

n

∑
i=1

(h(xi)− Eµ(h))kPµ,h(xi)

=
n

∑
i=1

k

∑
j=0

(−1)j
(

k
j

)
Ej

µ(h)hk−j(xi)Pµ,h(xi)

=
k

∑
j=0

(−1)j
(

k
j

)
Ej

µ(h)
n

∑
i=1

hk−j(xi)Pµ,h(xi)

=
k

∑
j=0

(−1)j
(

k
j

)
Ej

µ(h)Eµ(hk−j) =
k

∑
j=0

(−1)j
(

k
j

) [
gµ(h)

]j gk−j
µ (h).

3.2. The Case of Two Functions

In this section we approach the simultaneous analysis of two functions h1 and h2 over the same
reference set, X. Our goal is to model the information that both functions have in common, or the way
in which they interact with one another.

Generalizing the concept of covariance, for instance, by using Eµ[(h1 − Eµ(h1))(h2 − Eµ(h2))],
raises the problem that the underlying probability distribution used to compute the monotone
expectation is not the one induced by h1 nor by h2 for the same fuzzy measure µ, and therefore
it is not clear that this monotone covariance in fact measures the relationship between both functions
at all. We will therefore explore a different approach, in which we will model the degree of similarity
between h1 and h2, by measuring the common region determined by both functions.

Definition 18. Let (X,A, µ) be a measurable space and let h1 and h2 be non-negative real valued measurable
functions of X. We define the common expectation of h1 and h2 with respect to µ as

ψµ(h1, h2) = Eµ[min{h1, h2}]. (30)

The concept of common expectation is illustrated in Figure 1. More precisely, the value of the
common expectation of h1 and h2 is the measure, according to µ, of the function under which the
shaded area is.

Figure 1. An illustration of the concept of common expectation of h1 and h2.

Example 5. We want to obtain the global grade for two students out of the individual grades they obtained
in four different courses {x1, x2, x3, x4}. In the final grade we want to reflect if a student shows a good
performance in the two scientific courses, {x1, x2}, the humanistic ones, {x3, x4}, or in the combination
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{x2, x3}, corresponding to a social sciences profile. These criteria are encoded in the fuzzy measure in Table 2,
while the grades obtained by both students (between 0 and 1) in each of the courses are shown in Table 3.

Table 2. A fuzzy measure matching the criteria in Example 5.

Reference Subsets Measure

{x1}, {x2}, {x3}, {x4} 0.2
{x1, x2} 0.6

{x1, x3}, {x1, x4} 0.3
{x2, x3} 0.5
{x2, x4} 0.4
{x3, x4} 0.7
{x1, x2, x3} 0.9
{x1, x2, x4} 0.6
{x1, x3, x4} 0.7
{x2, x3, x4} 0.8

Table 3. Grades obtained by the students in Example 5 in the individual courses.

Student x1 x2 x3 x4

h1 0.9 0.8 0.3 0.2
h2 0.2 0.3 0.8 0.9

The calculation of the respective monotone expectations and variances result in

Eµ(h1) = 0.61, Eµ(h2) = 0.65,

Varµ(h1) = 0.0769, Varµ(h2) = 0.0765,

which are quite similar, while the common expectation is ψµ(h1, h2) = 0.25.

The next proposition states the basic properties of the common expectation.

Proposition 5. Let (X,A, µ) be a measurable space and let h1 and h2 be non-negative real valued measurable
functions of X. Then, ψµ satisfies the following properties:

1. ψµ(h1, h2) = ψµ(h2, h1).
2. ψµ(h1, h2) ≤ min{Eµ(h1), Eµ(h2)}.
3. If ∀x ∈ X, h1(x) ≤ h2(x), then for any non-negative real valued measurable function h of X, ψµ(h1, h) ≤

ψµ(h2, h).
4. If ∀x ∈ X, h1(x) ≤ h2(x), then ψµ(h1, h2) = Eµ(h1).
5. ψµ(h1, h2) = 0 ⇐⇒ {x ∈ X|h1(x) > 0} ∩ {x ∈ X|h2(x) > 0} = ∅.

Proof.

1. It is straightforward from Equation (30).
2. It follows from the facts that Eµ is a monotone functional and that min{h1, h2} is bounded from

above by both h1 and h2.
3. It is a direct consequence of the monotonicity of operator min and functional Eµ.
4. If h1 ≤ h2, then min{h1, h2} = h1, and therefore both expectations are the same.
5. If {x ∈ X|h1(x) > 0} ∩ {x ∈ X|h2(x) > 0} = ∅ then the minimum of both functions is the

identically null function, which is known to be the only one that has null monotone expectation [30].
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The common expectation is not normalized, and therefore its value alone is not enough to
determine if it can be regarded as high or low. For instance, in Example 5 we obtained ψµ(h1, h2) = 0.25,
but that value does not tell us if it is high or low. However, it is clear that the common expectation
can be bounded from above, since it is known that for any positive real numbers a and b, it holds
that min{a, b} ≤

√
a · b ≤ max{a, b} and the equality is reached only when a = b. Hence, we can

normalize the common expectation using these bounds, which yields three possible definitions of
coefficients of concordance between h1 and h2.

Definition 19. Let (X,A, µ) be a measurable space and let h1 and h2 be non-negative real valued measurable
functions of X. We define the coefficients of concordance ρ1, ρ2 and ρ3 between h1 and h2 with respect to µ as

ρ
µ
1 (h1, h2) =

ψµ(h1, h2)√
Eµ(h1)Eµ(h2)

, (31)

ρ
µ
2 (h1, h2) =

ψµ(h1, h2)

Eµ(max{h1, h2})
, (32)

ρ
µ
3 (h1, h2) =

ψµ(h1, h2)

min{Eµ(h1), Eµ(h2)}
. (33)

The next proposition shows the basic properties of the three concordance coefficients (when it is
clear from the context, we will drop the measure and the functions, thus denoting ρ

µ
i (h1, h2) by ρi).

Proposition 6. Assume the conditions in Definition 19. The coefficients of concordance satisfy the following conditions:

1. 0 ≤ ρi ≤ 1, i = 1, 2, 3.
2. h1 = h2 ⇒ ρ1 = ρ2 = ρ3 = 1.
3. ρ2 ≤ ρ1 ≤ ρ3.
4. ρ1 = ρ2 = ρ3 = 0 iff h1 and h2 have empty intersection, i.e., {x ∈ X/h1(x) > 0} ∩ {x ∈ X/h2(x) >

0} = ∅.
5. If h1 ≤ h2, then

ρ1 =

√
Eµ(h1)

Eµ(h2)
,

ρ2 =
Eµ(h1)

Eµ(h2)
,

ρ3 = 1.

6. If h1 = kh2, with k > 1, then

ρ1 =
1√
k

,

ρ2 =
1
k

,

ρ3 = 1.

Proof.

1. It is clear that

min{Eµ(h1), Eµ(h2)} ≤
√

Eµ(h1)Eµ(h2) ≤ max{Eµ(h1), Eµ(h2)}.
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Furthermore, since Eµ is a monotone functional, max{Eµ(h1), Eµ(h2)} ≤ Eµ(max{h1, h2}).
According to property 2 in Proposition 5, ψµ(h1, h2) ≤ min{Eµ(h1), Eµ(h2)}, and thus

ψµ(h1, h2) ≤ min{Eµ(h1), Eµ(h2)} ≤
√

Eµ(h1)Eµ(h2) ≤ max{Eµ(h1), Eµ(h2)}.

Therefore

ρ
µ
1 (h1, h2) =

ψµ(h1, h2)√
Eµ(h1)Eµ(h2)

≤ 1,

ρ
µ
2 (h1, h2) =

ψµ(h1, h2)

Eµ(max{h1, h2})
≤ 1,

ρ
µ
3 (h1, h2) =

ψµ(h1, h2)

min{Eµ(h1), Eµ(h2)}
≤ 1.

On the other hand, since h1 and h2 are non-negative, so it is ψµ(h1, h2), which means that
ρ

µ
1 (h1, h2) ≥ 0, ρ

µ
2 (h1, h2) ≥ 0 and ρ

µ
3 (h1, h2) ≥ 0.

2. If h1 = h2 = h, then min{h1, h2} = max{h1, h2} = h and ψµ(h1, h2) = Eµ(h); hence, the three
coefficients are equal to 1.

3. From the proof of property 1, we know that

min{Eµ(h1), Eµ(h2)} ≤
√

Eµ(h1)Eµ(h2) ≤ Eµ(max{h1, h2})⇒

ψµ(h1, h2)

Eµ(max{h1, h2})
≤

ψµ(h1, h2)√
Eµ(h1)Eµ(h2)

≤
ψµ(h1, h2)

min{Eµ(h1), Eµ(h2)}
⇒

ρ2 ≤ ρ1 ≤ ρ3.

4. ρ1 = ρ2 = ρ3 = 0 iff ψµ(h1, h2) which, according to property 5 in Proposition 5, can only happen
if {x ∈ X/h1(x) > 0} ∩ {x ∈ X/h2(x) > 0} = ∅.

5. If h1 ≤ h2, then min{h1, h2} = h1, max{h1, h2} = h2 and Eµ(h1) ≤ Eµ(h2). Therefore,

ρ1 =
Eµ(h1)√

Eµ(h1)Eµ(h2)
=

√
Eµ(h1)

Eµ(h2)
, ρ2 =

Eµ(h1)

Eµ(h2)
and ρ3 =

Eµ(h1)

min{Eµ(h1), Eµ(h2)}
= 1.

6. If h1 = kh2 with k > 0, then min{h1, h2} = h2, max{h1, h2} = kh2 and Eµ(h1) = kEµ(h2).
Therefore,

ρ1 =
Eµ(h2)√

kEµ(h2)Eµ(h2)
=

1√
k

, ρ2 =
Eµ(h2)

Eµ(kh2)
=

1
k

and ρ3 =
Eµ(h2)

min{kEµ(h2), Eµ(h2)}
= 1.

Example 6. As a continuation of Example 5, we can use the data in Tables 2 and 3 to compute the coefficients of
concordance, obtaining

ρ1(h1, h2) = 0.397, ρ2(h1, h2) = 0.301, ρ3(h1, h2) = 0.410.
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Note how the three coefficients have low values, which is consistent with the data in the example, as in spite
of the similar values for the monotone expectation and variance corresponding to both students, they have a
clearly different profile, scientific in the case of h1 and humanistic in the case of h2.

4. Parameters Defined over Product Spaces

In this section we explore scenarios where we have two measurable spaces each of them equipped
with a different fuzzy measure. We will consider the definition of statistical parameters on the
product space.

Likewise, in Section 3, we will separately study the case of one or two real functions. In both
cases, it is necessary to obtain a fuzzy measure over the product space. We will rely on the proposals
in [31] to obtain the product measures.

4.1. The Case of One Function

The methods proposed in [31] for constructing fuzzy measures over product spaces, rather
than single measures, usually yield a set of them, bounded by an upper and lower measure.
Similarly, our proposals here will consist of intervals of parameters rather than a single one.

We will start defining the concept of joint expectation making use of the interior and exterior
product measures (see Definitions 10 and 11).

Definition 20. Let (X1,AX1 , µ1) and (X2,AX2 , µ2) be measurable spaces, h : X1 × X2 → [0, 1] and µ�
12

, µ�12
the �-interior and �-exterior product measures. We define the joint lower and upper�-expectations as

E�12(h) = C
∫

h ◦ µ�
12

(lower), (34)

E�12(h) = C
∫

h ◦ µ�12 (upper). (35)

Proposition 7. Let (X1,AX1 , µ1) and (X2,AX2 , µ2) be measurable spaces, h : X1×X2 → [0, 1] and µ�
12

, µ�12
the �-interior and �-exterior product measures. It holds that

E�12(h) ≤ E�12(h). (36)

Furthermore, if µ�12 is any�-independent product measure of µ1 and µ2 (see Definition 9), it also holds that

E�12(h) ≤ E�12(h) ≤ E�12(h), (37)

where E�12(h) = C
∫

h ◦ µ�12.

Proof. Note that E�12, E�12 and E�12 are monotone expectations, namely, Eµ�
12

, Eµ�12
and Eµ�12

respectively.
Therefore, Equations (36) and (37) are a direct consequence of the monotonicity of the monotone
expectation and Proposition 1.

The concept of joint �-expectations is analogous to the concept of monotone expectation in a
marginal space, with the difference that, in the case of the product space, the underlying fuzzy measure
is not known, but instead we have an interval of measures bounded by the interior and exterior
�-product measures.

We can define joint expectations using other product measures, as the p-measures given in
Definitions 12 and 13.

Definition 21. Let (X1,AX1 , µ1) and (X2,AX2 , µ2) be measurable spaces, h : X1 × X2 → [0, 1] and m12,
m12 the lower and upper product p-measures respectively. We define the lower and upper joint probabilistic
expectations as



Mathematics 2020, 8, 2015 16 of 20

Em12(h) = C
∫

h ◦m12 (lower), (38)

Em12(h) = C
∫

h ◦m12 (upper). (39)

Since we have a function defined over the product space and fuzzy measures defined over the
marginal spaces, it is natural to define marginal expectations. We will utilize the concept of⊕-marginal
of a function [31].

Definition 22. [31] Let h be a function defined on X1 × X2 and taking values on [0, 1]. We define the
⊕-marginals of h as

h⊕X1
(x1i) =

⊕
x2j∈X2

h(x1i, x2j) = h(x1i, x21)⊕ h(x1i, x22)⊕ . . .⊕ h(x1i, x2m), (40)

h⊕X2
(x2j) =

⊕
x1i∈X1

h(x1i, x2j) = h(x11, x2j)⊕ h(x12, x2j)⊕ . . .⊕ h(x1n, x2j), (41)

where ⊕ is a t-conorm (see Definition 6), n is the cardinality of X1 and m is the cardinality of X2.

Definition 23. Let (X1,AX1 , µ1) and (X2,AX2 , µ2) be measurable spaces and let h be a function defined on
X1 × X2 and taking values on [0, 1]. We define the marginal⊕-expectations as

E⊕Xi
(h) = C

∫
h⊕Xi
◦ µi, i = 1, 2, (42)

where h⊕Xi
are the ⊕-marginals of h.

4.2. The Case of Two Functions

We will now assume that we have two different functions, one for each marginal space, and define
parameters that combine the information provided by the marginal spaces.

Definition 24. Let (X1,AX1 , µ1) and (X2,AX2 , µ2) be measurable spaces, and let h1, h2 be functions defined on
X1 and X2 respectively, taking values on [0, 1]. We define the upper and lower global expectation of h1 and h2 as

φ?
�(h1, h2) = C

∫
h?12 ◦ µ�

12
(lower), (43)

φ
?
�(h1, h2) = C

∫
h?12 ◦ µ�12 (upper). (44)

where ? and � are arbitrary t-norms (see Definition 5), h?12(x1, x2) = h1(x1) ? h2(x2), ∀(x1, x2) ∈ X1 × X2

and µ�
12

and µ�12 are the interior and exterior product measures of µ1 and µ2 respectively.

The next proposition shows that both expectations coincide when ? is the min t-norm.

Proposition 8. Assume the conditions in Definition 24. If ? is the min t-norm, it holds that

φ?
�(h1, h2) = φ

?
�(h1, h2). (45)

Proof. According to ([31], Proposition 8), the α-cuts generated by h? belong to R when ? is the min
t-norm. Furthermore, Equation (12) establishes that µ�

12
= µ�12 for the elements of R, which proves

the result.

As a consequence of Proposition 8, when using the min t-norm we will just write φ?
� for both φ?

�
and φ

?
�.
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The global expectation is in fact an extension of the monotone expectation in the sense expressed
by the next theorem.

Theorem 3. Let (X,A, µ) be a measurable space and let h be a function defined on X and taking values on
[0, 1]. Consider the product space X× X and let both ? and � be the min t-norm. Then,

φ?
�(h, h) = φmin

min(h, h) = Eµ(h). (46)

Proof. Assume X = {x1, x2, . . . , xn}. Then

∀(x1, x2) ∈ X× X ⇒ hmin(x, y) = min{h(x1), h(x2)}.

Without loss of generality, we can assume that

h(x1) < h(x2) < . . . < h(xn),

in which case the α-cuts generated by hmin are of the form

Hαi = {(xk, xl) ∈ X× X| k, l ≥ i},

which are elements of the classR with their two projections being identical.
Since we are using the min t-norm to construct the product measure, it turns out that the measure

in each α-cut of the product space is equal to the measure assigned by µ to the α-cuts in the marginal
space, and thus

φmin
min(h, h) = C

∫
hmin ◦ µmin

12 =
n×n

∑
i=1

µmin
12 (Hαi )(αi − αi−1)

=
n

∑
i=1

[
µ(H↓Xαi )

]
(αi − αi−1) = Eµ(h).

Example 7. Consider a reference set X = {x1, x2, x3} and the function defined as h(x1) = 0.1, h(x2) =

0, 4, h(x3) = 0.7. The function hmin is displayed in Table 4.

Table 4. Values of the function hmin.

x1 x2 x3

x1 0.1 0.1 0.1
x2 0.1 0.4 0.4
x3 0.1 0.4 0.7

It can be seen how the diagonal contains the original values of h, and its α-cuts are

H0.1 = X× X, µmin
12 (H0.1) = min{µ(X), µ(X)},

H0.4 = {x2, x3} × {x2, x3}, µmin
12 (H0.4) = min{µ({x2, x3}), µ({x2, x3})},

H0.7 = {x3} × {x3}, µmin
12 (H0.1) = min{µ({x3}), µ({x3})},
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and therefore

φmin
min(h, h) = µmin

12 (H0.1)(0.1− 0) + µmin
12 (H0.4)(0.4− 0.1) + µmin

12 (H0.7)(0.7− 0.4)

= µ(X)(0.1− 0) + µ({x2, x3})(0.4− 0.1) + µ({x3})(0.7− 0.4)

= Eµ(h).

Likewise for the common expectation, the global expectation is not normalized, but it can be easily
normalized in the same way as we did for the common expectation case, as stated in the next definition.

Definition 25. Let (X1,AX1 , µ1) and (X2,AX2 , µ2) be measurable spaces and let h1 and h2 be functions
defined on X1 and X2 respectively and taking values on [0, 1]. We define the global coefficients of concordance of
h1 and h2 as

Φ1(h1, h2) =
φmin

min(h1, h2)

min{Eµ1(h1), Eµ2(h2)}
, (47)

Φ2(h1, h2) =
φmin

min(h1, h2)√
Eµ1(h1)Eµ2(h2)

. (48)

Example 8. (Continuation of Example 5)
Using the data in Table 3 we can obtain the function hmin

12 , the values of which are given in Table 5.

Table 5. Values of the function hmin
12 .

Course x1 x2 x3 x4

x1 0.2 0.3 0.8 0.9
x2 0.2 0.3 0.8 0.8
x3 0.2 0.3 0.3 0.3
x4 0.2 0.2 0.2 0.2

Using the fuzzy measure in Table 2, we find that φmin
min = 0.6 and the global concordance coefficients are

Φ1(h1, h2) = 0.953 and Φ2(h1, h2) = 0.984.
The value of the global expectation (0.6) is very close to the values of the monotone expectations for each

student in Example 5 (0.61 and 0.65 respectively). It can be interpreted as the fact that the grades of both
students are acceptable individually and also globally, which is reflected in high values of the global coefficients
of concordance. Note how the global expectation is not detecting the fact that both students have different profiles
(scientific and humanistic), while the common expectation detected this fact yielding a much lower value (0.25)
resulting in lower values of the coefficients of concordance as well.

5. Conclusions

With the introduction of the concept of monotone variance, we have complemented the already
known concept of monotone expectation. It can be regarded as a measure of dispersion with respect to
a central position measure. We have also introduced the concepts of central and non-central monotone
moments, that can serve as a vehicle to define further statistical parameters based on fuzzy measures
as, for instance, shape measures. The potential application scope is certainly wide, as it covers
non-additive scenarios like the ones described in the examples in this paper, and just to mention some
of them, such scenarios can be found in Engineering and Social Sciences applications.

The common expectation and concordance coefficients can be interpreted as measures of match
between the functions, and in that sense can provide information about to which extent one function
explains the other one. A possible application of these concepts is the development of prediction
models when the measures are not additive.
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Thanks to the developments in [31] we have been able to extend the concept of monotone
expectation to product spaces, where, in addition, we have shown how to marginalize the information
provided by a function over a product space using the marginal ⊕-expectations.

All the developments in this paper are restricted to finite reference sets. Even though it covers
a wide variety of practical applications, it is worth exploring the formulation of the results obtained
here to uncountable reference sets, which seems to be a promising research line. The first step in this
direction would be the extension of the results in [31] to continuous domains.
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