
mathematics

Article

Update-Based Machine Learning Classification
of Hierarchical Symbols in a Slowly Varying
Two-Way Relay Channel
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Abstract: This paper presents a stochastic inference problem suited to a classification approach in a
time-varying observation model with continuous-valued unknown parameterization. The utilization
of an artificial neural network (ANN)-based classifier is considered, and the concept of a training
process via the backpropagation algorithm is used. The main objective is the minimization of
resources required for the training of the classifier in the parametric observation model. To reach
this, it is proposed that the weights of the ANN classifier vary continuously with the change of the
observation model parameters. This behavior is then used in an update-based backpropagation
algorithm. This proposed idea is demonstrated on several procedures, which re-use previously
trained weights as prior information when updating the classifier after a channel phase change.
This approach successfully saves resources needed for re-training the ANN. The new approach
is verified via a simulation on an example communication system with the two-way relay slowly
fading channel.

Keywords: wireless physical-layer network coding; machine learning; artificial neural networks;
backpropagation; two-way relay channel; decision regions

1. Introduction

After the great success of machine learning (ML) methods in the classical application domains
such as computer vision and speech recognition, they recently proved successful in other areas as well.
The tasks suited to ML techniques can be divided into three main categories. First is the classification
of objects based on rules inferred from a training set of examples (supervised learning). Second is
the classification of objects without access to any examples, and the rules are found based only on a
given distance metric. This technique (unsupervised learning) typically results in a cluster system
minimizing and maximizing the intra- and inter-cluster distances, respectively. The third category
(reinforcement learning) deals with learning how to interact with an unknown environment in order
to reach a given goal. This method jointly addresses the problem of estimating the behavior of the
environment and simultaneously learns a policy, which dictates actions to be taken in order to meet
the goal. A good introduction to these ML topics can be found in [1,2].

In this paper, we focus on the first category, i.e., on supervised learning, implemented with an
artificial neural network (ANN). The ANN mimics the structure of a brain in a sense, in that it consists
of a number of individual neurons, each having multiple real inputs and one real output. Each neuron
is parameterized by a set of weights and a bias. The operation performed by each neuron is a simple
weighted sum of its inputs, the addition of the bias, and the application of a nonlinear activation
function. Typically, the structure of an ANN consists of a number of layers of neurons. The output of a
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neuron is connected to the inputs of all neurons in the subsequent layer. The total number of layers
and number of neurons in each layer are the design parameters of the network. A special role is given
to the input and output layer, which are always present (ANNs with hidden layers are termed deep
neural networks). In the input layer, there is one neuron for each dimension of the input data. In the
output layer, we have typically a neuron for each individual classification class, where we can apply a
hard metric (for example, a max function) for a hard decision or a soft metric (soft-max function) to get
a soft output, which can be interpreted as a probabilistic classification output.

Learning is performed by applying examples from the training set and optimizing the parameters
of individual neurons w.r.t. a fidelity metric of the ANN output and the desired output given by the
training set. This optimization can be efficiently implemented by the backpropagation algorithm,
which performs a stochastic gradient descent on the fidelity metric. This is the basic principle behind
ML and ANN in particular. One of the issues with such a simple approach is the large number
of parameters that arise with high-dimensional input data. With a large number of parameters,
the learning process takes longer and requires a larger training set. One way of eliminating this problem
is to preprocess the data and reduce its dimensionality while maintaining the information needed for
classification. This process is called feature extraction and is very dependent on the particular data
source and application. Much work has been done to develop sophisticated methods for such feature
extraction, for example convolutional layers for image recognition [3], cepstral coefficients for speech
recognition [4] or modulation recognition [5] and the bag-of words technique, developed for feature
extraction of textual data [6], to name a few.

Another issue, which is also related to the number of parameters of the network, is the problem
of over-fitting. The core of all ML methods is the ability to extract generalizing classification rules out
of a set of particular examples: the training set. Over-fitting occurs when insignificant details of the
training data are learned and degrade the performance of classifying data not present in the training
set. To combat this problem, regularization techniques such as constraining neuron weights or random
neuron dropout are used, to name a few.

The problems of stochastic inference interpreted as ML tasks have attracted considerable attention
in the field of physical layer communication [7–10]. The classical mathematical formulations of
detection, estimation, and signal processing algorithms usually require a precise analytical knowledge
of the system and observation model and usually lead to provable optimal closed-form results.
Alternative ML-based approaches provide in such situations only numerically solved approximations
to those solution. Although this has a limited applicability in classical scenarios, there are situations
where the system and observation model are not fully known and/or the resulting closed-form
solutions are too complex or unknown. In that situation, the ML approach provides an answer. As a
demonstrative example, a particularly obvious area where this applies in the context of stochastic
graphs is WPLNC (wireless physical layer network coding).

Recently, many interesting applications of ML were proposed for usage in wireless communications.
To provide several motivating examples, in [11], the authors used ANN to perform joint OFDM
channel estimation and symbol detection, where the learning phase was performed offline based on
known channel statistics. In [8,9], a deep learning approach to jointly optimize the whole wireless
communication chain was proposed, and this approach was successfully tested in an over-the-air
transmission. Similar to this, in the context of WPLNC, the authors in [10] addressed parts of the
network chain as individual deep neural networks, divided into the source modulator, a relay node,
and the demodulator. Attention attracted also the approach of modulation classification in [12],
where it was interpreted as an image classification problem. These papers largely motivated our
work. So far, utilization of the ML in WPLNC is not deeply explored. The concept of WPLNC recently
attracted much attention. A comprehensive tutorial of WPLNC techniques might be found in [13],
where fundamental concepts, advantages, and challenges were covered.

This paper investigates the applicability of the ML concept in the parametric, slowly varying
two-way relay channel (2WRC) WPLNC communication. This scenario is on the edge which still
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can be handled by the traditional approaches, see [14]. This allows us to find the required reference
scenarios to which we compare the ML solution and gives a hint about how the ML solution could be
applicable in more complex scenarios, which are beyond the capability of classical analytical solutions.
As was stated in [7], it is suitable to consider ML, when (1) the physical system model is not known,
(2) the training dataset is available, (3) a clear metric of the task can be defined, and (4) a detailed
explanation of the obtained result is not required. These general conditions are easily met in our
context of wireless communication networks.

Our contribution in this paper is an exploration of a novel approach to compensate the effects of
the variable phase of the wireless channel in a fundamental WPLNC scenario without the need for
explicit channel state estimation (which would generally require orthogonal pilots). Instead, we use
an ML approach that inherently tracks (learns) the varying hierarchical channel relative phase with
tractable computational complexity. This is achieved with a hypothesis class of the ANN, and the task
is interpreted as a classification problem. We explore methods to re-use previously trained coefficients
of the ANN, thus saving computational resources. Validation of the results was performed by means
of a numerical analysis.

The rest of the paper is organized as follows. Section 3 introduces the notation and describes
the system model. Section 4 outlines a generic approach of ANN utilization for the classification of
hierarchical symbols. Section 5 extends the previous approach for more practical scenarios and forms the
main contribution of this paper. Section 6 concludes the paper and outlines future research directions.

2. Materials and Methods

Numerical analysis was performed using MATLAB software. The developed source code, utilized
to produce the results, may be re-utilized without any restrictions and is available at: https://www.
dropbox.com/sh/vnc8j3ioksqhrmt/AAALaKeDHzYrBAJ-fnnFURfBa?dl=0.

3. System Model

Let us assume a three-node network with two source nodes SA, SB and one intermediate relay
node R. Further, let us assume a perfect time synchronization of symbols among the three nodes
and the knowledge of the modulation pulse used. Such a network topology is referred to as a 2-way
relay channel [13]. Let information bits bA, bB ∈ {0; 1} be at source nodes SA, SB mapped into the
constellation space using binary phase shift keying (BPSK) as sA, sB ∈ {±1} . For the topology of
2WRC, it is in the context of WPLNC efficient to utilize an XOR hierarchical network code map,
such that only a hierarchical symbol b = bA ⊕ bB is required to be identified by the relay node
(Briefly, the reason is that the relayed value of b is sufficient to recover information bit bA at node SB,
as bA = bB ⊕ b and vice versa for bB at SA. See [13] for details.). A complex AWGN with variance σ2

w
per dimension is denoted as w∈ C. A simplified channel model with a relative fading parameter h ∈ C
is considered. For the considered analysis, the following constellation space system model is used:

x = sA(bA) + hsB(bB) + w, (1)

where x ∈ C is the observation of node R. The sequence index is dropped for notational simplicity.
The SNR will be related with respect to SA and be denoted as SNR = E[|sA|2]/σ2

w, where E[] denotes
the expectation operator.

4. Artificial Neural Network-Based Classification of Hierarchical Symbols

In this section, we briefly outline a generic approach, which is later improved and forms our main
contribution. The main task is to infer the value of hierarchical symbol b, based on the observation x.
Obviously, knowledge of the parameter h in (1) is crucial for this task. The expected channel phase
drift over time opens a problem of ambiguity of deciding the hierarchical symbol b.

https://www.dropbox.com/sh/vnc8j3ioksqhrmt/AAALaKeDHzYrBAJ-fnnFURfBa?dl=0
https://www.dropbox.com/sh/vnc8j3ioksqhrmt/AAALaKeDHzYrBAJ-fnnFURfBa?dl=0
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A basic background idea described in this paper is to utilize a classical ML approach for this
problem, such that a training dataset D = {(xd, td)}D

d=1 of size D is utilized to train an ANN classifier
for this task. Vector xd = [<{x},={x}]T corresponds to the coordinates in the constellation space
(an alternative would be to take [|x|,]x]T as the input vector, but it would introduce the problem of
phase discontinuity). Vector td with dimensionality 2 represents the desired output value of the ANN.
It should be clear that even though we do not apply any explicit feature extraction, such preprocessing
takes place in the form of a projection of the received signal onto a set of basis functions, thus giving
the coordinates of xd in the constellation space. For the purpose of simulations, however, we work
directly in the constellation space.

Let us now describe how to obtain the training dataset. Consider that initially, nodes SA and SB

simultaneously transmit a predetermined, pseudorandom sequence of symbols
{

bA,d
}D

d=1 ,
{

bB,d
}D

d=1 .
Furthermore, let node R be aware of the resulting hierarchical target sequence bd =

{
bA,d ⊕ bB,d

}
.

For the purpose of training the ANN using the backpropagation algorithm, this sequence is transformed
to the expected ANN output vector td as td = [bd, 1− bd] . Thus, the observation xd(x) together with
the corresponding value td form the required training dataset for the supervised ML hypothesis class.

In the case of the considered BPSK modulation, the hierarchical symbol is binary. See Figure 1
for a demonstrative example. Therein, two colors distinguish the classes corresponding to the two
values of the hierarchical target symbol b. The phase of h, denoted ]h, dictates the rotation of the
superimposed constellation.

It is natural to visualize the trained classifierin terms of its decision regions, as shown in [13].
An example of trained decision regions is shown in Figure 2. Therein, two reference solutions are
provided. The trained decision regions are shown in the central subfigure. The true metric map is based
on the analytically optimal metric; see [13] for details. The distance-based map is an approximation
of the true metric map, based on the Euclidean distance between the neighboring points only, also
derived in [13].

With the above description of the nature of the training dataset, it is straightforward to design an
ANN and train it using the backpropagation algorithm and perform the classification of the hierarchical
symbols; see [1]. The specific implementation is not the main objective of this paper. For more details;
see [15].

Figure 1. Demonstration of the training dataset.
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Figure 2. Illustration of trained decision regions and comparison with reference solutions.

5. Slowly Varying Fading Parameter in 2WRC

Above, we briefly addressed how an ANN might be simply utilized for the classification of
hierarchical symbols in 2WRC. Therein, we considered the training dataset D to be obtained for a
single fixed value of ]h. In this section, we address a more practical situation, when the value of ]h is
slowly varying. Practically, effects such as slow user mobility, changes in the propagation environment,
or drift of the internal oscillators might be considered as the causes of it.

Considering the ANN, its functionality is fully determined by its structure (number of layers
and number of neurons). The training dataset is obtained as a pilot signal known to both Tx and Rx,
as described previously, and we shall focus on the minimization of resources required for training.
The reason is two-fold. Firstly, the number of training samples used for training directly affects
signaling overhead. Thus, it is desirable to minimize the number of training samples D. Secondly,
the training process of ANN using backpropagation itself is time consuming. Besides the number of
training samples D, its time complexity is typically dependent on the number of training epochs E
and learning rate η. From a matrix implementation point of view, it can be easily seen that the time
complexity of backpropagation scales quadratically with the number of nodes. The time complexity
dependence is linear w.r.t. the size of the training set. Therefore, we relaxed the employment of a
relatively small ANN with 4 layers. The core of our contribution in this paper is exploring the ideas
of how to minimize the resources required for training the ANN in the case of hierarchical symbol
classification in the 2WRC.

Note that in the simulations, we consider a 2WRC with BPSK modulation, and the employed
ANN consists of 2 hidden layers, each having 40 neurons. The network has 2 inputs, corresponding to
the coordinates in the constellation space. Its two outputs are designed to indicate the binary value of
the hierarchical symbols, which might be easily scaled using the soft-max approach to interpret the
outputs as classification likelihoods.

5.1. Numerical Analysis of the Effect of Training Dataset Size

Unfortunately, no general rules are available to determine what size of the training dataset is
required to achieve the desired accuracy or error rate. This issue is traditionally addressed heuristically.
Luckily, for our problem, it is straightforward to perform an exhaustive number of Monte Carlo
simulations to determine, how the quality of the trained classifier depends on the ANN parameters.

The size of the training dataset D is hereby considered to be a key parameter, since it dictates
the transmission overhead. In Figure 3, we present an exemplary result of such a numerical analysis.
Therein, we observe that for more than D = 2000 training samples, the accuracy of classification no
longer increases, and therefore, it is not desirable to waste valuable radio resources to obtain them.
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Figure 3. Numerical analysis of how the training dataset size affects the resulting accuracy of classification.

5.2. Updates of Previously Trained Weights

As stated previously, training of the ANN-based classifier is further determined by parameters E
and η. A basic approach for training an ANN classifier is to randomly initialize its weights and then
perform backpropagation. Assume this is done for the training dataset D(]h0), parameterized by the
channel phase. The trained weights are denoted by α0. Consider further that after the training process
is performed, the ANN can be used to classify the received symbols for a certain time, while ]h ≈ ]h0.
Due to the variability of the wireless channel, consequently ]h = ]h1 6= ]h0. Inevitably, the classifier
needs to be updated according to D(]h1), resulting in new weights α1. In general, we ask whether
we can re-use previously trained results αi−1 for obtaining new weights αi. To provide an answer,
we propose three procedures, which differ in the strategy of re-initialization and compare their
classification performance.

For minimizing the number of operations for training, we propose the following general scheme
with diverse epoch numbers and learning rates. This procedure repeats with period I. First, the network
is trained on D(]h0) over E1 epochs with rate η1. For I − 1 subsequent sets D(]hi), the network is
trained over E2 < E1 epochs with rate η2 > η1. The motivation is such that a higher number of training
epochs E1 is used to train weights via a smaller learning rate η1, leading to more precise initial training.

5.2.1. Procedure P1: Always Re-Initialize

The first procedure, P1, is visualized in Figure 4 with green color. The weights of the ANN are
initialized. A long training process is performed, lasting E1 epochs with learning rate η1, and subsequently
for I−1 realizations of]hi, the training is performed within E2 epochs with η2. Weights αi are re-initialized
before each training.

5.2.2. Procedure P2: Regular Re-Initialization

The second procedure, P2, is visualized in Figure 4 with blue color. Compared to the previous
routine, the weights are re-initialized after every Ith training.
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5.2.3. Procedure P3: Never Re-Initialize

The third procedure, P3, is visualized right-most in Figure 4 with red color. Weights αi are
randomly initialized only before the first training process. For the subsequent values of ]hi, the weights
are updated and utilized as prior information.

Small Change of 6 h

Short Training: E2; η2; i = i+ 1

i = I

Long Training: E1; η1; i = 0

Initialization: Generate Random Weights

YesNo

Small Change of 6 h

Reinit.

P1 P2 P3

Figure 4. An illustrative block diagram representing procedures P1 (green), P2 (blue), and P3 (red).
The difference to be emphasized is the strategy of re-initialization of the ANN weights.

5.3. Numerical Analysis

The above-described procedures P1 – P3 were implemented, and we provide numeric simulation
results. The angle of relative fading ]h of consequent pilot sequences used for the training process
changes uniformly as ]hi+1−]hi = 4.5◦. As justified by results presented in Figure 3, a pilot sequence
of length D = 2000 was considered. We experimentally determined E1 = 30 and E2 = 20 to be the
suitable numbers of training epochs with the corresponding learning rates η1 = 0.05 and η2 = 0.07.
With respect to the block diagram in Figure 4, consider I = 3. To provide an in-depth look, an analysis
of the ANN weights’ evolution was performed. To evaluate the rates of change of all weights α in each
layer of the ANN, the following expression was used:

a(j)(e) =
1

A(j) ∑
i

[
α
(j)
i (e)− α

(j)
i (e− 1)

]2
, (2)

where the upper index (j) specifies the layer, A(j) is the number of weights in layer (j), e is a counter
of training epochs, and i identifies the specific weights of the layer. For comparison, this expression is
evaluated and graphically represented in Figure 5 for procedure P3, without re-initialization, and in
Figure 6 for procedure P1, where the weights are always re-initialized, and thus no prior information
is utilized (graphically, the inspection of procedure P2 resulted in similar results as for P3, and the
figure is therefore omitted). Note that in these figures, it is clearly observable how the training process
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converges. The peaks of the curves correspond to the changes of the parameter ]hi, as marked by
arrows. These results are useful to optimize parameters E1, η1, E2, η2.
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Figure 5. Relative squared evolution of the weights for procedure P3, where the weights are initialized
only once, and for every subsequent value of ]hi, the weights are updated via backpropagation without
subsequent re-initializations.
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Figure 6. Relative squared evolution of weights for procedure P1, where the weights are initialized,
and for every subsequent value of ]hi, the weights are re-initialized prior to the further training process.
The legend from Figure 5 is used.

In Figure 7, we provide a comparison of the approaches in terms of the bit-error rate (BER) over
different values of the SNR. Therein, two reference solutions are provided, as addressed in Section 4.
Recall that these reference solutions are based on perfect knowledge of ]hi and therefore are naturally
superior to the trained solutions. Procedures P1–P3, represented in Figure 4, were tested for two values
of the parameter I, namely I = 3 and I = 5. In this result, we observe that the most efficient strategy



Mathematics 2020, 8, 2007 9 of 11

is procedure P3. Clearly, it is also better to keep longer training sequences more often, i.e., I = 3 is
preferable to I = 5.
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10
-3

10
-2

10
-1

Figure 7. Comparison of different proposed approaches together with reference solutions. Procedure
P3 with I = 3 performed the best. The validation dataset of 100,000 samples was used.

6. Discussion

In this paper, we considered the problem of the classification of received symbols in 2WRC
according to a many-to-one hierarchical map given from a WPLNC scenario with the employment
of an ANN as a classifier. It was shown that for a slowly varying phase of the wireless channel, it is
possible to utilize previously trained weights of the ANN as prior information. An effort was made to
minimize the resources required for the training of the system, and the number of resources required for
training was optimized. The simulation results showed that the utilization of the prior information was
beneficial and improved the overall classification results. Three different procedures of training were
proposed, implemented, and evaluated. The procedure denoted P3 in the text, where the weights of the
ANN were not re-initialized with consecutive changes of the relative fading parameter, was identified
to be the best one.

Future research will focus on (1) the optimization of the parameters of the proposed methods,
where the challenge is recognized in the number of parameters that the ANN model contains and a
more systematic approach would be desired, (2) the implementation of the approach for over-the-air
transmission, which seems straightforward using the concept of software-defined radio (however
on-line processing of data opens timing issues in practical networks), and (3) exploiting of the principle
for more complex networks, where new challenges will emerge. As noted previously, the presented
scenario is still on the edge, which can be handled by traditional, analytically derived approaches.
However, these are bearable only for simple network topologies. Hopefully, we shall be able to extend
the approach described in this paper to more complex scenarios. These extensions might focus on
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more complex modulation schemes, an increased number of network nodes, and relaxed knowledge
of the network topology.
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ANN artificial neural network
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SNR signal-to-noise ratio
BPSK binary phase shift keying
BER bit-error rate

References

1. Bishop, C.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006.
2. Sutton, R.; Barto, A.G. Reinforcement Learningan Introduction, 2nd ed.; The MIT Press: London, UK, 2018.
3. O’Shea, K.; Nash, R. An introduction to convolutional neural networks. arXiv 2015, arXiv:1511.08458.
4. Souissi, N.; Cherif, A. Speech recognition system based on short-term cepstral parameters, feature reduction

method and artificial neural networks. In Proceedings of the 2016 2nd International Conference on Advanced
Technologies for Signal and Image Processing (ATSIP), Monastir, Tunisia, 21–23 March 2016; pp. 667–671.

5. Keshk, M.E.H.M.; Abd El-Naby, M.; Al-Makhlasawy, R.M.; El-Khobby, H.A.; Hamouda, W.;
Abd Elnaby, M.M.; El-Rabaie, E.S.M.; Dessouky, M.I.; Alshebeili, S.A.; Abd El-Samie, F.E.
Automatic modulation recognition in wireless multi-carrier wireless systems with cepstral features.
Wirel. Pers. Commun. 2015, 81, 1243–1288. [CrossRef]

6. Sheikh, I.; Illina, I.; Fohr, D.; Linares, G. Learning word importance with the neural bag-of-words model.
In Proceedings of the 1st Workshop on Representation Learning for NLP, Berlin, Germany, 11 August 2016;
pp. 222–229.

7. Simeone, O. A Very Brief Introduction to Machine Learning With Applications to Communication Systems.
IEEE Trans. Cogn. Commun. Netw. 2018, 4, 648–664. [CrossRef]

8. O’Shea, T.; Hoydis, J. An Introduction to Deep Learning for the Physical Layer. IEEE Trans. Cogn.
Commun. Netw. 2017, 3, 563–575. [CrossRef]

9. O’Shea, T.J.; Karra, K.; Clancy, T.C. Learning to communicate: Channel auto-encoders, domain specific
regularizers, and attention. In Proceedings of the 2016 IEEE International Symposium on Signal Processing
and Information Technology (ISSPIT), Limassol, Cyprus, 12–14 December 2016; pp. 223–228.

10. Matsumine, T.; Koike-Akino, T.; Wang, Y. Deep Learning-Based Constellation Optimization for Physical
Network Coding in Two-Way Relay Networks. In Proceedings of the ICC 2019—2019 IEEE International
Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; pp. 1–6.

11. Ye, H.; Li, G.Y.; Juang, B.H. Power of deep learning for channel estimation and signal detection in OFDM
systems. IEEE Wirel. Commun. Lett. 2017, 7, 114–117. [CrossRef]

12. Peng, S.; Jiang, H.; Wang, H.; Alwageed, H.; Zhou, Y.; Sebdani, M.M.; Yao, Y. Modulation Classification
Based on Signal Constellation Diagrams and Deep Learning. IEEE Trans. Neural Netw. Learn. Syst. 2019,
30, 718–727. [CrossRef] [PubMed]

13. Sykora, J.; Burr, A. Wireless Physical Layer Network Coding; Cambridge University Press: Cambridge, UK, 2018.

http://dx.doi.org/10.1007/s11277-014-2183-3
http://dx.doi.org/10.1109/TCCN.2018.2881442
http://dx.doi.org/10.1109/TCCN.2017.2758370
http://dx.doi.org/10.1109/LWC.2017.2757490
http://dx.doi.org/10.1109/TNNLS.2018.2850703
http://www.ncbi.nlm.nih.gov/pubmed/30047904


Mathematics 2020, 8, 2007 11 of 11

14. Hron, P.; Sykora, J. Performance Analysis of Hierarchical Decision Aided 2-Source BPSK H-MAC CSE with
Feed-Back Gradient Solver for WPNC Networks. In Proceedings of the 2019 IEEE Microwave Theory and
Techniques in Wireless Communications (MTTW), Riga, Latvia, 1–2 October 2019.

15. Kolar, J. Machine Learning Algorithms in Wireless Physical Layer Network Coding. Master’s Thesis,
Czech Technical University in Prague, Prague, Czech Public, 2020. Available online: http://hdl.handle.net/
10467/86135 (accessed on 29 January 2020).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

 http://hdl.handle.net/10467/86135
 http://hdl.handle.net/10467/86135
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	System Model
	Artificial Neural Network-Based Classification of Hierarchical Symbols
	Slowly Varying Fading Parameter in 2WRC
	Numerical Analysis of the Effect of Training Dataset Size
	Updates of Previously Trained Weights
	Procedure P1: Always Re-Initialize
	Procedure P2: Regular Re-Initialization
	Procedure P3: Never Re-Initialize

	Numerical Analysis

	Discussion
	References

