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Abstract: In this article, we propose a localized transform based meshless method for approximating
the solution of the 2D multi-term partial integro-differential equation involving the time fractional
derivative in Caputo’s sense with a weakly singular kernel. The purpose of coupling the localized
meshless method with the Laplace transform is to avoid the time stepping procedure by eliminating
the time variable. Then, we utilize the local meshless method for spatial discretization. The solution
of the original problem is obtained as a contour integral in the complex plane. In the literature,
numerous contours are available; in our work, we will use the recently introduced improved Talbot
contour. We approximate the contour integral using the midpoint rule. The bounds of stability for
the differentiation matrix of the scheme are derived, and the convergence is discussed. The accuracy,
efficiency, and stability of the scheme are validated by numerical experiments.

Keywords: fractional partial integro differential; weakly singular kernel; Laplace transform;
local meshless method; contour integration; Talbot’s contour; midpoint rule

1. Introduction

Recently, the theory fractional calculus has gained significant attention in the field of engineering
and other sciences because of its various applications in modeling numerous phenomena. For example
numerous phenomena in the mathematical biology, physics, and engineering fields can be described
by fractional integro-differential equations (FIDEs), fractional partial integro-differential equations
(FPIDEs), and fractional partial differential equations (FPDEs). In particular, several phenomena
give rise to fractional partial integro-differential equations such as viscoelastic phenomena,
signal processing, and fluid mechanics (see [1–4] and the references therein).

Finding exact or numerical solutions of FPIDEs with weakly singular kernels is an important task.
Due to the possible singularities of the kernel function at the origin [5], sharp changes will occur in the
solution, so the exact/analytic solution may be difficult to obtain [6]. Therefore, the alternate way is to
develop an accurate numerical scheme. The approximation of FPIDEs and partial integro-differential
equations (PIDEs) has been considered by many researchers, such as the authors in [7–10], who used the
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finite difference (FDM) and finite element (FEM) methods for the approximation of PIDEs. The authors
in [11,12] used spline collocation methods for approximating PIDEs of the parabolic and hyperbolic
type, respectively. Huang [13] solved parabolic PIDEs using the time discretization scheme. In [3],
the B-spline solution of FPIDEs was found. The authors in [4] used the reproducing kernel method
for the approximation of FPIDEs. A backward Euler difference scheme was constructed for the
approximation of the partial integro-differential equation with multi-term kernels [14]. Other valuable
work on integro-differential equations can be found in [15–26] and the references therein. Recently,
the meshless methods have attracted researchers and become the primary tool for interpolating
multidimensional scattered data.

In the literature, we can find a large number of meshless methods developed for the numerical
treatment of different PDEs or PIDEs such as the authors in [27], who proposed the RBF-FD method
for the approximation of PIDEs. In [28], a local method was developed for the approximation of PIDEs.
In [29], the nonlinear PIDEs were approximated via the RBF and theta method. Similarly, the authors
in [30] proposed a local method with the optimal shape parameter for PIDEs.

In this article, the Laplace transform and localized meshless method are combined for the
approximation of the solution of FPIDEs with a weakly singular kernel. In the literature, we can
find some valuable work on the Laplace transform coupled with other methods in [31–39] and the
references therein. We consider an FPIDE of the form [40]:

m

∑
ρ=1

dρD
γρ
τ U(ζ, τ)−=(α)LU(ζ, τ) = f (ζ, τ), ζ ∈ Ω, and τ ∈ [0, T], (1)

subject to the initial and boundary conditions:

U(ζ, 0) = Θ(ζ), ζ ∈ Ω,

BU(ζ, τ) = h(ζ, τ), ζ ∈ ∂Ω, τ ∈ [0, T].
(2)

where 0 < γ1 ≤ γ2 ≤ . . . ≤ γm ≤ 1, dρ > 0, m ∈ N, Ω = [0, L]2, Θ is a given function, L = ∆, and B
is the boundary operators. Dγ

τ is the Caputo derivative of order γ defined as [41,42]:

Dγ
τ U(τ) =

1
Γ(p− γ)

∫ τ

0
(τ − θ)p−γ−1 dp

dθp U(θ)dθ, p− 1 ≤ γ ≤ p, p ∈ N; (3)

in particular for p = 1, we have:

Dγ
τ U(τ) =

1
Γ(1− γ)

∫ τ

0
(τ − θ)−γ d

dθ
U(θ)dθ, 0 ≤ γ ≤ 1, (4)

and the αth integral =(α)U(τ) is defined as [42]:

=(α)U(τ) =
1

Γ(α)

∫ τ

0
(τ − θ)α−1U(θ)dθ. (5)

The Laplace transform of U(τ) is defined by:

Û(s) = L {U(τ)} =
∫ ∞

0
e−sτU(τ)dτ, (6)

and the Laplace transform of Dγ
τ is given by:

L {Dγ
τ U(τ)} = sγÛ(s)−

m−1

∑
i=0

sγ−i−1U(i)(0), (7)
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while the Laplace transform of =(α)U(τ) is given by:

L {=(α)U(τ)} = 1
Γ(α)

(
Γ(α)Û(s)

sα

)
. (8)

Equation (1) involves multi-term time fractional derivatives, which are helpful in modeling
complex physical systems such as the physical multi-rate phenomenon [43], fractional Zener model [44],
heavily damped motion, Newtonian fluid [42,45], and anomalous relaxation process [46]. The integral
term represents the viscosity part of Equation (1) [40]. Equation (1) can be obtained from the partial
integro-differential equation:

∂U(ζ, τ)

∂τ
−=(α)LU(ζ, τ) = f (ζ, τ), ζ ∈ Ω, τ ∈ [0, T],

by replacing the first order time derivative by a linear combination of fractional derivatives of different
orders [47]. For m = 1, Equation (1) becomes the single term FPIDE of the form:

d1Dγ1
τ U(ζ, τ)−=(α)LU(ζ, τ) = f (ζ, τ), ζ ∈ Ω, τ ∈ [0, T],

and for α = 1, Equation (1) becomes the fractional multi-term diffusion equation:

m

∑
ρ=1

dρD
γρ
τ U(ζ, τ)−LU(ζ, τ) = f (ζ, τ), ζ ∈ Ω, τ ∈ [0, T].

2. Proposed Numerical Scheme

Taking the Laplace transform of Equations (1) and (2), we have:

d1sγ1Û(ζ, s)− d1sγ1−1Θ(ζ) + d2sγ2Û(ζ, s)− d2sγ2−1Θ(ζ) + . . .
+dmsγm Û(ζ, s)− dmsγm−1Θ(ζ)− s−αLÛ(ζ, s) = f̂ (ζ, s),

(9)

B{Û(ζ, s)} = ĥ(ζ, s); (10)

combining the like terms, we obtain the following system:

(d1sγ1 I + d2sγ2 I + . . . dmsγm I − s−αL)Û(ζ, s) = ĝ(ζ, s), (11)

B{Û(ζ, s)} = ĥ(ζ, s), (12)

where:
ĝ(ζ, s) = d1sγ1−1Θ(ζ) + d2sγ2−1Θ(ζ) + . . . + dmsγm−1Θ(ζ) + f̂ (ζ, s),

where I is the identity operator and L and B are the governing and the boundary differential operators.
In order to solve the system given in (11) and (12), first, we employ the local meshless method to
discretize the operators L and B. When we are done with the discretization of these two operators,
the system of Equations (11) and (12) is solved in parallel for each point s along some suitable path
Γ in the complex plane ( see, e.g., [16,34]). Finally, the solution of the original problem (1) and (2) is
obtained using the inverse Laplace transform. The local meshless method for the discretization of the
given differential operators L and B is described in the next section.

2.1. Localized Meshless Method

In the localized meshless method for a given set of nodes {ζ i}N
i=1 ⊂ Ω, the local meshless

approximate of the function Û(ζ) has the form [48]:
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Û(ζ i) = ∑
ζh∈Ωi

λi
hφ(‖ζ i − ζh‖), (13)

where φ(r) is a radial kernel, r = ‖ζ i − ζh‖ is the distance between ζ i and ζh, λi = {λi
h}n

h=1 is the
vector of expansion coefficients, Ω is the global domain, and Ωi is a local domain containing ζ i,
and n nodes around it. Hence, we obtain N linear systems of order n× n given by:

Û i = Φiλi, i = 1, 2, 3, . . . , N; (14)

the elements of the system matrix Φi are bi
l j = φ(‖ζ l − ζh‖), where ζ l , ζh ∈ Ωi, and the unknowns

λi = {λi
h}n

h=1 are found by solving each n× n system. Next, the operator LÛ(ζ) is approximated by:

LÛ(ζ i) = ∑
ζh∈Ωi

λi
hLφ(‖ζ i − ζh‖). (15)

The above Equation (15) can be expressed as:

LÛ(ζ i) = λi · νi, (16)

where λi is an n-column vector and νi is an n-row vector with entries:

νi = Lφ(‖ζ i − ζh‖), ζh ∈ Ωi; (17)

solving Equation (14), for λi, we have,

λi = (Φi)−1Û i. (18)

From Equation (18), we use λi in Equation (16) and get,

LÛ(ζ i) = νi(Φi)−1Û i = wiÛ i, (19)

where,
wi = νi(Φi)−1. (20)

Thus, the local meshless approximation for the differential operator L at each center ζ i is given as:

LÛ ≡ DÛ. (21)

The differentiation matrix D is sparse and has order N × N containing n number of non-zero
entries, where n ∈ Ωi. The matrix D approximates the linear differential operator L. The approximation
for the boundary differential operator B can be done in the same way.

3. Numerical Inversion of the Laplace Transform

Following the discretization by the local meshless method of the linear differential and boundary
operators L and B, respectively, the system (11) and (12) is solved in parallel for each point s along
some suitably chosen path in the complex plane. Finally, we get the solution of the problem (1) and (2)
using the inversion formula:

U(ζ, τ) =
1

2πi

∫ σ+i∞

σ−i∞
esτÛ(ζ, s)ds =

1
2πι

∫
Γ

esτÛ(ζ, s)ds, σ > σ0, (22)

where σ0 ∈ R is called the converging abscissa and Γ is an initially appropriately chosen line
connecting σ− i∞ to σ + i∞. This means all the singularities of Û(ζ, s) lie in the half plane Res < σ.
The approximation of the integral (22) is hard because of the slow decaying transform Û(ζ, s) and the
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highly oscillatory exponential factor esτ . To handle these issues, we use the strategy suggested by Talbot
[49]. He suggested the deformation of the contour of integration Γ. In particular, he suggested that
the contour Γ be deformed in such a way that its real part starts and ends in the left half plane, and it
encloses all the singularities of the transform Û(ζ, s). Cauchy’s theorem allows such a deformation
provided that Û(ζ, s) has no singularities on the contour [49]. On such contours, the exponential
factor decays rapidly, which makes the integral in Equation (22) suitable for approximation using the
midpoint or trapezoidal rule [49–51]. We consider a Hankel contour with the parametric form given
by [50]:

Γ : s = s(ϑ), − π ≤ ϑ ≤ π, (23)

where Res(±π) = −∞, and s(ϑ) is defined as:

s(ϑ) =
M
τ

θ(ϑ), θ(ϑ) = −σ + µϑ cot(γϑ) + νιϑ, (24)

where the parameters σ, γ, µ, and ν are to be described by the user. From Equations (22) and (24),
we have:

U(ζ, τ) =
1

2πi

∫
Γ

esτÛ(ζ, s)ds =
1

2πi

∫ π

−π
es(ϑ)τÛ(ζ, s(ϑ))s′(ϑ)dϑ. (25)

We use the M-panel midpoint rule with uniform spacing k = 2π
M to approximate the integral in

Equation (25) as:

Uk(ζ, τ) =
1

Mi

M

∑
j=1

esjτÛ(ζ, sj)śj,

for ϑj = −π + (j− 1
2
)k, sj = s(ϑj), s′j = s′(ϑj). (26)

4. Convergence and Accuracy

In order to approximate the solution of FPIDEs using our proposed numerical scheme, the Laplace
transform and local meshless method are used. In our numerical scheme, we employ the Laplace
transform to the time dependent equation, which eliminates the time variable, and this process causes
no error. Then, the local meshless method is utilized for approximating the time independent equation.
The error estimate for local meshless method is of order O(η

1
εh ); 0 < η < 1; ε is the shape parameter;

and h is the fill distance [52]. In the process of approximating the integral in Equation (25), we achieve
the convergence at different rates depending on the path Γ. While approximating the integral in
Equation (25), the convergence order relies on the step k of the quadrature rule and the time domain
[t0, T] for Γ. In order to achieve high accuracy, we need to search for the most favorable values of
the parameters involved in Equation (24). The authors [50] obtained the most suitable values of the
parameters given as:

σ = 0.6122, µ = 0.5017, ν = 0.2645, and γ = 0.6407,

with the corresponding error estimate as:

Error Estimate = |U(ζ, τ)−Uk(ζ, τ)| = O(e−1.358M).

The optimal contour is supposed to pass neither too close to nor too far from the singularities,
in which case esτ becomes too large. Moreover, to achieve the desired accuracy, the quadrature points
are required to extend far enough into the left half plane. However, their contributions must not be less
than the required accuracy.
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The necessary steps of our method are presented in the following Algorithm 1.

Algorithm 1:
1: Input: The computational domain, the fractional order derivative in [0,1], the final time,

the contour of integration, the initial shape parameter and the other parameter of the given
model, the inhomogeneous function, and other conditions.

2: Step 1: Apply the Laplace transform to the problem (1) and (2), and obtain the time
independent problem (11) and (12).

3: Step 2: Discretize the linear differential operator L and boundary operator B using (21).
4: Step 3: Solve the system of Equations (11) and (12) in parallel for each point s along the

contour of integration Γ given in (18).
5: Step 4: Compute the approximate solution using (25).
6: Output: The approximate solution is Uk(ζ, τ).

5. Stability Analysis

In order to investigate the system (11) and (12) stability, we represent the system in discrete
form as:

YÛ = b, (27)

where YN×N is the sparse differentiation matrix obtained using the local meshless method described
in Section 2.1. For the system (27), the constant of stability is given by:

C = sup
Û 6=0

‖Û‖
‖YÛ‖

, (28)

where the constant C is finite for any discrete norm ‖.‖ defined on RN . From (28), we may write:

‖Y‖−1 ≤ ‖Û‖
‖YÛ‖

≤ C, (29)

Similarly, for the pseudoinverse Y† of Y, we can write:

‖Y†‖ = sup
v 6=0

‖Y†v‖
‖v‖ . (30)

Thus, we have:

‖Y†‖ ≥ sup
v=YÛ 6=0

‖Y†YÛ‖
‖YÛ‖

= sup
Û 6=0

‖Û‖
‖YÛ‖

= C. (31)

We can see that Equations (29) and (31) confirm the bounds for the stability constant C.
Calculating the pseudoinverse for approximating the system in Equation (27) numerically can be
difficult computationally, but it ensures the stability. MATLAB’s function condest can be used to
estimate ‖Y−1‖∞ in the case of square systems; thus, we have:

C =
condest(Y′)
‖Y‖∞

. (32)

6. Numerical Results and Discussion

The proposed Laplace transform based local meshless method is tested on 2D linear multi-term
FPIDEs. In our numerical experiments, we utilized the multiquadric (MQ) radial kernel defined
by φ(r, ε)=

√
1 + (εr)2. For the optimal shape parameter, the uncertainty principle due to [53]
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(e.g., in RBF methods, we cannot have both good accuracy and good conditioning at the same
time) is utilized. We performed our experiments in MATLAB R2019a on a Windows 10(64 bit) PC
equipped with an Intel(R) Core(TM) i5-3317U CPU @ 1.70 GHz and with 4 GB of RAM. We chose
L = T = 1, and dρ = 1, for ρ = 1, 2, 3, . . . , m. Let U(ζ, τ) be the exact solution and Uk(ζ, τ) be the
numerical solution. To validate the theoretical results, we used the L∞ error defined as:

L∞ = ‖U(ζ i, τ)−Uk(ζ i, τ)‖∞ = max
1≤i≤N

(U(ζ i, τ)−Uk(ζ i, τ)).

In our numerical experiments, we consider the problem (1) with initial condition Θ = 0, and the
inhomogeneous term is given as:

f (x, y, τ) = Γ
(

9
5

)(
τ

4
5−γ1

Γ( 9
5 − γ1)

+
τ

4
5−γ2

Γ( 9
5 − γ2)

+
2π2τ

4
5+α

Γ( 9
5 + α)

)
sin(πx) sin(πy).

The problem is solved with two types of boundary conditions, the Dirichlet boundary conditions
generated from the exact solution given by:

U(x, y, τ) = τ
4
5 sin(πx) sin(πy),

and the Robin boundary conditions given as:

U(x, y, τ) +∇U(x, y, τ) ·~n = G(x, y, τ), x, y ∈ ∂Ω, τ ∈ [0, 1].

We solve the problem in the square domain, nut-shaped domain, and L-shaped domain.

6.1. Square Domain

In the first test, the problem is solved in square domain [0, 1]2 with Dirichlet boundary
conditions. The domain is discretized with regularly distributed nodes, as shown in the Figure
1. Then, the proposed scheme is applied to the 2D multi-term FPIDE. The exact and approximate
solutions of the problem are presented in Figure 2a,b. The computational results obtained for various
points N ∈ Ω, n ∈ Ωi, and quadrature points M along the contour Γ are given in Table 1. The L∞

error, shape parameter ε, error estimate, condition number κ, and the computational time (CPU (s)) are
shown in Table 1. The obtained results ensure the efficiency and stability of the method.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 1. Node distribution in the square domain.
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Table 1. Numerical results for the fractional partial integro-differential equations (FPIDEs) in the
square domain.

N n M L∞ Error Error Estimate ε κ CPU(s)

α = 0.25 1024 73 10 1.90 × 10−3 1.26 × 10−6 4.9 1.54 × 1012 7.395020
γ1 = 0.15 12 1.00 × 10−3 8.37 × 10−8 4.9 1.54 × 1012 7.022358
γ2 = 0.3 14 9.94 × 10−4 5.53 × 10−9 4.9 1.54 × 1012 7.249688

16 9.91 × 10−4 3.66 × 10−10 4.9 1.54 × 1012 7.789044
18 9.91 × 10−4 2.42 × 10−11 4.9 1.54 × 1012 8.160190

α = 0.5 30 20 2.20 × 10−3 1.60 × 10−12 3.3 1.40 × 1012 6.398152
γ1 = 0.45 40 3.70 × 10−3 1.60 × 10−12 4.0 1.69 × 1012 6.328329
γ2 = 0.55 50 2.0 × 10−3 1.60 × 10−12 4.4 1.56 × 1012 7.150031

60 1.60 × 10−3 1.60 × 10−12 4.7 1.31 × 1012 7.898109
70 1.60 × 10−3 1.60 × 10−12 4.8 2.10 × 1012 8.372011

α = 0.75 729 74 22 1.10 × 10−3 1.05 × 10−13 4.1 1.64 × 1012 5.758024
γ1 = 0.65 841 9.04 × 10−4 1.05 × 10−13 4.5 1.16 × 1012 6.988687
γ2 = 0.75 961 8.75 × 10−4 1.05 × 10−13 4.8 1.26 × 1012 10.074941

1089 1.70 × 10−3 1.05 × 10−13 5.1 1.35 × 1012 10.822728
1225 8.47 × 10−4 1.05 × 10−13 5.4 1.44 × 1012 13.236204

[40] 7.16 × 10−4

(a)

(b)

Figure 2. (a) The exact solution in the square domain; (b) the numerical solution in the square domain.
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6.2. Nut-Shaped Domain

In the second test, the problem is solved in the nut-shaped domain with Dirichlet boundary
conditions. The domain is discretized with regularly distributed nodes, as shown in the Figure 3a.
Then, the proposed scheme is applied to the 2D multi-term FPIDE. The exact and the numerical
solutions of the problem are presented in Figure 3b. The computational results obtained for various
points N ∈ Ω, n ∈ Ωi, and quadrature points M along the contour Γ are shown in Table 2. The L∞

error, shape parameter ε, error estimate, condition number κ, and the computational time (CPU (s))
are shown in Table 2. The obtained results ensure the efficiency of the proposed method for problems
defined in irregular domains.

Table 2. Numerical results for the FPIDEs in nut-shaped domain.

N n M L∞ Error Error Estimate ε κ CPU (s)

α = 0.25 1024 76 10 1.30 × 10−3 1.26 × 10−6 4.9 1.59 × 1013 6.665154
γ1 = 0.15 12 2.71 × 10−4 8.37 × 10−8 4.9 1.59 × 1013 7.059290
γ2 = 0.30 14 2.68 × 10−4 5.53 × 10−9 4.9 1.59 × 1013 7.597790

16 2.69 × 10−4 3.66 × 10−10 4.9 1.59 × 1013 8.066648
18 2.69 × 10−4 2.42 × 10−11 4.9 1.59 × 1013 8.368624

α = 0.5 30 20 1.13 × 10−2 1.60 × 10−12 3.2 8.99 × 1013 6.499886
α = 0.55 40 1.90 × 10−3 1.60 × 10−12 3.8 5.33 × 1013 7.088308
α = 0.65 50 1.30 × 10−3 1.60 × 10−12 4.3 2.31 × 1013 6.949834

60 1.70 × 10−3 1.60 × 10−12 4.6 1.68 × 1013 7.556786
74 7.44 × 10−4 1.60 × 10−12 4.9 1.24 × 1013 9.184561

α = 0.75 973 75 22 5.37 × 10−4 1.05 × 10−13 5.0 1.09 × 1012 8.624205
γ1 = 0.75 983 2.48 × 10−4 1.05 × 10−13 4.9 1.76 × 1012 9.407931
γ2 = 0.90 993 5.54 × 10−4 1.05 × 10−13 5.0 2.12 × 1012 9.242420

1003 5.62 × 10−4 1.05 × 10−13 4.9 5.40 × 1012 9.108576
1013 5.39 × 10−4 1.05 × 10−13 4.9 1.21 × 1013 9.380810

[40] 7.16 × 10−4
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Figure 3. (a) Node distribution in the nut-shaped domain; (b) the exact and numerical solutions in the
nut-shaped domain.

Figure 3. (a) Node distribution in the nut-shaped domain; (b) the exact and numerical solutions in the
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6.3. L-Shaped Domain

In the third test, the problem is solved in the L-shaped domain with Dirichlet and Robin boundary
conditions. The domain is discretized with regularly distributed nodes, as shown in the Figure 4a.
Then, the proposed method is applied to the 2D multi-term FPIDE. The exact and the numerical
solutions of the problem are presented in Figure 4b. The computational results obtained for various
points N ∈ Ω, n ∈ Ωi, and quadrature points M along the contour Γ with Dirichlet boundary
conditions are shown in Table 3. The L∞ error, shape parameter ε, error estimate, condition number κ,
and the computational time (CPU (s)) are shown in Table 3. Figure 5 shows the absolute error obtained
using Robin boundary conditions. The obtained results ensure the efficiency of the proposed method
for problems defined in irregular domains.

Table 3. Numerical results for the FPIDEs in the L-shaped domain.

N n M L∞ Error Error Estimate ε κ CPU (s)

α = 0.25 1045 75 10 2.00 × 10−3 1.26 × 10−6 5.4 4.22 × 1012 7.879603
γ1 = 0.15 12 9.70 × 10−4 8.37 × 10−8 5.4 4.22 × 1012 8.472794
γ2 = 0.30 14 9.07 × 10−4 5.53 × 10−9 5.4 4.22 × 1012 8.961569

16 9.03 × 10−4 3.66 × 10−10 5.4 4.22 × 1012 9.776831
18 9.02 × 10−4 2.42 × 10−11 5.4 4.22 × 1012 9.703955

α = 0.5 30 20 1.20 × 10−3 1.60 × 10−12 3.4 6.85 × 1012 6.230811
γ1 = 0.45 40 1.70 × 10−3 1.60 × 10−12 4.2 8.39 × 1012 7.051659
γ1 = 0.55 50 7.94 × 10−4 1.60 × 10−12 4.8 4.53 × 1012 7.786541

60 8.99 × 10−4 1.60 × 10−12 5.2 3.21 × 1012 8.323130
72 7.80 × 10−4 1.60 × 10−12 5.4 3.98 × 1012 9.694111

α = 0.75 736 73 22 7.68 × 10−4 1.05 × 10−13 4.5 4.06 × 1012 5.941242
γ1 = 0.75 833 8.30 × 10−4 1.05 × 10−13 4.8 4.06 × 1012 7.343621
γ1 = 0.85 936 6.45 × 10−4 1.05 × 10−13 5.1 4.06 × 1012 8.402310

1045 7.49 × 10−4 1.05 × 10−13 5.4 4.06 × 1012 10.279795

[40] 7.16 × 10−4
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Figure 5. Absolute error using Robin boundary conditions in the L-shaped domain, with α = 0.5,
γ1 = 0.75, γ2 = 0.95, N = 736, n = 73, and M = 20.

7. Conclusions

We successfully coupled the Laplace transform and localized meshless method for the
approximation of the solution of the multi-term 2D FPIDE. The time stepping procedure was avoided
via the Laplace transform, and the issues arising due to dense differentiation matrices were resolved
via the localized meshless method. For the contour integration, we utilized the recently introduced
improved Talbot’s contour. The convergence and stability of the method were discussed. To validate
the numerical scheme and check its efficiency, the numerical experiments were carried out in the
square, nut-shaped, and L-shaped domains. From the results obtained, it was observed that the
proposed numerical scheme is efficient and has better accuracy compared to other available work.
It was observed that the improved Talbot’s method is computationally more useful than other available
methods. The results led us to the conclusion that the proposed method is capable of solving FPIDEs
without time instability in less computation time.
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