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Abstract: The National Health Insurance Administration of Taiwan has implemented global budget
payments, the Diagnosis-Related Group (DRG) inpatient diagnosis-related group payment system,
and the same-disease payment system, in order to decrease the financial burden of medical expenditure.
However, the benefit system reduces the income of doctors and hospitals. This study proposed an
early warning payment algorithm that applies data analytics technology to diabetes hospitalization-
and treatment-related fees. A model was constructed based on the characteristics of the Exponentially
Weighted Moving Average (EWMA) algorithm to develop control charts, which were first employed
using the 2001–2017 health insurance statistical database released by the Department of Health
Insurance (DHI). This model was used to simulate data from inpatients with diabetes, to create
an early warning algorithm for diagnosis-related groups’ (DRGs’) medical payments as well as to
measure its accuracy. This study will provide a reference for the formulation of payment policies by
the DHI.

Keywords: machine learning; statistical model; decision science analysis; global payment;
Exponentially Weighted Moving Average (EWMA); early warning system decision model

1. Introduction

Taiwan has been providing health insurance for more than 20 years. After several years of
implementation and continuous improvements, the system is highly praised around the world [1–3].
Chiang et al. [4] compiled five main features of health insurance after two reforms: universal coverage,
payroll tax financing, comprehensive benefits, public single-payment plan, and a national global budget.
These five main features came about due to financial and payment problems that led to a reform of the
healthcare system and changes in social values and attitudes toward healthcare. For example, in the
five-year period of 2010–2014, Taiwan diagnosis-related groups (TW-DRGs) were introduced to allocate
similar amounts of money for patients diagnosed with the same disease. Medical information systems
can be used to monitor whether there are improper referrals, and patients can avoid unnecessary tests
and waiting periods for hospital beds. For hospitals, this system can improve manpower crunches.
However, Lin et al. [5] found that the same amount of money for patients diagnosed with the same
disease produced the following consequences: (1) mild diseases being reported as serious diseases;
(2) an increase in the number of rejected critically ill patients, in addition to difficulty in obtaining
beds in critical care units in medical centers; and (3) a cost transfer to physicians, causing a higher
turnover of critical care physicians in large hospitals and the problem of rejected patients becoming
more seriously ill. This resulted in hospitals focusing only on treating mild cases. Many researchers
have jointly studied the periods before and after the implementation of the TW-DRGs and found that
there was no significant difference in medical resource consumption. If there were any abnormalities,
most were differences caused by a reduced length of hospitalization [6–9]. Zhang [10] found that
Taiwan has the least expensive health insurance rate among developed countries and is a country that
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simultaneously maintains a high level of medical quality. However, after the implementation of the
TW-DRG global budget payment system, it was found that this system did not match the Taiwanese
people’s medical consultation habits of seeking medical treatment, no matter how sick or pain they
were, which hospital to go to was completely determined by the individual. The referral system
is not implemented, resulting in restrictions in the number of hospital outpatient registrations, and
the public is willing to spend more on registration fees to register at the emergency department to
alleviate suffering. This causes the emergency department to be filled with patients and leads to a
shortage of hospital beds. Liang [11] found that the long-term implementation of the DRG system
can increase hospital efficiency, and hospitals can use the DRG-based payment system to encourage
“product-range specialization,” which will maximize hospital profits. Cheng and Wu [8] found that
under the TW-DRG payment system, when different surgeries are conducted for the same disease,
there is a fold difference in health insurance payouts. This can directly affect the medical behavior of
physicians, and the medical resources consumed are also different.

In Taiwan, the health insurance rate is fixed, and the rate cannot be adjusted when there is an
increase in expenditure, resulting in a health insurance operating loss. In order to reduce losses,
the Department of Health Insurance (DHI) implements a total payment system and transfers the
financial problem of variable expenditure to medical institutions. The medical institution can only
maintain the same profit when the income is limited. In order to decrease the overall expenditures of
the DHI and obtain a balance with income from hospitals and clinics, this study used data analytics
technology on diabetes hospitalization fees as an example, to construct an early warning algorithm for
DRG payments of diabetes inpatient treatments, from the perspective of the DHI. First, Exponentially
Weighted Moving Average (EWMA) control charts were employed using the 2001–2017 health insurance
statistical database that was released by the DHI to simulate surgery inpatient data in order to create
an early warning algorithm for DRG medical payments. This model’s accuracy was subsequently
validated. These results will provide a basis for the formulation of payment policies by the DHI and
medical treatments by hospitals.

The remainder of this paper is structured as follows. Following the present section (Introduction),
Section 2 (Literature Review) provides an overview of previous research on machine learning and
data mining, DRG global budget payment policy, and the early warning algorithm for global budget
payment. In Section 3 (Methodology), this paper focuses on the construction of the early warning
algorithm decision model. Section 4 (Results) provides an insight into the development of a diabetes
inpatient DRG early warning algorithm. Finally, in Section 5 (Conclusions), a summary of the findings
will be presented, highlighting how the global budget payment policy will enable a balance to be
reached between the finances of the DHI and hospital incomes.

2. Literature Review

2.1. Machine Learning and Data Mining

Lee et al. [12] employed five data mining techniques (multiple regression, stepwise regression,
multivariate adaptive regression splines, support vector regression, and two- stage model) to predict
medical resources used for diabetic nephropathy, and found that support vector regression and two-
stage model have better prediction accuracy. Kuo et al. [13] used C4.5 to carry out the data mining and
classification of the 2010–2013 data and employed random forest methods to predict the medical costs of
TW-DRG49702 (posterior and other spinal fusion without complications or comorbidities). The results
showed that the prediction accuracy was 84.30%, and it was hoped that the random forest method could
inform hospital strategy in terms of increasing the financial management efficiency of this operation.
Daniel et al. [14] combined machine learning and mixed-integer programming to predict the assignment
and use of early DRGs in hospital resources. Rodge [15] proposed the misdiagnosis minimization
approach method, which was used for data analysis and used the Patient Informatics Processing
Software Hybrid Hadoop Hive for data summarization, query, and analysis to identify traumatic brain
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injury survival rates by data mining. Shafqat et al. [16] proposed a “SmartHealth” monitoring system,
which integrated healthcare systems, and described the various applicable healthcare data analytics
algorithms, techniques, and tools that may be deployed in wireless, cloud, and Internet of Things
settings to unified standard learning healthcare systems in the future. Zaman et al. [17] used a large
dataset of Facebook reviews to construct a taxonomy of potential service attributes for each service
attribute to aid healthcare policy-makers and providers in rapidly monitoring concerns and adjusting
policies or resources to improve the service.

The above-mentioned literature suggests that machine learning and data mining are useful for
forecasting the assignment and use of resources in hospitals as far as diabetes is concerned. This research
proposes a new algorithm through literature discussion, hoping to achieve a balance between the
overall expenditure policy payment conditions for diabetes of the DHI and the income of the hospital
or clinic using a more accurate financial forecasting algorithm.

2.2. DRG Global Budget Payment Policy

Mihailovic et al. [18] described the experience of introducing DRG-based payments in several
countries and reported on the advantages of the system, increased efficiency and transparency,
and reduced average length of stay in hospitals. On the contrary, the DRG can also present some
disadvantages, such as creating financial incentives for earlier hospital discharges. Occasionally, such
polices are not in full accordance with clinical benefit priorities. The TW-DRG payment system divides
inpatients into different groups based on a series of factors, including condition diagnosis, surgical
procedure or treatment, age, gender, comorbidities or complications, discharge status, and so on [19].

The global budget payment criteria for TW-DRGs divide disease treatments into categories A, B,
and C, as shown in Figure 1. In Figure 1, category A includes patients who recovered after receiving
treatment and used pay-as-you-go, which is a payment that is dependent on treatment costs. Most cases
fall into category B. Categories B and C can be explained as follows. The DHI has defined the upper
and lower limit for payment for DRGs into different groups, and the median amount is taken as a
fixed score. After disease treatment is completed, a fixed amount is paid according to the DRG of that
disease. If the cost of treatment is low, the hospital earns money. Otherwise, the hospital incurs a loss.
If the hospital earns money, the case falls into category B, but if the hospital loses money, the case falls
into category C. When treatment exceeds the upper limit of DRG payments for various groups and
the costs fall into region C, a fixed payment plus 80 percent of the excess cost is paid to the hospital.
The lower-limit threshold for fees is calculated based on the 2.5 percentile of DRG medical points, while
the upper-limit threshold for fees is calculated based on the 88.5 percentile of the DRG medical points.
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Figure 1. Taiwan diagnosis-related group (TW-DRG) payment system.

The 2019 treatment DRG for diabetes inpatients promulgated by the DHI was used as an example
to illustrate the payment method in Figure 1. The DHI fixed payment is 44,595 points, the lower limit
is 8036 points, and the upper limit is 71,877 points (see Figure 2). The DHI payment is explained
as follows:
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Figure 2. Execution of the TW-DRG medical payment system in hospitals.

Case 1: If treatment falls into region A (lower limit), pay-as-you-go is used.

If 5000 points are used for inpatient treatment and the case falls into category A, the DHI will
employ the pay-as-you-go principle and pay the hospital 5000 points.

Case 2: If treatment falls into category B, a fixed payment is carried out.

After treatment, if medical costs fall into category B, the DHI will give a fixed payment of
44,595 points, regardless of how much was spent by the hospital. At this point, the hospital further
segments category B into categories B1 and B2. If the physician spends 40,000 in treatment costs,
this falls into category B1, which is the positive revenue category, as it provides a profit of 4595 points
to the hospital (44,595 − 40,000 = 4595). Conversely, if the physician spends 60,000 points on treatment
costs, this will fall into category B2, which is a negative revenue category and causes the hospital to
incur a loss of 5084 points (60,000 − 44,595 = −15,405).

Case 3: If treatment costs fall into category C (upper limit), 80% of the excess cost is paid to
the hospital.

If inpatient treatment costs 80,000 points, the DHI administration payment method is a fixed
payment of 44,595 points + (80,000 − 44,595) × 0.8 = 72,919 points. At this point, the DHI will only pay
72,919 points to the hospital, resulting in a loss of 7081 points to the hospital. This means that the more
medical interventions carried out, the greater the loss incurred by the hospital, which directly affects
the income of the hospital and physicians.

2.3. Exponentially Weighted Moving Average (EWMA)

Roberts [20] proposed EWMA control charts to detect mean offsets in a process. When an
offset occurs in the process, the control chart can be used to identify its cause. This is achieved by
assigning different weights to historical and current data: weighting of historical data results in a
decreasing index that will improve the process and reduce process variability [21,22]. Cook et al. [23]
proposed risk-adjusted EWMA that plots the EWMA of the observed and predicted values obtained
from a logistic regression model for all hospitals in Queensland. Pan and Jarrett [24] proposed
multivariate exponentially weighted moving average (MEWMA) and sensitivity ratios as a measure of
the effects of the mean shift and dispersion shift in processes in a bio-surveillance study. Scagliarini [25]
EWMA control charts were applied retrospectively to monitor the mean and variability of a hospital
organizational performance indicator, which reflected process performance, allowing continuous
monitoring and prompt detection of changes in process performance. Aslam et al. [26] proposed that
EWMA charts on healthcare issues may reduce the risk of heart disease by monitoring diabetic levels
in an effective way. The EWMA of the predicted values is a moving center line, reflecting the current
patient case mix at a particular hospital.
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3. Methodology

In this study, the characteristics of EWMA control charts were utilized to develop an early warning
algorithm for surgical inpatient treatment-related costs and to avoid substantial losses to the DHI,
hospitals, and clinics under the global payment system. The EWMA statistic that is calculated is

EWMAt = λYt + (1 − λ)EWMAt−1 for t = 1, 2, . . . , n. (1)

where λ is the weight (which is the payment model value that is most suitable for diabetes inpatient
medical costs according to a sensitivity analysis on data analytics on daily diabetes inpatient medical
costs). EWMA0 is the historical mean of the DRG costs. Yt is the observation at time t. n is the number
of observations to be monitored, including EWMA0. Moreover, 0 < λ ≤ 1 is a constant that determines
the depth of memory of the EWMA [27–29].

UCL = µx + Lσ
√

λ
2−λ

[
1− (1− λ)2t

]
CL = µx

UCL = µx − Lσ
√

λ
2−λ

[
1− (1− λ)2t

] t = 1, 2, · · · , n (2)

where σ is the variance, UCL is the upper-limit threshold for fees, LCL is the lower-limit threshold
for fees, and CL µx is half of the fixed payment for DRG costs. When t increases, the term (1 − λ)2t

in Equation (2) gradually converges to 1. Therefore, the with the EWMA control, in a few periods,
the upper and lower limits tend to a stable value. The upper and lower limits tend to be stable. When
λ→0, the effects of historical data on the statistic in the EWMA control chart are lower; when λ→1,
the EWMA control chart is a Shewhart control chart [30], as shown in Equations (3) and (4).

UCL = Z0 +
3S
√

n

√(
λ

1− λ

)(
1− (1− λ)2t

)
(3)

LCL = Z0 −
3S
√

n

√(
λ

1− λ

)(
1− (1− λ)2t

)
(4)

where UCL is the upper-limit threshold for fees, LCL is the lower-limit threshold for fees, Z0 is the
initial value, a target value for diabetes inpatient DRG costs defined by decision makers or the mean
value of diabetes inpatient payments; i is the sample size; and n is the size of the group.

To determine the efficiency of the EWMA forecasting model, this work employs the residual error
(RE) test method to compare the forecasted and actual values. The following equation was used:

RE(k) =

∣∣∣∣x(k) −_x (k)∣∣∣∣
x(k)

× 100% (5)

where x(k) is the original hospitalization fee and
_
x (k) is the EWMA forecasting hospitalization fee.

The accuracy was 1 − RE(k).

4. Results

In order to increase hospital income as well as decrease both hospital losses and expenditure by
the DHI, our study used inpatient medical fee data for diabetes mellitus inpatient DRGs, as an example,
to construct a diabetes inpatient DRG early warning algorithm from the perspective of DHI global
payments, so that a balance between hospital income and expenditure by the DHI can be reached.
The early warning algorithm decision model involves the following steps:
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Step 1: Data Collection

Data published by the DHI regarding health insurance of diabetes inpatients between 2001 and
2017 were used in this study. The DHI [31] announced that the international classification of diseases
(ICD) 9 and ICD 10 DRG payment systems would be implemented as health insurance policies for
Taiwan from 2001 to 2017.

Step 2: Data Integration

The ICD 9 DRG system was implemented before 2015, followed by the ICD 10 DRG system in
2016. DRG payments for ICD 10 diabetes can be divided into four types: DRG-29401 (diabetes, age
≥ 36 years, with complications), DRG-29402 (diabetes, age ≥ 36, without complications), DRG-29501
(diabetes, age ≤ 35, with complications), and DRG-29502 (diabetes, age ≤ 35, without complications).
Before the construction of the early warning algorithm, diabetes ICD 9 DRG-related fees before 2015
were combined with the number of people treated under ICD 10 DRG and its inpatient payments after
2016. The compiled data are shown in Table 1.

Table 1. Hospitalization fees and number of people treated for diabetes in 2001–2017 under the global
payment for Department of Health Insurance (DHI) (USD).

Year DRG Number of
People Treated

Diabetes
Hospitalization

Fees

Average
Hospitalization
Fees per Person

Annual Change in
Number of People

Treated (%)

2001 ICD 9 169,981 50,794,623 299 6%
2002 ICD 9 184,362 58,638,789 318 8%
2003 ICD 9 185,743 58,922,637 317 1%
2004 ICD 9 207,873 67,946,566 327 11%
2005 ICD 9 213,198 65,071,657 305 2%
2006 ICD 9 217,095 56,350,534 260 2%
2007 ICD 9 229,785 55,012,426 239 6%
2008 ICD 9 241,114 54,930,503 228 5%
2009 ICD 9 255,518 54,226,727 212 6%
2010 ICD 9 268,749 53,501,090 199 5%
2011 ICD 9 277,628 52,527,147 189 3%
2012 ICD 9 283,388 48,676,208 172 2%
2013 ICD 9 283,367 47,430,722 167 0%
2014 ICD 9 288,049 49,155,901 171 2%
2015 ICD 9 295,267 48,869,911 166 2%
2016 ICD 10 291,832 49,233,100 169 −1%
2017 ICD 10 298,558 56,161,894 188 2%

Average 241,766 54,625,281 237 4%

Diabetes inpatient medical costs and the number of people treated in Table 1 were used for trend
analysis, as shown in Figure 3. From Figure 3, we can see that the number of people treated for diabetes
is increasing at an average of 4% per year. First, the implementation of the ICD 9 payment system
was divided into two parts for analysis. The first part (2001–2004) shows a growth in inpatient fees,
with an average payment of 59,075,654 USD by the DHI, an average growth of 6% in fees, and an
average inpatient medical fee per person of 315 USD. The second part (2004–2015) shows a decrease in
inpatient fees, with an average payment of 53,250,257 USD by the DHI, inpatient fees decrease of 3%,
and an average inpatient medical fee per person of 210 USD. Next, the new ICD 10 DRG payment
system was implemented (2016 onward), and the payment points for medical costs were recalculated,
and inpatient medical costs started showing an increasing trend.
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Step 3: Constructing an Early Warning Algorithm

Based on the 2001–2017 diabetes health insurance inpatient data, Equation (2) was used to
construct an EWMA control chart for an early warning algorithm.

Step 4: Sensitivity Analysis

Sensitivity analysis was used to identify the λ weight most suitable for diabetes inpatient payments
and the accuracy of the early warning algorithm. This was done to provide decision support for
real-time monitoring of diabetes inpatient treatment by the DHI and hospital. Taking λ = 0.15 as an
example, we used Equation (1) to calculate the predicted value of EWMA for the diabetes hospitalization
expenses in Table 1 from 2001 to 2017, and then λ = 0.2, 0.25, and λ = 0.3 for sensitivity analysis.
The calculated predicted values of EWMA are summarized in Table 2. Table 2 shows the compiled
results. From Table 2, we can obtain the accuracy of the algorithm from Equation (5). The mean
accuracy is the highest (97.38%) when λ = 0.2. In Figure 4, when λ = 0.2, using Equation (2) to calculate
the mean value (CL) of diabetes inpatient global budget payments, and using Equations (3) and (4) to
calculate the result is 5,455,907 USD, the upper limit of payments (UCL) is 57,157,433 USD, and the
lower limit of payment (LCL) is 51,964,382 USD in the EWMA early warning algorithm.

Table 2. λ sensitivity analysis of diabetes hospitalization fees in 2001–2017 (USD).

Year
Original

Hospitalization
Fee

λ = 0.15 λ = 0.2 λ = 0.25 λ = 0.3

EWMA Accuracy EWMA Accuracy EWMA Accuracy EWMA Accuracy

2001 50,794,623 53,991,715 94.58% 53,803,651 94.25% 53,615,587 93.92% 53,427,523 93.59%
2002 58,638,789 54,688,776 95.80% 54,770,679 95.95% 54,871,387 96.12% 54,990,902 96.33%
2003 58,922,637 55,323,855 96.92% 55,601,070 97.40% 55,884,200 97.90% 56,170,423 98.40%
2004 67,946,566 57,217,262 99.77% 58,070,169 98.27% 58,899,791 96.82% 59,703,266 95.41%
2005 65,071,657 58,395,421 97.70% 59,470,467 95.82% 60,442,757 94.12% 61,313,783 92.59%
2006 56,350,534 58,088,688 98.24% 58,846,480 96.91% 59,419,702 95.91% 59,824,808 95.20%
2007 55,012,426 57,627,249 99.05% 58,079,669 98.26% 58,317,883 97.84% 58,381,094 97.73%
2008 54,930,503 57,222,737 99.76% 57,449,836 99.36% 57,471,038 99.32% 57,345,916 99.54%
2009 54,226,727 56,773,335 99.46% 56,805,214 99.51% 56,659,960 99.26% 56,410,160 98.82%
2010 53,501,090 56,282,499 98.60% 56,144,389 98.35% 55,870,243 97.87% 55,537,439 97.29%
2011 52,527,147 55,719,196 97.61% 55,420,941 97.09% 55,034,469 96.41% 54,634,351 95.71%
2012 48,676,208 54,662,748 95.76% 54,071,995 94.72% 53,444,904 93.63% 52,846,909 92.58%
2013 47,430,722 53,577,944 93.86% 52,743,740 92.40% 51,941,358 90.99% 51,222,053 89.73%
2014 49,155,901 52,914,638 92.70% 52,026,172 91.14% 51,244,994 89.77% 50,602,207 88.65%
2015 48,869,911 52,307,929 91.63% 51,394,920 90.03% 50,651,223 88.73% 50,082,518 87.73%
2016 49,233,100 51,846,704 90.83% 50,962,556 89.28% 50,296,692 88.11% 49,827,693 87.29%
2017 56,161,894 52,493,983 91.96% 52,002,424 91.10% 51,762,993 90.68% 51,727,953 90.62%

Average 57,083,882 91.04% 97.38% 96.86% 96.42%
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Step 5: Model Verification

In this study, we set two warning values: ±1 (the black line in Figure 4) and ±2 (the blue line
in Figure 4) standard deviations for diabetes global budget payments. A warning was released in
2003: if the value increases, the global budget payment will decrease, and the financial burden on the
government will increase. At the same time, the amount of health insurance payments received by the
hospital would decrease. Results showed that in 2004–2008, the global budget payments for diabetes
inpatient medical costs were above the upper limit. After efforts were made by the DHI in which the
upper-limit, lower-limit, and standard payment amounts were revised, a warning was found in 2008,
and global budget payments were within the standard payment range. In 2009–2014, the global budget
payment by the DHI was between the upper and lower limits, showing that diabetes payments by the
DHI were controlled within the expected reasonable range. When looking at category B1 in Figure 2,
it is clear that hospitals could have obtained more positive revenue in 2013 and 2014. At the same time,
the algorithm also issued an early warning: if the global budget payments had continued to decrease,
the government’s financial burden would decrease, and hospital income would also decrease under
the global budget payment algorithm. Therefore, the DHI proposed reforms to the DRG system in
2016 and promulgated the ICD 10 DRG payment policies. In addition, global payments gradually
returned to their lower limits. At the same time, the system issued a warning in 2015: if the upper-limit,
lower-limit, and standard payments were not drastically revised, hospital income would gradually
decrease under the global payment system, resulting in a vicious cycle, and medical quality could also
decrease. After the implementation of the ICD 10 DRG payment policies in 2016, the global payments
returned to the standard payment range in 2017.

5. Conclusions

In this study, we used data analytics technology to propose an early warning algorithm model
that was constructed based on EWMA. This model has been developed to be used for global budget
payments and for diabetes inpatient medical costs in particular. The contributions of this study are
as follows:

1. After simulation analysis, we found that the early warning algorithm accuracy for diabetes
inpatient costs was 97.38% when λ = 0.2.
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2. Hospitals can utilize online data and real-time early warning algorithms, so that physicians
are notified under the global budget payment environment. This will enable physicians to
provide suitable medical packages, medical services, and medical quality to diabetes inpatients
within the payment range for health insurance. This, in turn, will help to control medical costs
within category B1 in Figure 2, increase hospital income, and reduce medical costs. The policy
recommendations of this study are as follows:

• From medical big data, identifying DRGs with severely deficient payments for diabetes
inpatient treatment, reexamining resource allocation, adding new DRG items, and increasing
payment range are in line with the purpose of setting up the health insurance system.

• From the DRG packages for diabetes inpatient treatment, when the same amount of money
is spent on patients diagnosed with the same disease, as proposed by global budget payment
and the DHI, it is easy for hospitals to incur losses. The key to achieving a balance between
the finances of the DHI, hospital income, and patient hospitalization is to ensure that patients
are psychologically prepared to pay additional medical costs. Therefore, there is a need
to formulate suitable commercial medical insurance to supplement fully self-paid items as
well as health insurance payment items and enable sufficient lengths of hospitalization for
treatment completion.

3. With regard to the formulation of DHI policies, establishing standard diabetes payments and
upper- and lower-limit boundaries every year for diabetes inpatient medical costs under the
overall global budget payment policy will enable a balance to be reached between the finances of
the DHI and hospital incomes.

The EWMA early warning algorithm constructed in this study can accurately alert and predict
diabetes inpatient medical costs. In the future, big data of different diseases can be obtained from the
DHI for model construction, to identify suitable λ parameters, so that the model can be generalized to
provide warnings and predictions for other diseases.
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