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Abstract

:

In this article, we introduce the ∗-fuzzy     (  L +  )  p    spaces for    1 ≤ p < ∞    on triangular norm-based ∗-fuzzy measure spaces and show that they are complete ∗-fuzzy normed space and investigate some properties in these space. Next, we prove Chebyshev’s inequality and Hölder’s inequality in ∗-fuzzy     (  L +  )  p    spaces.






Keywords:


fuzzy measure space; fuzzy integration; t-norm; Chebyshev’s inequality; Hölder’s inequality




MSC:


Primary 54C40, 14E20; Secondary 46E25, 20C20












Function spaces, especially    L p    spaces, play an important role in many parts in analysis. The impact of    L p    spaces follows from the fact that they offer a partial but useful generalization of the fundamental    L 1    space of integrable functions. The standard analysis, based on sigma-additive measures and Lebesgue–Stieltjess integral, including also several integral inequalities, has been generalized in the past decades into set-valued analysis, including set-valued measures, integrals, and related inequalities. Some subsequent generalizations are based on fuzzy sets [1,2] and include fuzzy measures, fuzzy integrals and several fuzzy integral inequalities. Our aim is the further development of fuzzy set analysis, expanding our original proposal given in [3]. In fact, we use a new model of the fuzzy measure theory (∗-fuzzy measure) which is a dynamic generalization of the classical measure theory. Our model of the fuzzy measure theory created by replacing the non-negative real range and the additivity of classical measures with fuzzy sets and triangular norms. Moreover, the ∗-fuzzy measure theory has been motivated by defining new additivity property using triangular norms. Our approach is related to the idea of fuzzy metric spaces [4,5,6,7] and can be apply for decision making problems [8,9].



In this paper, we shall work on a fixed triangular norm-based ∗-fuzzy measure space    ( X , C , μ , ∗ )    introduced in [3] which was derived from the idea of fuzzy and probabilistic metric spaces [5,6,7,10,11]. Using the concept of fuzzy measurable functions and fuzzy integrable functions we define a special class of function spaces named by ∗-fuzzy     (  L +  )  p   . After some overview given in Section 2, Section 3 and Section 4 and devoted to the basic information concerning ∗-fuzzy measures and related integration, in Section 5 we define a norm on ∗-fuzzy     (  L +  )  p    spaces and show these spaces are complete ∗-fuzzy normed space in the sense of Cheng-Mordeson and others [12,13,14,15]. This definition of ∗-fuzzy norm helps us to prove Chebyshev’s Inequality and Hölder’s Inequality.



1. ∗–Fuzzy Measure


First, we recall some basic concepts and notations that will be used throughout the paper. Let X be a non-empty set,   C   be a   σ  -algebra of subsets of X. Unless stated otherwise, all subsets of X are supposed to belong to   C  . Here, we let    I = [ 0 , 1 ]   .



Definition 1.

([10,11]) A continuous triangular norm (shortly, a    c t   -norm) is a continuous binary operation ∗ from     I 2  =   [ 0 , 1 ]  2     to I such that




	(a) 

	
   ς ∗ τ = τ ∗ ς    and    ς ∗ ( τ ∗ υ ) = ( ς ∗ τ ) ∗ υ    for all    ς , τ , υ ∈ [ 0 , 1 ]   ;




	(b) 

	
   ς ∗ 1 = ς    for all    ς ∈ I   ;




	(c) 

	
   ς ∗ τ ≤ υ ∗ ι    whenever    ς ≤ υ    and    τ ≤ ι    for all    ς , τ , υ , ι ∈ I   .











Some examples of the    c t   -norms are as follows.




	
   ς  ∗ P  τ = ς τ    (: the product t-norm);



	
   ς  ∗ M  τ = min  { ς , τ }     (: the minimum t-norm);



	
   ς  ∗ L  τ = max  { ς + τ − 1 , 0 }     (: the Lukasiewicz t-norm);



	


   ς  ∗ H  τ =         0 ,     if  ς = τ = 0 ,        1   1 ς  +  1 τ  − 1   ,     otherwise ,           








(: the Hamacher product t-norm).








We define


    ∗  i = 1  k   ς i  =  ς 1  ∗  ς 2  ∗ ⋯ ∗  ς k  ,   








for    k ∈ { 2 , 3 , ⋯ }   , which is well defined due to the associativity of the operation ∗. Moreover,


    ∗  i = 1  ∞   ς i  =  lim  k → ∞    ∗  i = 1  k   ς i  ,   








which is well defined due to the monotonicity and boundedness of the operation ∗.



Now, we introduce the concept of ∗-fuzzy measure.



Definition 2

([3]). Let X be a set and   C   be a σ-algebra consisting of subsets of X. A fuzzy measure on    C × ( 0 , ∞ )    is a fuzzy set    μ : C × ( 0 , ∞ ) → I    such that




	(i) 

	
   μ ( ∅ , τ ) = 1   ,    ∀ τ ∈ ( 0 , ∞ )   ;




	(ii) 

	
if     A i  ∈ C , i = 1 , 2 , ⋯   , are pairwise disjoint, then











      μ  (  ∪  i = 1  ∞   A i  , τ )  =  ∗  i = 1  ∞  μ  (  A i  , τ )  ,   ∀ τ ∈  ( 0 , ∞ )  .      











Saying the    A i    are pairwise disjoint means that     A i  ∩  A j  = ∅   , if    i ≠ j   .





Definition 2 is known as countable ∗-additivity. We say a fuzzy measure   μ   is finitely ∗-additive if, for any    n ∈ N   


      μ  (  ∪  i = 1  n   A i  , τ )  =  ∗  i = 1  n  μ  (  A i  , τ )  ,   ∀ τ ∈  ( 0 , ∞ )  .      








whenever     A 1  , ⋯ ,  A n     are in   C   and are pairwise disjoint. The quadruple    ( X , C , μ , ∗ )    is called a ∗-fuzzy measure space (in short, ∗-FMS).



Example 1.

Let    ( X , C , m )    be a measurable space. Let    ∗ =  ∗ H     and define


    μ 0   ( A , τ )  =  τ  τ + m ( A )   ,   ∀ τ ∈  ( 0 , ∞ )  ,   








then    ( X , C ,  μ 0  , ∗ )    is a ∗-FMS.





Example 2.

Let    ( X , C , m )    be a measurable space. Let    ∗ =  ∗ P    . Define


       μ 0   ( A , τ )  =  e  −    m ( A )  τ     ,   ∀ τ ∈  ( 0 , ∞ )  .      











Then,    μ 0    is a ∗-FM on    C × ( 0 , ∞ )   .






2. ∗-Fuzzy Measurable Functions


Now, we review the concept of ∗-fuzzy normed spaces, for more details, we refer to the works in [12,13,14,15].



Definition 3.

Let X be a vector space, ∗ be a    c t   -norm and the fuzzy set N on    X × ( 0 , ∞ )    satisfies the following conditions for all    x , y ∈ X    and    τ , σ ∈ ( 0 , ∞ )   ,




	(i) 

	
   N ( x , τ ) > 0   .




	(ii) 

	
   N ( x , τ ) = 1 ⇔ x = 0   .




	(iii) 

	
   N  ( α x , τ )  = N  x ,   τ  | α |        for every    α ≠ 0   .




	(iv) 

	
   N ( x , τ ) ∗ N ( y , σ ) ≤ N ( x + y , τ + σ )   .




	(v) 

	
   N ( x , . ) : ( 0 , ∞ ) → ( 0 , 1 ]    is continuous.




	(vi) 

	
    lim  τ → ∞   N  ( x , τ )  = 1    and     lim  τ → 0   N  ( x , τ )  = 0   .









Then, N is called a ∗-fuzzy norm on X and    ( X , N , ∗ )    is called ∗-fuzzy normed space.





Assume that    ( R , | . | )    is a standard normed space, we define:    N  ( x , τ )  =   τ  τ + | x |       with    ∗ =  ∗ P    , it is obvious    ( R , N ,  ∗ P  )    is a ∗-fuzzy normed space.



Let    ( X , N , ∗ )    be a ∗-fuzzy normed space. We define the open ball    B ( x , r , τ )    and the closed ball    B [ x , r , τ ]    with center    x ∈ X    and radius    0 < r < 1   ,    τ > 0    as follows,


      B ( x , r , τ ) = { y ∈ X : N ( x − y , τ ) > 1 − r } ,      



(1)






      B [ x , r , τ ] = { y ∈ X : N ( x − y , τ ) ≥ 1 − r } .      



(2)







Let    ( X , N , ∗ )    be a ∗-fuzzy normed space. A set    E ⊂ X    is said to be open if for each    x ∈ E   , there is    0 <  r x  < 1    and     τ x  > 0    such that    B ( x ,  r x  ,  τ x  ) ⊆ E   . A set    F ⊆ X    is said to be closed in X in case its complement     F c  = X − F    is open in X.



Let    ( X , N , ∗ )    be a ∗-fuzzy normed space. A subset    E ∈ X    is said to be fuzzy bounded if there exist    τ > 0    and    r ∈ ( 0 , 1 )    such that    N ( x − y , τ ) > 1 − r    for all    x , y ∈ E   .



Let    ( X , N , ∗ )    be a ∗-fuzzy normed space. A sequence    {  x n  } ⊂ X    is fuzzy convergent to an    x ∈ X    in ∗-fuzzy normed space    ( X , N , ∗ )    if for any    τ > 0    and    ϵ > 0    there exists a positive integer     N ϵ  > 0    such that    N (  x n  − x , τ ) > 1 − ϵ    whenever    n ≥  N ϵ    .



Now, we define ∗-fuzzy measurable functions.



Definition 4.

Let    ( X , C )    and    ( Y , D )    be ∗-fuzzy measurable spaces. A mapping    f : X → Y    is called ∗-fuzzy    ( C , D )   -measurable if     f  − 1    ( E )  ∈ C    for all    E ∈ D   . If X is any ∗-fuzzy normed space, the σ-algebra generated by the family of open sets in X (or, equivalently, by the family of closed sets in X) is called the Borel σ-algebra on X and is denoted by    B X   .






3. ∗-Fuzzy Integration


In this section, we recall the concept of ∗-fuzzy integration by using fuzzy simple functions on the ∗-FMS    ( X , C , ∗ , μ )    and add some new results.



Definition 5.

Let    ( X , C , ∗ , μ )    be ∗-FMS, we define


       L +  =  f : X → [ 0 , ∞ ) ∣  f   is  fuzzy   ( C ,  B R  )   - measurable   function  .      











If ϕ is a simple fuzzy (   ( C ,  B R  )   -measurable) function in    L +    with standard representation    ϕ =   ∑  i = 1  n    a i   χ  E i     , where     a i  > 0    and     E i  ∈ C    for    i = 1 , . . . , n   , and     E i  ⋂  E j  = ∅    for    i ≠ j   , we define the fuzzy integral of ϕ as


       ∫ X  ϕ  ( x )  d μ  ( x , τ )  =  ∫ X   ∑  i = 1  n   a i   χ  E i   d μ  ( x , τ )  =  ∗  i = 1  n  μ   E i  ,  τ  a i    .      













In [3], the authors have shown that, with respect to    μ ( A , τ )   ,   μ   satisfies the following statement;



	(i)

	
   μ : ( A , . ) : ( . , ∞ ) → [ 0 , 1 ]    is increasing and continuous.




	(ii)

	
   μ  A ,   τ  a + b     ≥ μ  A ,   τ a    ∗ μ  A ,   τ b       for every    a , b > 0   ,    τ ∈ ( 0 , ∞ )   .




	(iii)

	
    lim   τ n  ⟶  τ 0      ∗  i = 1  k  μ  (  A i  ,  τ n  )   =  ∗  i = 1  k   lim   τ n  ⟶  τ 0    μ  (  A i  ,  τ n  )     for every     A i  ∩  A j  = ∅   .




	(iv)

	
    lim  τ ⟶ 0   μ  ( E , τ )  = 0    and     lim  τ ⟶ ∞   μ  ( E , τ )  = 1   .




	(v)

	
    lim   τ n  ⟶  τ 0     lim  m ⟶ ∞    μ   E m  ,    τ n   a m      =  lim  m ⟶ ∞    lim   τ n  ⟶  τ 0     μ   E m  ,    τ n   a m        .







If    A ∈ C   , then    ϕ  χ A     is also fuzzy simple function    ϕ  χ A  =   ∑  i = 1  n    a i   χ  A ∩  E i      , and we define    ∫ ϕ ( x ) d μ ( x , τ )    to be    ∫ ϕ  χ A  d μ  ( x , τ )    .



Theorem 1

([3]). Let ϕ and ψ be simple functions in    L +   . Then, we have




	(i) 

	
    ∫ X  0 d μ  ( x , τ )  = 1   .




	(ii) 

	
If    c ∈ ( 0 , 1 ]    then     ∫ X   ( c ϕ )   ( x )  d μ  ( x , τ )  ≥ c  ∫ X  ϕ  ( x )  d μ  ( x , τ )    , and for    c ∈ [ 1 , ∞ )    we have     ∫ X   ( c ϕ )   ( x )  d μ  ( x , τ )  ≤ c  ∫ X  ϕ  ( x )  d μ  ( x , τ )    ,    ∀ τ ∈ ( 0 , ∞ )   .




	(iii) 

	
If    ϕ ≤ ψ   , then     ∫ X  ϕ  ( x )  d μ  ( x , τ )  ≥  ∫ X  ψ  ( x )  d μ  ( x , τ )    .




	(iv) 

	
The map    A →  ∫ A  ϕ  ( x )  d μ  ( x , τ )     is a fuzzy measure on   C  ,    ∀ τ ∈ ( 0 , ∞ )   .











In the next theorem, we prove an important fuzzy integral inequality for fuzzy simple functions.



Theorem 2.

Let ϕ and ψ be fuzzy simple functions in    L +   , then


      ∫  ( ϕ + ψ )   ( x )  d μ  ( x , τ )  ≥  ∫ ϕ ( x ) d μ ( x , τ )  ∗  ∫ ψ ( x ) d μ ( x , τ )  .      













Proof. 

Let   ϕ   and   ψ   be fuzzy simple functions in    L +   , then we have


           ∫ X   ( ϕ + ψ )   ( x )  d μ  ( x , τ )  ,         =     ∫ X     ∑  i = 1  n   a i   χ  E i    ( x )   +   ∑  j = 1  m   b j   χ  F j    ( x )    d μ  ( x , τ )  ,         =     ∫ X    ∑  i , j    (  a i  +  b j  )   χ   E i  ∩  F j     ( x )   d μ  ( x , τ )  ,         =     ∗  i = 1  n   ∗  j = 1  m  μ    E i  ∩  F j   ,  τ  (  a i  +  b j  )    .      



(3)







On the other hand,


            ∫ X  ϕ  ( x )  d μ  ( x , τ )  ∗  ∫ X  ψ  ( x )  d μ  ( x , τ )   ,       =      ∫ X    ∑  i = 1  n   a i   χ  E i    ( x )   d μ  ( x , τ )   ∗   ∫ X    ∑  j = 1  m   b j   χ  F j    ( x )   d μ  ( x , τ )   ,       =      ∗  i = 1  n   ∗  j = 1  m  μ    E i  ∩  F j   ,  τ  a i     ∗   ∗  j = 1  m   ∗  i = 1  n  μ    E i  ∩  F j   ,  τ  b j     ,       =     ∗  i = 1  n   ∗  j = 1  m   μ    E i  ∩  F j   ,  τ  a i    ∗ μ    E i  ∩  F j   ,  τ  b j     ,       ≤     ∗  i = 1  n   ∗  j = 1  m   μ    E i  ∩  F j   ,  τ  (  a i  +  b j  )     .      



(4)







From (3) and (4), we get


       ∫ X   ( ϕ + ψ )   ( x )  d μ  ( x , τ )  ≥   ∫ X  ϕ  ( x )  d μ  ( x , τ )   ∗   ∫ X  ψ  ( x )  d μ  ( x , τ )   .      








 □





Now, we extend the concept of fuzzy integral to all functions in    L +   .



Definition 6.

Let f be a fuzzy measurable function in    L +   , we define fuzzy integral by


         ∫ X  f  ( x )  d μ  ( x , τ )        =    inf   ∫ X  ϕ  ( x )  d μ  ( x , τ )  ∣   0 ≤ ϕ ≤ f ,   ϕ  is  fuzzy  simple  function  .      













By Theorem 1 (iii), the two definitions of    ∫ f    agree when f is fuzzy simple function, as the family of fuzzy simple functions over which the infimum is taken includes f itself. Moreover, it is obvious from the definition that    ∫ f ≥ ∫ g    whenever    f ≤ g   , and    ∫ c f ≥ c ∫ f    for all    c ∈ ( 0 , 1 ]    and    ∫ c f ≤ c ∫ f    for all    c ∈ [ 1 , ∞ )    and    ∫ ( f + g ) ≥ ( ∫ f ) ∗ ( ∫ g )   .



Definition 7.

If    f ∈  L +    , we say that f is fuzzy integrable if    ∫ f d μ ( x , τ ) > 0    for each    τ > 0   . Let    ( X , C , μ , ∗ )    be a ∗-FMS. We define



    L +  : = {      f : X → [ 0 , ∞ )   , f is measurable function and    ∫ f ( x ) d μ ( x , τ ) > 0 }   .





Theorem 3

([3]). (The fundamental convergence theorem). Let    ( X , C , μ , ∗ )    be a ∗-FMS. Let    f n    be a sequence in    L +    such that     f n  ⟶ f    almost everywhere, then    f ∈  L +     and    ∫ f =  lim  n ⟶ ∞   ∫  f n    .





∗-Fuzzy    L +    Spaces


Here, we are ready to show that every    L +    is a ∗-fuzzy normed space. It is clear if we define


   L : = { f : X ⟶ R ,  f  is  fuzzy  measurable  function } ,   








then     ( L , + , . )  R    is a vector space. Moreover, in [3] the authors proved that if    f , g ∈  L +    , then     | f − g | ∈   L +    . Using definition L and    L +    we can show     L +  ⊆ L   . In    L +    we define    f ≤ g    if and only if    f ( x ) ≤ g ( x )    and so    (  L +  , ≤ )    is a cone.



Note. Recall that, due to the continuity of t-norm ∗, for any systems     {  a n  }   n ∈ N     and     {  b n  }   n ∈ N     of elements form I we have    inf  {  a n  ∗  b n  }  = inf  {  a n  }  ∗ inf  {  b n  }    .



In the next theorem we define a fuzzy norm on    L +    and prove that    (  L +  , N , ∗ )    is a ∗-fuzzy normed space.



Theorem 4.

Let    N :  L +  ×  ( 0 , ∞ )  ⟶  ( 0 , 1 ]     be a fuzzy set, such that    N ( f , τ ) = ∫ f d μ ( x , τ )   , then    (  L +  , N , ∗ )    is a ∗-fuzzy normed space.





Proof. 






	(FN1)

	
   N ( f , τ ) = ∫ f d μ ( x , τ ) > 0   .




	(FN2)

	
By theorem 4.5 of [3] we have


   N ( f , τ ) = 1 ⟺ ∫ f d μ ( x , τ ) = 1 ⟺ f = 0   








almost everywhere.




	(FN3)

	
Let    f = ϕ =   ∑  i = 1  n    a i   χ  E i      and    c > 0    so,


     N ( c ϕ , τ ) =    ∫ c ϕ d μ ( x , τ ) ,      =    ∫   ∑  i = 1  n    a i   χ  E i   d μ  ( x , τ )  ,      =     ∗  i = 1  n  μ   E i  ,   τ  c  a i      .      



(5)







On the other hand,


     N  ϕ ,   τ c       = ∫ ϕ d μ  x ,   τ c    ,          = ∫  ∑  i = 1  n   a i   χ  E i   d μ  x ,   τ c    ,          =  ∗  i = 1  n  μ   E i  ,   τ  c  a i      .      



(6)







From (5) and (6) we conclude that


      N  ( c ϕ , τ )  = N  ϕ ,   τ c    .      



(7)







Now, if    f ∈  L +     we have     {  ϕ n  }  ⊆  L +     such that     ϕ n   ↑ f    , then    c  ϕ n   ↑ c f     so


      ∫ c  ϕ n   d μ  ( x , τ )  ↓ ∫ c f d μ  ( x , τ )  .       











By (7), we have    ∫ c  ϕ n  d μ  ( x , τ )  = ∫  ϕ n  d μ  ( x ,   τ c   )    , and so


      ∫  ϕ n  d μ  ( x ,   τ c   )   ↓ ∫ c f d μ   ( x , τ )  .      



(8)







On the other hand,


      ∫  ϕ n  d μ  ( x ,   τ c   )   ↓ ∫ f d μ   ( x ,   τ c   )  ,      



(9)




by (8) and (9) we have,


      ∫ c f d μ  ( x , τ )  = ∫ f d μ  ( x ,   τ c   )  ,       N  ( c f , τ )  = N  ( f ,   τ c   )  .      












	(FN4)

	
Let    f =   ∑  i = 1  m    a i   χ  E i     ,    g =   ∑  j = 1  n    b j   χ  F j      then,


     N ( ϕ + ψ , s + τ ) =   ∫ ( ϕ + ψ ) d μ ( x , τ + s ) ,     =   ∫  ∑  i , j    (  a i  +  b j  )   χ   E i  ∩  F j    d μ  ( x , τ + s )  ,     =    ∗  i , j   μ   E i  ∩  F j  ,    τ + s    a i  +  b j      .     











On the other hand


     N ( ϕ , s ) ∗ N ( ψ , τ ) =    ∫ ϕ d μ ( x , s )  ∗  ∫ ψ d μ ( x , τ )  ,     =    ∫  ∑  i , j    a i   χ   E i  ∩  F j    d μ  ( x , s )   ∗  ∫  ∑  i , j    b j   χ   E i  ∩  F j    d μ  ( x , τ )   ,     =     ∗  i , j   μ (  E i  ∩  F j  ,   s  a i    )  ∗   ∗  i , j   μ (  E i  ∩  F j  ,   τ  b j    )  ,     =    ∗  i , j    μ (  E i  ∩  F j  ,   s  a i    ) ∗ μ ( (  E i  ∩  F j  ,   τ  b j    )  ,     ≤    ∗  i , j    min  μ (  E i  ∩  F j  ,   s  a i    ) , μ ( (  E i  ∩  F j  ,   τ  b j    )   .     



(10)







Now, we assume      s  a i    <   τ  b j      . From (10), we conclude


      N  ( ϕ , s )  ∗ N  ( ψ , τ )  ≤  ∗  i , j   μ   E i  ∩  F j  ,   s  a i     .      



(11)







Again, from      s  a i    <   τ  b j    ,    we get      s  a i    <    τ + s    a i  +  b j        because


      b j s <  a i  τ ,       








then


       a i  s +  b j  s <  a i  s +  a i  τ ,       








and


        a i  +  b j   s <  a i   τ + s  ,       








and so


        s  a i    <    τ + s    a i  +  b j     .       











Therefore, from (11) we have


      N  ( ϕ , s )  ∗ N  ( ψ , τ )  ≤  ∗  i , j   μ   E i  ∩  F j  ,   s  a i     ,      



(12)




and


       ∗  i , j   μ   E i  ∩  F j  ,   s  a i     ≤  ∗  i , j   μ   E i  ∩  F j  ,    τ + s    a i  +  b j      .      



(13)







From (12) and (13) we have


     N  ( ϕ , s )  ∗ N  ( ψ , τ )  ≤  ∗  i , j   μ   E i  ∩  F j  ,    τ + s    a i  +  b j      ,      = N  ϕ + ψ , s + τ  .      











Now let    f , g ∈  L +    , then there exist     {  ϕ n  }  ⊆  L +     such that     ϕ n   ↑ f    . Similarly, there exist     {  ψ n  }  ⊆  L +     such that     ψ n   ↑ g    , and     ϕ n  +  ψ n   ↑ f + g    , then


      inf  ∫   ϕ n  +  ψ n   d μ  ( x , τ + s )   = ∫  f + g  d μ  ( x , τ + s )  .       











Also according to (12), we get


      ∫   ϕ n  +  ψ n   d μ  ( x , τ + s )  ≥ ∫  ϕ n  d μ  ( x , s )  ∗ ∫  ψ n  d μ  ( x , τ )  ,      








and


        ∫  f + g  d μ  ( x , τ + s )  = inf  ∫ (  ϕ n  +  ψ n  ) d μ  ( x , τ + s )         ≥    inf  ∫  ϕ n  d μ  ( x , s )  ∗ ∫  ψ n  d μ  ( x , τ )   ,       ≥    inf  ∫  ϕ n  d μ  ( x , s )   ∗ inf ∫  ψ n  d μ  ( x , τ )        =    ∫ f d μ ( x , s ) ∗ ∫ g d μ ( x , τ ) ,      








then


      ∫ ( f + g ) d μ  ( x , τ + s )  ≥ ∫ f d μ  ( x , s )  ∗ ∫ g d μ  ( x , τ )  .      












	(FN5)

	
Let    f =   ∑  i = 1  k    a i   χ  E i     , then


     N ( f ,  τ n  ) =   ∫  ∑  i = 1  k   a i   χ  E i   d μ  ( x ,  τ n  )  ,     =     ∗  i = 1  k  μ   E i  ,    τ n   a i     ,      








and


       lim   τ n  ⟶  τ 0    N  ( f ,  τ n  )  = lim  ∗  i = 1  k  μ   E i  ,    τ n   a i     .      











According to Definition 5 (iii), we get


      lim   τ n  ⟶  τ 0    N  ( f ,  τ n  )  =     lim   τ n  ⟶  τ 0     ∗  i = 1  k  μ   E i  ,    τ n   a i     ,      =     ∗  i = 1  k   lim   τ n  ⟶  τ 0      E i  ,    τ n   a i     ,      








and by Definition 5 (i),


      lim   τ n  ⟶  τ 0    N  ( f ,  τ n  )  =     ∗  i = 1  k   lim   τ n  ⟶  τ 0      E i  ,    τ n   a i     ,      =     ∗  i = 1  k  μ   E i  ,    τ 0   a i     ,      =    ∫ f d μ ( x ,  τ 0  ) ,      =    N ( f ,  τ 0  ) .      











Now, let    f ∈  L +    , then


     N ( f ,  τ n  ) =    ∫ f d μ ( x ,  τ n  ) ,      =    inf  ∫  ϕ m  d μ  ( x ,  τ n  )   |  ϕ m  ↑  f  ,      =     lim  m ⟶ ∞   ∫  ϕ m  d μ  ( x ,  τ n  )  .      








and


      lim   τ n  ⟶  τ 0    N  ( f ,  τ n  )  =     lim   τ n  ⟶  τ 0     lim  m ⟶ ∞   ∫  ϕ m  d μ  ( x ,  τ n  )  ,      =     lim   τ n  ⟶  τ 0     lim  m ⟶ ∞   ∫  ∑  i = 1  k   a  i  m   χ  E  i  m   d μ  ( x ,  τ n  )  ,      =     lim   τ n  ⟶  τ 0     lim  m ⟶ ∞    ∗  i = 1  k  μ   E  i  m  ,    τ n   a  i  m     .      











According to Definition 5 (v), we get


      lim   τ n  ⟶  τ 0    N  ( f ,  τ n  )  =     lim   τ n  ⟶  τ 0     lim  m ⟶ ∞    ∗  i = 1  k  μ   E  i  m  ,    τ n   a  i  m     ,      =     lim  m ⟶ ∞    lim   τ n  ⟶  τ 0     ∗  i = 1  k  μ   E  i  m  ,    τ n   a  i  m     ,      








and by Definition 5 (iii), we get


      lim   τ n  ⟶  τ 0    N  ( f ,  τ n  )  =     lim  m ⟶ ∞    lim   τ n  ⟶  τ 0     ∗  i = 1  k  μ   E  i  m  ,    τ n   a  i  m     ,      =     lim  m ⟶ ∞    ∗  i = 1  k   lim   τ n  ⟶  τ 0    μ   E  i  m  ,    τ n   a  i  m     .      











Using Definition 5 (i), we get


      lim   τ n  ⟶  τ 0    N  ( f ,  τ n  )  =     lim  m ⟶ ∞    ∗  i = 1  k   lim   τ n  ⟶  τ 0    μ   E  i  m  ,    τ n   a  i  m     ,      =     lim  m ⟶ ∞    ∗  i = 1  k  μ   E  i  m  ,    τ 0   a  i  m     ,      =     lim  m ⟶ ∞   ∫  ϕ m  d μ  ( x ,  τ 0  )  ,      =    inf  ∫  ϕ m  d μ  ( x ,  τ 0  )   ,      =    ∫ f d μ ( x ,  τ 0  ) ,      =    N ( f ,  τ 0  ) .      












	(FN6)

	
Let    f =   ∑  i = 1  k    a i   χ  E i     , then


     N ( f , τ ) =    ∫ f d μ ( x , τ ) ,      =    ∫  ∑  i = 1  n   a i   χ  E i   d μ  ( x , τ )  ,      =     ∗  i = 1  k  μ   E i  ,   τ  a i     .      








and


       lim  τ ⟶  τ 0    N  ( f , τ )  =  lim  τ ⟶  τ 0     ∗  i = 1  k  μ   E i  ,   τ  a i     .      











According to Definition 5 (iii), we have


      lim  τ ⟶ 0   N  ( f , τ )  =     lim  τ ⟶ 0    ∗  i = 1  k  μ   E i  ,   τ  a i     ,      =     ∗  i = 1  k   lim  τ ⟶ 0   μ   E i  ,   τ  a i     ,      








and by Definition 5 (iv),


      lim  τ ⟶ 0   N  ( f , τ ) =      ∗  i = 1  k   lim  τ ⟶ 0   μ   E i  ,   τ  a i     ,      =     ∗  i = 1  k  0 ,      =    0 .      











Now let    f ∈  L +    , so


     N ( f , τ ) =    ∫ f d μ  ( x , τ )  = inf  ∫  ϕ m  d μ  ( x , τ )   ,      =     lim  m ⟶ ∞    ∫  ϕ m  d μ  ( x , τ )   ,      =     lim  m ⟶ ∞    N (  ϕ m  , τ )  .      











Then,


      lim  τ ⟶ 0   N  ( f , τ )  =     lim  τ ⟶ 0    lim  m ⟶ ∞   { N (  ϕ m  , τ ) } ,      =     lim  τ ⟶ 0    lim  m ⟶ ∞    ∗  i = 1  k  μ   E  i  m  ,   τ  a  i  m     .      











According to Definition 5 (v), we get


      lim  τ ⟶ 0   N  ( f , τ )  =     lim  τ ⟶ 0    lim  m ⟶ ∞    ∗  i = 1  k  μ   E  i  m  ,   τ  a  i  m     ,      =     lim  m ⟶ ∞    lim  τ ⟶ 0    ∗  i = 1  k  μ   E  i  m  ,   τ  a  i  m     ,      








and from Definition 5 (iii), we get


      lim  τ ⟶ 0   N  ( f , τ )  =     lim  m ⟶ ∞    lim  τ ⟶ 0    ∗  i = 1  k  μ   E  i  m  ,   τ  a  i  m     ,      =     lim  m ⟶ ∞    ∗  i = 1  k   lim  τ ⟶ 0   μ   E  i  m  ,   τ  a  i  m     .      











From Definition 5 (iv), we get


      lim  τ ⟶ 0   N  ( f , τ )  =     lim  m ⟶ ∞    ∗  i = 1  k   lim  τ ⟶ 0   μ   E  i  m  ,   τ  a  i  m     ,      =     lim  m ⟶ ∞    ∗  i = 1  k  0 ,      =    0 .      











Similarly,


       lim  τ ⟶ ∞   N  ( f , τ )  = 1 .      

















 □





We have proved    (  L +  , N , ∗ )    is a ∗-fuzzy normed space. Define    M :  L +  ×  L +  ×  ( 0 , ∞ )  ⟶  ( 0 , 1 ]     by


      M  ( f , g , τ )  = N ( | f − g | , τ ) = ∫  | f − g |  d μ  ( x , τ )  ,      








then M is a fuzzy metric on    L +    and    (  L +  , M , ∗ )    is called the ∗-fuzzy metric induced by the ∗-fuzzy normed space    (  L +  , N , ∗ )   .



Theorem 5

([3]). If    f ∈  L +     and    ε > 0   , there is an integrable fuzzy simple function    ϕ =   ∑  j = 1  n    a j   χ  E J      such that    ∫ | f − ϕ | d μ ( x , τ ) > 1 − ε    for each    τ > 0    (that is, the integrable simple functions are dense in    L +   ).





Now, we show    L +    is a complete space.



Theorem 6.

   L +    is a ∗-fuzzy Banach space.





Proof. 

Let     {  f n  }  ⊆  L +     is a Cauchy sequence, then     {  f n   ( x )  }  ⊂  R +     is a Cauchy sequence for every    x ∈ X    and   R   is complete so there exist    y ∈ R    such that     f n   ( x )  ⟶ y   . We get    f : X ⟶ R , f ( x ) = y    according to corollary 3.16 [3], f is fuzzy measurable so    f ∈  L +     and according to Theorem (3),    f ∈  L +     so,     lim  n ⟶ ∞    f n   ( x )  = f  ( x )     almost everywhere or     lim  n ⟶ ∞    f n  = f   . □







4. ∗-Fuzzy     (  L +  )  p    Spaces


In this section, by the concept of fuzzy measurable functions and fuzzy integrable functions we define a class of function spaces.



Definition 8.

Let    ( X , C , ∗ )    be a ∗-fuzzy measure space. We define


         (  L +  )  p       =     f : X ⟶  R +    in  which  f  is  fuzzy  measurable  function  and ∫  f p  d μ  ( x , τ )  > 0 ,  p ≥ 1  .      













There is an order on    (   (  L +  )  p  , ≤ )    such that    f , g ∈   (  L +  )  p     we have    f ≤ g    if and only if    f ( x ) ≤ g ( x )   . Furthermore, if    f , g ∈   (  L +  )  p     then     | f − g | ∈    (  L +  )  p    , and      | f − g |  p  ≤  f p     or    g p    hence      ∫ | f − g |  p  d μ  ( x , τ )  ≥ max  [ ∫  f p  d μ  ( x , τ )  , ∫  g p  d μ  ( x , τ )  ]    .



In the next theorem we prove ∗-fuzzy     (  L +  )  p    is a ∗- fuzzy normed space.



Theorem 7.

Define     N p  :   (  L +  )  p  ×  ( 0 , ∞ )  ⟶  ( 0 , 1 ]     by     N p   ( f , τ )  = ∫  f p  d μ  ( x , τ )     then    (   (  L +  )  p  ,  N p  , ∗ )    is a ∗- fuzzy normed space.





Proof. 






	(FN1)

	
    N p   ( f , τ )  = ∫  f p  d μ  ( x , τ )  > 0   .




	(FN2)

	
By theorem 4.5 of [3] we have,



    N p   ( f , τ )  = 1 ⟺ ∫  f p  d μ  ( x , τ )  = 1 ⟺  f p  = 0 ⟺ f = 0   , almost everywhere.




	(FN3)

	
Let    f = ϕ =   ∑  i = 1  n    a i   χ  E i      then,


      N p   ( c ϕ , τ )  =    ∫   ( c ϕ )  p  d μ ,      =    ∫    ∑  i = 1  n  c  a i   χ  E i    p  d μ ,      =     ∗  i = 1  n  μ   E i  ,   τ   c p   a  i  p      .      



(14)







On the other hand,


      N p   ( ϕ ,   τ  c p    )  =    ∫  ϕ p  d μ  ( x ,   τ  c p    )  ,      =    ∫    ∑  i = 1  n   a i   χ  E i    p  d μ  ( x ,   τ  c p    )  ,      =    ∫  ∑  i = 1  n   a  i  p   χ  E i   d μ  ( x ,   τ  c p    )  ,      =     ∗  i = 1  n  μ   E i  ,   τ   c p   a  i  p      .      



(15)







From (14) and (15) we conclude that


       N p   ( c f , τ )  =  N p   f ,   τ c    .      











Now let    f ∈   (  L +  )  p    , then we have


       N p   ( c f , τ )  = ∫   ( c f )  p  d μ  ( x , τ )  = inf  ∫   ( c  ϕ n  )  p  d μ  ( x , τ )  :   ( c  ϕ n  )  p   ↑    ( c f )  p   .      



(16)







On the other hand,


           N p   ( f ,  τ c  )  = ∫  f p  d μ  ( x ,  τ c  )          =    inf  ∫  ϕ  n  p  d μ  ( x ,  τ c  )  :  ϕ  n  p   ↑   f  n  p   .      



(17)







From (14) and (15) we get


      ∫   ( c  ϕ n  )  p  d μ  ( x , τ )  =  N p   ( c  ϕ n  , τ )  =  N p   (  ϕ n  ,   τ c   )  = ∫  ϕ  n  p  d μ  ( x ,   τ c   )  .      











Using (16) and (17) we get


       N p   ( c f , τ )  =  N p   ( f ,   τ c   )  .      












	(FN4)

	
Let    f = ϕ    and    g = ψ    be simple functions. Then,


      N p   ϕ + ψ , s + τ  =     N p    ∑  i = 1  n   a i   χ  E i   +  ∑  j = 1  m   b j   χ  F j   , s + τ  ,      =     N p    ∑  i , j    (  a i  +  b j  )   χ   E i  ∩  F j    , s + τ  ,      =    ∫    ∑  i , j    (  a i  +  b j  )   χ   E i  ∩  F j     p  d μ  ( x , s + τ )  ,      =    ∫  ∑  i , j     (  a i  +  b j  )  p   χ   E i  ∩  F j    d μ  ( x , s + τ )  ,      =     ∗  i , j   μ   E i  ∩  F j  ,    s + τ    (  a i  +  b j  )  p     .      



(18)







On the other hand,


      N p   ( ϕ , s )  ∗  N p   ( ψ , τ )  =     ∫  ϕ p  d μ  ( x , s )   ∗  ∫  ψ p  d μ  ( x , τ )   ,      =     ∫    ∑  i = 1  n   a i   χ   E i  ∩  F j     p  d μ  ( x , s )   ∗  ∫    ∑  j = 1  m   b j   χ   E i  ∩  F j     p  d μ  ( x , τ )   ,      =     ∫  ∑  i =  n   a  i  p   χ   E i  ∩  F j    d μ  ( x , s )   ∗  ∫  ∑  j = 1  m   b  j  p   χ   E i  ∩  F j    d μ  ( x , τ )   ,      =      ∗  i , j   μ   E i  ∩  F j  ,   s  a  i  p      ∗   ∗  i , j   μ   E i  ∩  F j  ,   τ  b  j  p      ,      =     ∗  i , j    μ   E i  ∩  F j  ,   s  a  i  p     ∗ μ   E i  ∩  F j  ,   τ  b  j  p      ,      ≤     ∗  i , j    μ   E i  ∩  F j  , min    s  a  i  p    ,   τ  b  j  p            ≤     ∗  i , j   μ   E i  ∩  F j  ,    s + τ    (  a i  +  b j  )  p     .      



(19)








	(FN5)

	
Let    f =   ∑  i = 1  k    a i   χ  E i     , then


      N p   ( f ,  τ n  )  =    ∫    ∑  i = 1  k   a i   χ  E i    p  d μ  ( x ,  τ n  )  ,      =     ∗  i = 1  k  μ   E i  ,    τ n    (  a i  )  p     ,      








and so


       lim   τ n  ⟶  τ 0     N p   ( f ,  τ n  )  = lim  ∗  i = 1  k  μ   E i  ,    τ n    (  a i  )  p     .      











Using Definition 5 (iii), we get


      lim   τ n  ⟶  τ 0     N p   ( f ,  τ n  )  =     lim   τ n  ⟶  τ 0     ∗  i = 1  k  μ   E i  ,    τ n    (  a i  )  p          =     ∗  i = 1  k   lim   τ n  ⟶  τ 0    μ   E i  ,    τ n    (  a i  )  p     ,      








and according to Definition 5 (i),


      lim   τ n  ⟶  τ 0     N p   ( f ,  τ n  )  =     ∗  i = 1  k   lim   τ n  ⟶  τ 0    μ   E i  ,    τ n    (  a i  )  p          =     ∗  i = 1  k  μ   E i  ,    τ 0    (  a i  )  p          =    ∫  f p  d μ  ( x ,  τ 0  )  ,      =     N p   ( f ,  τ 0  )  .      











Now let    f ∈   (  L +  )  p    , we have


      N p   ( f ,  τ n  )  =    ∫  f p  d μ  ( x ,  τ n  )       =    inf  ∫   (  ϕ m  )  p  d μ  ( x ,  τ n  )   |  ϕ m  ↑  f       =     lim  m ⟶ ∞   ∫   (  ϕ m  )  p  d μ  ( x ,  τ n  )  .      











Then,


     =  lim   τ n  ⟶  τ 0     N p   ( f ,  τ n  )  =     lim   τ n  ⟶  τ 0     lim  m ⟶ ∞   ∫   (  ϕ m  )  p  d μ  ( x ,  τ n  )  ,      =     lim   τ n  ⟶  τ 0     lim  m ⟶ ∞   ∫   ∑  i = 1  k    (  a  i  m   χ  E  i  m   )  p  d μ  ( x ,  τ n  )        =     lim   τ n  ⟶  τ 0     lim  m ⟶ ∞    ∗  i = 1  k  μ   E  i  m  ,    τ n    (  a  i  m  )  p     .      











Using Definition 5 (v), we get


      lim   τ n  ⟶  τ 0     N p   ( f ,  τ n  )  =     lim   τ n  ⟶  τ 0     lim  m ⟶ ∞    ∗  i = 1  k  μ   E  i  m  ,    τ n    (  a  i  m  )  p     ,      =     lim  m ⟶ ∞    lim   τ n  ⟶  τ 0     ∗  i = 1  k  μ    E  i  m  ,    τ n    (  a  i  m  )  p     ′       








and according to Definition 5 (iii)


      lim   τ n  ⟶  τ 0     N p   ( f ,  τ n  )  =     lim  m ⟶ ∞    lim   τ n  ⟶  τ 0     ∗  i = 1  k  μ   E  i  m  ,    τ n    (  a  i  m  )  p     ,      =     lim  m ⟶ ∞    ∗  i = 1  k   lim   τ n  ⟶  τ 0    μ   E  i  m  ,    τ n    (  a  i  m  )  p     .      











By Definition 5 (i), we have


      lim   τ n  ⟶  τ 0     N p   ( f ,  τ n  )  =     lim  m ⟶ ∞    ∗  i = 1  k   lim   τ n  ⟶  τ 0    μ   E  i  m  ,    τ n    (  a  i  m  )  p     ,      =     lim  m ⟶ ∞    ∗  i = 1  k  μ   E  i  m  ,    τ 0    (  a  i  m  )  p     ,      =     lim  m ⟶ ∞   ∫   (  ϕ m  )  p  d μ  ( x ,  τ 0  )  ,      =    inf  ∫   (  ϕ m  )  p  d μ  ( x ,  τ 0  )   ,      =    ∫  f p  d μ  ( x ,  τ 0  )  ,      =     N p   ( f ,  τ 0  )  .      












	(FN6)

	
Let    f =   ∑  i = 1  k    a i   χ  E i     , then


      N p   ( f , τ )  =    ∫  f p  d μ  ( x , τ )  ,      =    ∫    ∑  i = 1  k   a i   χ  E i    p  d μ  ( x , τ )  ,      =     ∗  i = 1  k  μ   E i  ,   τ   (  a i  )  p     ,      








and so


       lim  τ ⟶  τ 0     N p   ( f , τ )  =  lim  τ ⟶  τ 0     ∗  i = 1  k  μ   E i  ,   τ   (  a i  )  p     .      











Using Definition 5 (iii),


      lim  τ ⟶ 0    N p   ( f , τ )  =     lim  τ ⟶ 0    ∗  i = 1  k  μ   E i  ,   τ   (  a i  )  p     ,      =     ∗  i = 1  k   lim  τ ⟶ 0   μ   E i  ,   τ   (  a i  )  p          








and by Definition 5 (iv), we have


      lim  τ ⟶ 0    N p   ( f , τ )  =     ∗  i = 1  k   lim  τ ⟶ 0   μ   E i  ,   τ   (  a i  )  p     ,      =     ∗  i = 1  k  0 ,      =    0 .      











Now, let    f ∈   (  L +  )  p    , then


      N P   ( f , τ )  =    ∫  f p  d μ  ( x , τ )  = inf  ∫   (  ϕ m  )  p  d μ  ( x , τ )  :  ϕ m   ↑ f   ,      =     lim  m ⟶ ∞    ∫   (  ϕ m  )  p  d μ  ( x , τ )   ,      








and so


      lim  τ ⟶ 0    N p   ( f , τ )  =    =  lim  τ ⟶ 0    lim  m ⟶ ∞     N p   (  ϕ m  , τ )   ,      =     lim  τ ⟶ 0    lim  m ⟶ ∞    ∗  i = 1  k  μ   E  i  m  ,   τ   (  a  i  m  )  p     .      











Using Definition 5 (v), we get


      lim  τ ⟶ 0    N p   ( f , τ )  =     lim  τ ⟶ 0    lim  m ⟶ ∞    ∗  i = 1  k  μ   E  i  m  ,   τ   (  a  i  m  )  p     ,      =     lim  m ⟶ ∞    lim  τ ⟶ 0    ∗  i = 1  k  μ   E  i  m  ,   τ   (  a  i  m  )  p     ,      








and by Definition 5 (iii), we have


      lim  τ ⟶ 0    N p   ( f , τ )  =     lim  m ⟶ ∞    lim  τ ⟶ 0    ∗  i = 1  k  μ   E  i  m  ,   τ   (  a  i  m  )  p     ,      =     lim  m ⟶ ∞    ∗  i = 1  k   lim  τ ⟶ 0   μ   E  i  m  ,   τ   (  a  i  m  )  p     .      








from Definition 5 (iv), we get


      lim  τ ⟶ 0    N p   ( f , τ )  =     lim  τ ⟶ 0    ∗  i = 1  k  0 ,      =    0 .      

















 □





We proved    (   (  L +  )  p  ,  N p  , ∗ )    is a ∗-fuzzy normed space. Now, define the fuzzy set    M :   (  L +  )  p  ×   (  L +  )  p  ×  ( 0 , ∞ )  ⟶  ( 0 , 1 ]     by


      M  ( f , g , τ )  =  N p  ( | f − g | , τ ) = ∫   | f − g |  p  d μ  ( x , τ )  .      











Then, M is a fuzzy metric on ∗-fuzzy     (  L +  )  p    and    (   (  L +  )  p  , M , ∗ )    is called the ∗-fuzzy metric space induced by the ∗-fuzzy normed space    (   (  L +  )  p  ,  N p  , ∗ )   . Now, we study further properties of ∗-fuzzy     (  L +  )  p   .



Theorem 8.

For    1 ≤ p < ∞   , the set of simple functions    g =   ∑  i = 1  n    a i   χ  E i      where    μ (  E i  , τ ) > 0    for all    i ∈ { 1 , 2 , . . . , n }    and for all    τ > 0   , is dense in ∗-fuzzy     (  L +  )  p   .





Proof. 

Clearly simple functions    g =   ∑  i = 1  n    a i   χ  E i      are in ∗-fuzzy     (  L +  )  p   . Let    f ∈   (  L +  )  p    , by theorem 3.20 in [3] we can choose a sequence    {  f n  }    of simple functions such that     f n   ↑ f     almost everywhere, and so      ( f −  f n  )  p   ↓ 0    .



We assert      ( f −  f n  )  p  ∈  L +     because


        ( f −  f n  )  p  ≤  f p  ,      








and so


      ∫   ( f −  f n  )  p  d μ  ( x , τ )  ≥ ∫  f p  d μ  ( x , τ )  > 0 ,      








then      ( f −  f n  )  p  ∈  L +     and      ( f −  f n  )  p  ⟶ 0   . Using the fundamental convergence Theorem 3, we get


       lim  n ⟶ ∞   ∫   ( f −  f n  )  p  d μ  ( x , τ )  = ∫ 0 d μ  ( x , τ )  = 1 .      











Then,     lim  n ⟶ ∞    N p   ( f −  f n  , τ )  = 1    i.e.,     f n   →  N p   f   . □





In the next theorem we prove that ∗-fuzzy     (  L +  )  p    spaces are complete.



Theorem 9.

For    1 ≤ p < ∞   , ∗-fuzzy     (  L +  )  p    is a ∗-fuzzy Banach space.





Proof. 

Let     {  f n  }  ⊆   (  L +  )  p     be a Cauchy sequence, then for every    x ∈ X   ,    {  f n   ( x )  } ⊆ R    is a Cauchy sequence in   R   and since   R   is complete, there exist    y ∈ R    such that     f n   ( x )  ⟶ y   , we define    f : X ⟶ R    by    f ( x ) = y   . Since     f n  ⟶ f    almost everywhere, so      (  f n  )  p  ⟶   ( f )  p     almost everywhere, and      (  f n  )  p  ∈  L +     by the fundamental converge Theorem 3 we have      ( f )  p  ∈  L +     and    lim ∫   (  f n  )  p  d μ  ( x , τ )  = ∫   ( f )  p  d μ  ( x , τ )    , hence    f ∈   (  L +  )  p    . □






5. Inequalities on ∗-Fuzzy     (  L +  )  p   


In this section, we are ready to prove some important inequalities on ∗-fuzzy     (  L +  )  p   .



Lemma 1

([16]). If    a ≥ 0   ,    b ≥ 0   , and    0 < λ < 1   , then


       a λ   b  1 − λ   ≤ λ a +  ( 1 − λ )  b ,      








we have equality if and only if    a = b   .





Theorem 10

(Hölder’s Inequality). Suppose    1 < p < ∞    and      1 p   +   1 q   = 1   . If f and g are fuzzy measurable functions on X then,


      N  ( f g , τ )  ≥  N p   f ,   ( p )   1 p   τ  ∗  N q   g ,   ( q )   1 q   τ  .      













Proof. 

We apply Lemma 1 with      ( f  ( x )  )  p  = a   ,    b =   ( g  ( x )  )  q    , and    λ =   1 p      to obtain


          ( f  ( x )  )  p     1 p    .     ( g  ( x )  )  q    1 −  1 p    ≤   1 p     ( f  ( x )  )  p  +  ( 1 −   1 p   )    ( g  ( x )  )  q  ,      








then


      f  ( x )  . g  ( x )  ≤     (   1 p   )   1 p   f  ( x )   p  +     (   1 q   )   1 q   g  ( x )   q  .      











Takeing integral of both sides, we get


     ∫ f ( x ) . g ( x ) d μ ( x , τ ) ≥    ∫      (   1 p   )   1 p   f  ( x )   p  +     (   1 q   )   1 q   g  ( x )   q   d μ  ( x , τ )  ,      ≥     ∫     (   1 p   )   1 p   f  ( x )   p  d μ  ( x , τ )   ∗  ∫     (   1 q   )   1 q   g  ( x )   q  d μ  ( x , τ )   ,      =     N p     (   1 p   )   1 p   f , τ  ∗  N q     (   1 q   )   1 q   g , τ  ,      =     N p   f ,   ( p )   1 p   τ  ∗  N q   g ,   ( q )   1 q   τ  .      











Then,


       N 1   f . g , τ  ≥  N p   f ,   ( p )   1 p   τ  ∗  N q   g ,   ( q )   1 q   τ  .      








 □





In the next theorem we compare two ∗-fuzzy     (  L +  )  p    spaces.



Theorem 11.

If    0 < p < q < r < ∞   , then      (  L +  )  q  ⊆   (  L +  )  p  +   (  L +  )  r    , that is, each    f ∈   (  L +  )  q     is the sum of a function in ∗-fuzzy     (  L +  )  p    and a function in ∗-fuzzy     (  L +  )  r   .





Proof. 

If    f ∈   (  L +  )  q    , let    E = { x : f ( x ) > 1 }    and set    g = f  χ E     and    h = f  χ  E c     , then


     f =    f . 1 ,      =    f (  χ E  +  χ  E c   ) ,      =    f  χ E  + f  χ  E c   ,      =    g + h .      











However,


       g p  =   ( f  χ E  )  p  =  f p   χ E  ≤  f q   χ E  ,      








then,


      ∫  g p  d μ ≥ ∫  f q   χ E  d μ > 0 ,      








then,


      g ∈   (  L +  )  P  .      











On the other hand,


       h r  =   ( f  χ  E c   )  r  =  f r   χ  E c   ≤  f q   χ  E c   ,      








then,


      ∫  h r  d μ ≥ ∫  f q   χ  E c   d μ > 0 ,      








and so


      h ∈   (  L +  )  r  .      








 □





Now, we apply Hölder’s inequality Theorem 10 to prove next theorem.



Theorem 12.

If    0 < p < q < r < ∞   , then     L p  ∩  L r  ⊆  L q     and


       N q   ( f , τ )  ≥  N p   f ,     p  λ q      1 p   τ  ∗  N r   f ,     r  ( 1 − λ ) q      1 r   τ  ,      








where    λ ∈ ( 0 , 1 )    is defined by    λ =     1 q  −  1 r     1 p  −  1 r       .





Proof. 

From    ∫  f q  d μ  ( x , τ )  = ∫  f  λ q   .  f  ( 1 − λ ) q   d μ  ( x , τ )     and Hölder’s inequality Theorem 10, we have


     ∫  f q  d μ  ( x , τ )  =    ∫  f  λ q   .  f  q ( 1 − λ )   d μ  ( x , τ )  ,      ≥     ∫     (    λ q  p   )    λ q  p    f  λ q     p  λ q    d μ  ( x , τ )   ∗   ∫      ( 1 − λ ) q  r      ( 1 − λ ) q  r    f  q ( 1 − λ )   d μ  ( x , τ )    r  ( 1 − λ ) q    ,      ≥     ∫    λ q  p    f p  d μ  ( x , τ )   ∗  ∫     ( 1 − λ ) q  r     f r  d μ  ( x , τ )   ,      =      ∫      λ q  p     1 p   f  p  d μ  ( x , τ )  ) ∗  ∫        ( 1 − λ ) q  r     1 r   f  r  d μ  ( x , τ )   ,      =     N p        λ q  p     1 p   f , τ  ∗  N r        ( 1 − λ ) q  r     1 r   f , τ  ,      =     N p   f ,     p  λ q      1 p   τ  ∗  N r   f ,     r  ( 1 − λ ) q      1 r   τ  .      








then,


       N q   ( f , τ )  ≥  N p   f ,     p  λ q      1 p   τ  ∗  N r   f ,     r  ( 1 − λ ) q      1 r   τ  .      








 □





Another application of Hölder’s inequality Theorem 10 helps us to prove next theorem.



Theorem 13.

If    μ ( X , τ ) > 0    and    0 < p < q < ∞   , then     L p   ( μ )  ⊃  L q   ( μ )     and,


       N p   ( f , τ )  ≥  N q   f ,   (  q p  )   p q   τ  ∗ μ  X ,   (  q  q − p   )    q − p  q   τ  .      













Proof. 

By Theorem 7 and Hölder’s inequality Theorem 10, we get


      N p   ( f , τ )  =    ∫  f p  . 1 d μ  ( x , τ )  ,      ≥     N  q p     f p  ,   (  q p  )   p q   τ  ∗  N  q  q − p     1 ,   (  q  q − p   )    q − p  q   τ  ,      =    ∫   (  f p  )    q p    d μ  x ,   (  q p  )   p q   τ  ∗ ∫ 1 d μ  x ,   (  q  q − p   )    q − p  q   τ  ,      =    ∫  f q  d μ  x ,   (  q p  )   p q   τ  ∗ μ  X ,   (  q  q − p   )    q − p  q   τ  ,      =     N q   f ,   (  q p  )   p q   τ  ∗ μ  X ,   (  q  q − p   )    q − p  q   τ  .      








 □





Finally, we prove the Chebyshev’s Inequality in ∗-fuzzy     (  L +  )  p    spaces.



Theorem 14

(Chebyshev’s Inequality). If    f ∈   (  L +  )  p   ( 0 < p < ∞ )     then for any    a > 0   ,     N p   ( f , τ )  ≤  N p   (  χ  E a   ,  τ a  )     with respect to     E a  =  { x : f  ( x )  > a }    .





Proof. 

We have,


       f p  >   ( f  χ  E a   )  p  =  f p   χ  E a   ,      








then


      ∫  f p  d μ  ( x , τ )  ≤ ∫  f p  d μ  ( x , τ )   χ  E a   =  ∫  E a    f p  d μ  ( x , τ )  ,      



(20)




and on    E a    we have


       ∫  E a    f p  d μ  ( x , τ )  ≤  ∫  E a    a p  d μ  ( x , τ )  = ∫  a p   χ  E a   d μ  ( x , τ )  .      



(21)







By (20) and (21) we get


     ∫  f p  d μ  ( x , τ )  ≤    ∫  a p   χ  E a   d μ  ( x , τ )  ,      =    ∫   a  χ  E a    p  d μ  ( x , τ )  .      











Then,


      N p   ( f , τ )  ≤     N p   ( a  χ  E a   , τ )  ,      =     N p   (  χ  E a   ,   τ a   )  .      








 □






6. Conclusions


We have considered an uncertainty measure   μ   based on the concept of fuzzy sets and continuous triangular norms named by ∗-fuzzy measure. In fact, we worked on a new model of the fuzzy measure theory (∗-fuzzy measure) which is a dynamic generalization of the classical measure theory. ∗-fuzzy measure theory has gotten by replacing the non-negative real range and the additivity of classical measures with fuzzy sets and triangular norms. Moreover, the ∗-fuzzy measure theory has been motivated by defining new additivity property using triangular norms. Our approach can be apply for decision making problems [8,9].



We have restricted fuzzy measurable functions and fuzzy integrable functions and defined important classes of function spaces named by ∗-fuzzy     (  L +  )  p   . Moreover, we have got a norm on ∗-fuzzy     (  L +  )  p    spaces and proved that ∗-fuzzy     (  L +  )  p    spaces are ∗-fuzzy Banach spaces. Finally, we have proved Chebyshev’s Inequality and Hölder’s Inequality.
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