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Abstract: Measuring credit risk is essential for financial institutions because there is a high risk
level associated with incorrect credit decisions. The Basel II agreement recommended the use of
advanced credit scoring methods in order to improve the efficiency of capital allocation. The latest
Basel agreement (Basel III) states that the requirements for reserves based on risk have increased.
Financial institutions currently have exhaustive datasets regarding their operations; this is a problem
that can be addressed by applying a good feature selection method combined with big data techniques
for data management. A comparative study of selection techniques is conducted in this work to find
the selector that reduces the mean square error and requires the least execution time.

Keywords: credit scoring; feature selection; big data; data mining

1. Introduction

The granting of a loan implies a risk for the financial institution, which arises due to the possibility
that the borrower does not comply with the repayment of the loan; that is, the possibility of delinquency.
Financial institutions face a decision problem of whether to grant the loan to the client, which implies
an assessment of the probability of each applicant presenting delinquency problems. Therefore,
an institution attempts to calculate an uncertain event with data from the past. In other words, this is
an estimation or prediction problem known as credit scoring. Any credit rating system that enables
the automatic assessment of the risk associated with a banking operation is called credit scoring.
This risk may depend on several customer and credit characteristics, such as solvency, type of credit,
maturity, loan amounts and other features inherent in financial operations. It is an objective system for
approving credit that does not depend on the analyst’s discretion.

Today, this area of research represents a very important challenge for financial institutions for
three fundamental reasons:

1. The credit risk represents 60% of the total risk of the financial institution.
2. The requirements by authorities to comply with Basel III, among other requirements, implies an

increase in the entity’s reserves based on a higher percentage of the calculation of the expected
losses, with a consequent reduction of the benefits to be distributed to shareholders.

3. With the introduction of the Ninth International Financial Reporting Standard (IFRS 9) in
January 2018, financial companies will have to calculate their expected losses due to default
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during the 12 months after these financial instruments are implemented, transferring them as
losses to their income statement, with a consequent reduction in profit.

Therefore, a good automatic method to select variables and optimize risk assessment decisions
would mean lower expected losses and higher profits for the company and shareholders.

Financial institutions have exhaustive datasets for their operations; this allows them to gain
an advantage (they have huge amounts of information related to creditors and debtors and can try
to predict our behavior) and presents a problem (they need to obtain the best prediction without
exceeding resources). Yu et al. [1] indicated that the credit industry requires quick decisions, and,
in this sense, there should be a trade-off between computational performance and computational
efficiency. Today, despite the fact that financial institutions have unlimited computing resources and
computing power (Amazon Web Services (AWS), Azure, etc.), organizational reality sets limitations.

The processing of a model runs in parallel to many core business processes that are performed
in batches during the night. Therefore, the data dump in the system is continuous at all levels and
departments of the financial institution. This, together with the need for financial institutions to apply
dynamic credit risk optimization models together with the selection of variables, leads us to consider
this research topic. The models must allow the introduction of new variables at any moment in time,
thus reflecting the economic, financial, social and political reality in order to anticipate both new
predictions and a change in the importance of a variable. Therefore, the adjustments to which the
model is subjected, together with the rest of the usual computer processes of the financial institution,
will determine the need for a computationally efficient model.

According to Pérez-Martin et al. [2], computational efficiency decreases as the number of variables
increases, while the number of records (potential borrowers) hardly influences this. Therefore, it is in
these settings that a massive data problem appears, since the system must recalculate its credit scoring
together with a new optimization of variables as its scenario has changed. This leads us to consider this
research topic; i.e., to obtain a method for selecting variables and optimize risk assessment decisions in
order to obtain results in a minimum time. The contribution made by this research is important in
economic terms for financial institutions and at the same time for society. It is possible to give quick
responses to risk managers and to be able to quickly correct a credit risk model to avoid a possible
increase in expected losses, with a consequent loss of profits and increase in reserves for the financial
institution, which represents a lower profit for distribution among shareholders.

Regarding the daily business of banks, they need to evaluate many loan applications and also
be clear regarding the applications which must be rejected and accepted; in the past, for this task,
employees engaged in personal study. Simon [3] concluded that this type of classical methodology has
some problems, such as the non-reproducibility of the valuations (each analyst may have a different
opinion) or a low level of confidence due to the subjectivity of the valuation, which can change every
day. This method, as observed, has a significant degree of subjectivity, which together with its low
efficiency and the difficulty of training new personnel makes it an inefficient method.

The general approach to this task is currently a model that is updated each night in a batch
together with other processes that are executed by a bank’s systems. The problem with a credit risk
model batch is clear: each morning, the new model is deployed and ready to use for each user and
must be the best model from the information available. Furthermore, banking institutions have limited
computational capacity. The combination of these factors is a problem that a good feature selection
method combined with big data techniques can solve. In fact, there are many research works in the
literature that have sought the optimal method since Durand [4] introduced discriminant analysis.
These works have employed approaches with different methodological methods, as listed below.

• Linear Methods: The authors of [5–9] considered this type of methodology to solve this problem,
but the majority of authors did not obtain good results. For example, in the comparative study
carried out by Yu et al. [5] in which the efficacy of 10 methods using three databases was compared
to test the different methods: one referring to loans from an English financial company extracted
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(England Credit) from [10], another referring to credit cards from a German bank (German Credit)
and finally another database referring to credit cards in the Japanese market (Japanese Credit).
The results show that the method ranks among the last classified, only surpassing neural networks
with backwards propagation. However, subsequent research works (e.g., [11]) have shown the
best percentages for this approach compared to other more complex methods, but the existing
limitations due to the size of the data have been evident; in contrast, Xiao et al. [12] considered
Logistic Regressions to be the best method if the information can be managed.

• Decision Trees: The authors of [9,13–16] used this methods in research comparing different
methodologies. In none of these works, however, was this method the best of the methods used.
For example, the results obtained in [9] can be observed, in which this approach lags far behind
the rest of the methods in predictive precision. A predictive improvement can be observed in [17]
where 11 methods are compared using the databases of German Credit and Australian Credit.

• Neural networks are commonly used to solve this problem in the literature, and successful results
have been found, such as in the work of Malhotra and Malhotra [18] comparing the results
with a discriminant analysis and obtaining good performance with the German Credit database.
However, in general, there have been many research works that use neural networks without
good or with insignificant results compared with the complexity of the models (e.g., [19–21]).

• Support Vector Machine obtains good results with classifications, as can be seen in [22], where the
best accuracy results are obtained in comparison with four different methods. However,
as Pérez-Martin and Vaca [23] concluded with a Monte Carlo simulation study, these best accuracy
results have an impact on the efficiency (i.e., reducing it). Other authors have attempted to create
or use another parametrization of the kernel, such as Xiao et al. [12], Bellotti and Crook [24] or
Wang et al. [25], but the same problem remains regarding efficiency.

One important aspect is the method used when credit scoring must be performed, but it is
possible to solve this problem by reducing the information used to model the behavior. To do this,
it is necessary to select the variables that have the capacity to explain the best model. Managing large
amounts of data poses a problem in terms of the server’s efficiency and slows down its effectiveness.
The number of considered features is called the data dimension, and, although high dimensionality
in the feature space has advantages, it also has some serious shortcomings. In fact, as the number of
features increases, more computation is required and the model accuracy and scoring interpretation
efficiency are reduced [26,27]. Financial institutions need to provide a response to their potential
borrowers, and so prediction models must meet two requirements: computational efficiency and
predictive efficacy. We study this situation as a big data problem, and we consider a variable selection
method for the model in order to reduce the volume of data, maintaining the model’s efficiency with
the aim of increasing its computational efficiency (i.e., achieving a lower execution time).

To reduce the computational time and maintain the effectiveness of the methods, one solution
can be found through analytical methods of data mining ([28]). Data mining attempts to quantify the
risk associated with a loan and facilitate credit decision-making, while allowing for and limiting the
potential losses that a bank may suffer.

Therefore, variable selection is performed, and it is determined whether the prediction improves
and if this improvement corresponds to a greater computational efficiency. It is expected that faster
forecasts will be achieved, and information that does not result in any gain to the model must be
eliminated. This involves applying a data mining algorithm that generates and reduces classification
rule systems and achieves accurate predictions, but with a substantially lower temporal and memory
consumption cost. The automatic selection of characteristics involves a set of analytical techniques that
generate the combinations of variables that have a greater incidence of the behavior of a target variable.
The selection of different variables can be carried out by applying different methodologies such as
decision trees, rule systems and techniques such as principal components analysis with an incremental
approach in which the algorithms employed seek to improve a certain metric of significance [29].
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The importance of selecting variables will be determined if the contribution of the attributes
is significant for the model. There are different approaches to this problem. One of the possible
approaches is to use wrapper methods, and in this popular case, one methodology for selecting
attributes to have been emphasized in the literature is genetic programming ([1,30,31]), or other
models such as Linear Discriminant Analysis (LDA) ([14]) or different classes of artificial neural
network ([30]), among other methodologies. However, if we consider the Basel principles regarding
the model, all of these possible models breach these principles on the basis of their simplicity.

In this research, the impacts of two proposed feature selection techniques are measured—gain
ratio and principal component analysis (PCA)—in terms of reducing dimensionality along with the
impact of discretization in order to standardize the dataset values. To test these factors, we use a credit
dataset from the Spanish Institute of Fiscal Studies (IEF) dataset. Later, we apply three credit scoring
methods to predict when a home equity loan can be granted or not: the generalized linear model
for binary data (GLMlogit), the linear mixed model (LMM) and the classification rules extraction
algorithm-reduction based on significance (CREA-RBS). LMM and GLMlogit methods were chosen
because they are the most efficient and effective methods ([2,32]). Section 2 gives an overview of
the datasets used and the stages of our experimental study with a description of the methods used.
In Section 3, the obtained results are shown. In Section 4, the conclusions are presented.

2. Materials and Methods

In this section, the stages of this study and all the progress are described, including the
performance metrics used. We subsequently outline the experimental process used to assess the
performances of the proposed models.

In summary, this study has four stages, as can be seen in Figure 1:

1. Construction of training and testing datasets—the details of the procedure are in Section 2.1.
2. Execution of the process of attribute selection and discretization—the entire process is explained

in Section 2.2.
3. Training of classification models—three algorithms are selected for this study (GLMlogit,

LMM and CREA-RBS), and the methods are explained in Section 2.3.
4. Collection of results—at the end of the process, two indicators are obtained to evaluate the effect

of the feature selection methods on credit scoring models.

Dataset Training

Testing

Gain Ratio

Principal Component
Analysis (PCA)

Discretize

Generalized Linear
Model (GLMlogit)

Linear Mixed Model (LMM)

CREA -RBS

Predict

Discretize

Root Mean Square
Error (RMSE)

Execution Time (in s)

Figure 1. Summary of study. CREA-RBS, classification rules extraction algorithm-reduction based
on significance.

All procedures were developed with a dedicated Intel Xeon E5-2420 server with the Linux Debian
Jessie operating system (64 bits, 12 CPUs at 1.9 GHz and 32 GB Ddr3 RAM) and implemented in R
software ([33]).
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2.1. Datasets

To prove the efficacy of our four-stage procedure, two different datasets are used:

1. The German Credit dataset: The reason for choosing this database is because it is one of the most
used in the existing literature on credit scoring research ([34], UCI Machine learning Repository
(http://archive.ics.uci.edu/ml/datasets.html)).

2. The IEF semi-synthetic dataset: The IEF semi-synthetic dataset comes from the IEF dataset
from the Spanish Institute of Fiscal Studies (IEF) and is obtained from its statistical
repository ([32,35–39]). This subset was generated and transformed in order to achieve four
necessary conditions: to homogenize diverse variables from different years, to remove missing
data, to choose or transform the interest variables for our research and to reduce the size for
computational reasons.

The variables used in the research were chosen based on the different articles and works consulted
regarding the variables that financial institutions take into account in the decision to grant a
mortgage loan ([7,18,40–51]). It is observed that there is unanimity in the choice of the explanatory
variables and, at the same time, they are relevant in the time window of the study. The factors to
take into account for the selection of the explanatory variables are the following [32]:

(a) Social and personal factors: Variables related to the client’s social and personal
environment are selected, such as sex, age, marital status, number of dependents,
population of the habitual residence, habitual residence and other dwellings.

(b) Economic factors :Variables related to the availability of income are selected, such as
salaries, the economic sector in which they carry out their activity and the size of the
loan requested.

2.1.1. German Credit Dataset

The German Credit Dataset has 1000 instances: it has 700 instances corresponding to creditworthy
applicants and 300 other instances corresponding to applicants to which credit should not be extended.
The number of initial variables is 20: three of them are numeric variables, and there are 17 categorical
variables ([34]). The features may be classified as follows:

• social attributes, such as marital status, age, sex; and
• economic attributes, such as business or employment and being a property owner.

A 70% random sample was extracted for training purposes, and the rest was used for testing the
model. The distribution of observations, payers and defaulters is presented in Table 1.

Table 1. Distribution of observations in the German Credit dataset.

Class Training Testing Total Cases

Payers 485 215 700
Defaulters 215 85 300

Total 700 300 1000

It should be noted that the German Credit database, although it comes from a financial institution,
does not correspond to the number of real observations that exist in the databases of any financial
institution (it is a very small database). Consequently, the conclusions that can be derived are
approximate and limited. In any case, it is verified that the conclusions obtained in the investigation
are consistent with the results in the two databases.

http://archive.ics.uci.edu/ml/datasets.html
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2.1.2. IEF Semi-Synthetic Dataset

The IEF semi-synthetic dataset comes from the IEF dataset from the Spanish Institute of Fiscal
Studies (IEF) and is obtained from its statistical repository ([32,35–39]). This subset was generated
and transformed to achieve four necessary conditions: to homogenize diverse variables from different
years, remove missing data, choose or transform the interest variables for our research and reduce the
size for computational reasons. The number of dataset entries is 5,101,260 observations; regarding the
number of initial variables, nine of them are numeric and the rest are categorical. The features used
may be classified as follows:

• social attributes, such as marital status, age, province and number of family members;
• economic attributes, such as business or employment, family income, properties and

amount borrowed;
• statistical attributes based on adjustments such as corrected income—that is, the total income

dichotomized by the minimum inter-professional salary (SMI) for further data processing; and
• synthetic variables, such as the response variable yi, which was simulated using a linear

regression model with several attributes of the dataset and a normal perturbation vector e,
with e ∼ Nn(0, 0.15). Then, the response variable was recategorized as binary (pay and default
cases), as follows:

pi = e(yi)/(1 + e(yi)) ∗ 100

This expression can be considered as a probability of default by dividing into 100.

The original dataset was divided into training and testing sets as a function of the time attribute
(Year), considering the last temporary period in those observations as the testing set and the rest as the
training set. The distribution of observations, payers and defaulters is presented in Table 2.

Table 2. Distribution of observations in the Spanish Institute of Fiscal Studies (IEF) dataset.

Class Training Testing Total Cases

Payers 2,131,601 811,375 2,942,976
Defaulters 1,461,779 696,505 2,158,284

Total 3,593,380 1,507,880 5,101,260

2.2. Methods and Algorithms

Two techniques are chosen to reduce the dimension, as explained below.

2.2.1. Gain Ratio

This technique is a version of the well-known information gain approach. It is a measure that
gives the relationship between explanatory variables and the response variable. It measures how much
information is communicated in comparison with the total:

H(Class) + H(Attribute)− H(Class, Attribute)
H(Attribute)

where H represents the entropy and uncertainty of data. Shannon [52] defined the entropy (H) of one
discrete variable (X) with a probability function P(X)

H(X) = E[I(X)] = E[−ln(P(X))],

where E is the expected value of an operator and I is the information function.
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2.2.2. Principal Component Analysis (PCA)

PCA [53] is a multivariate statistical technique used to reduce the number of features with
redundant information in a dataset into a smaller number of uncorrelated variables, called dimensions.
These dimensions are a linear weighted combination of original features. For example, in mathematical
terms, Dimension 1 from a set of n variables (X1, . . . , Xn) is

Dim1 = w11 ∗ X1 + w12 ∗ X2 + w13 ∗ X3 + . . . + w1n ∗ Xn,

where w11, w12, w13, . . . , w1n are the weights for the initial variable to obtain Dimension 1.

2.2.3. Discretization Process

Datasets usually come in mixed formats: numeric and discrete. Discrete values are intervals in a
continuous spectrum of values; while the number of numeric values for an attribute can be very big,
the number of discrete values is often small or finite. The two types of values make a difference in
learning classification models. Thus, we propose a discretization for the datasets in order to compare
the effect [54,55]. For this experiment, two datasets are used. We consider the discretized criteria which
appear in Tables 3 and 4 for the IEF dataset [32] and German Credit dataset, respectively.

Table 3. Discretized criteria for the IEF semi-synthetic dataset.

Original Feature Discretized Criteria Category Name

Percentage of ownership of the residence (ptvh)

Equal to 0% ptvh-0

Equal to 50% ptvh-50

Equal to 100% ptvh-100

Between 0% and 50% ptvh- <50

Between 50% and 100% ptvh- >50

Percentage of ownership of the residence of spouse (pctvh)

Equal to 0% pctvh-0

Equal to 50% pctvh-50

Equal to 100% pctvh-100

Between 0% and 50% pctvh- <50

Between 50% and 100% pctvh- >50

Average ownership percentage (Pmedowner)

Equal to 0% PMO-0

Equal to 50% PMO-50

Equal to 100% PMO-100

Between 0% and 50% PMO- <50

Between 50% and 100% PMO- >50

Property tax deduction (PTD)
Does not have PTD-0

Has deduction PTD-Dist0

Property income (PI)
Does not have PI-0

Has property income PI-Dist0

Family Income (FI)

Negative FI- <0

Equal to 0 e FI-0

Between 0 and 3701 e (FIrst Quartile) FI-1st Quartile

Between 3701 e and 10,730 e FI- <Media

>10,730 e FI- + Media

Amount (A)

First Quartile A-1stQ

Second Quartile A-2ndQ

Third Quartile A-3thQ

Fourth Quartile A-4thQ
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Table 4. Discretized criteria for the German Credit dataset.

Original Feature Discretized Criteria Category Name

credit_amount

First Quartile A-1stQ

Second Quartile A-2ndQ

Third Quartile A-3thQ

Fourth Quartile A-4thQ

duration_in_month

Under 12 duration-1

Between 12 and 18 duration-2

Between 18 and 24 duration-3

Over 24 duration-4

age

Under 28 Age- <28

Between 28 and 32 Age-28–32

Between 32 and 36 Age-32–36

Between 36 and 41 Age-36–41

Between 41 and 49 Age-41–49

Over 50 Age-50+

2.3. Credit Scoring Methods

The main goal of this research is to find the best selector that has the maximum efficiency and
effectiveness possible in the scoring procedure of a home equity loan. For this purpose, we use the
LMM and GLMlogit scoring methods because they are the most efficient and effective methods [2,32].

2.3.1. Generalized Linear Model (GLMlogit)

GLMlogit is an extension of the linear model that allows for other relations between response
and explanatory variables. In this case, a binomial distribution with a canonical logit link was chosen.
In general, this can be formulated as

E(Y) = µ = g−1(Xβ),

where E(Y) is the expected value of Y, Xβ is the linear predictor and g is the link function, which can
be formulated as

g(p) = ln
(

p
1− p

)
2.3.2. Linear Mixed Model (LMM)

LMM is a linear model with mixed effects (fixed effect and random effect) that was developed
by Fisher [56]. In matrix notation, a mixed model can be represented as

y = Xβ + Zu + e,

where y is a response variable vector, β is a vector of fixed effects, u is a vector of random effects and
e is a vector of random errors, with u � N(µ2

u) and e � N(µ2
e ). We consider regions as a random

variable in both datasets.

2.3.3. Reduction Based on Significance (RBS)

The RBS algorithm [57] is an ensemble rule-based system based on the ID3 method which allows
the rule set to be reduced and organized by the support and confidence of the facts.
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This algorithm reduces the rules into a given rule set when each of them is associated with a rule
significance value and is allocated into a specific significance value called a region. To determine each
region [58], two metrics are used—rule support values and rule frequency values—to assign each rule
its rule significance and its significance region (REG), respectively.

For a given rule rAC
k , the rule support or antecedent frequency rAC

k × f rA is the proportion of
tuples in the data set containing an antecedent, such that

rAC
k × f rA =

| A |
N

where f rA is only based on each instance’s left-hand side (antecedent). All rules with the same
left-hand side will have the same f rA value. On the other hand, the rule confidence or rule frequency
is defined as the proportion of tuples with the antecedent A in D that also contain C as a consequent,
such that

rAC
k × f rA =

| A→ C |
A

,

where | A→ C | is the number of rules with the antecedent A and consequent C . The number of rules
with the antecedent A is labeled as | A | .

Both the support and the confidence, as defined above, are used by the RBS algorithm to perform
the reduction and classification of the rule system.

The work presented by Rabasa Dolado [58] contains the whole formalization of the RBS
methodology (see Figure 2). Each rule in the rule system belongs to only one of the four defined
exclusive regions:

• Region 2: This group of regions contains rules with high support and confidence regarding facts.
Rabasa Dolado [58] called these direct rules, because these combinations are very reliable.

• Region 1: The region groups rules with high support and low-confidence rules.
• Region 3: These rules have a very low support. It should be understood that any conclusion can

be reached.
• Region 0: The rules inside this region are discarded because this region is composed of rules with

medium support and confidence of facts, and they may arise from randomness.

Figure 2. Structure of reduction based on significance (RBS) regions.
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2.4. Model Evaluation

The model performances are compared using the Root Mean Square Error (RMSE) of fit to measure
the accuracy of the models, along with the computer execution time for efficient measurement. RMSE is
a good measure of effectiveness because it does not depend on a prediction threshold, instead relying
on some ratios of the confusion matrix. RMSE assesses the quality of an estimator, not the result, and it
could be defined as

RMSE =
ni

∑
i=1

I

∑
j=1

( p̂ij − pij)
2/nij,

where p̂ij is the vector of predictions and pij is the observed vector values corresponding to the response
variable of the model.

The computer execution time may be important in the decision to apply one method or another,
due to the massive volume of the dataset. A computationally efficient method can be very competitive
given the advantages in terms of the time expected for resolving requests. In our case, this time is
measured between the start and end of the model fitting.

3. Results

In this work, we attempted to determine the effect of different processes in order to reduce the
complexity of this problem. We calculated the gain ratio and PCA and performed discretization in
order to rank the variables, create dimensions and create aggregated groups, respectively.

In Figures 3 and 4, we can see the most influential variable in the IEF semi-synthetic and German
Credit datasets, respectively. As we can see in Figure 3, the most influential variable in the IEF dataset
is Correctorincome. This is a feature which aims to discriminate between people with higher income
or lower than the minimum inter-professional salary (SMI); the lower is the income compared to SMI,
the more complicated it is to grant the payment of a bank credit. The other two most relevant variables
are Familyincome and total tax deduction related to main residence (buying or improvements). The rest
of the features have marginal importance. Moreover, economic attributes are more relevant than social
variables according to the gain ratio.

Corre
cto

rin
co

m
e

Fam
ily

in
co

m
e

Pro
per

ty
tax

ded
ucti

on

Hom
eo

wner
sh

ip

Pro
per

ty
owner

6

Pro
per

ty
owner

5

Pro
per

ty
owner

4

pro
per

ty
owner

3
Age

Ptv
h

Pro
per

ty
owner

2

Pro
per

ty
in

co
m

e

Pro
per

ty
owner

1

M
ar

ita
lst

atu
s

BIE
co

rre
cto

r

Npro
per

ty
s

Pctv
h

Pm
ed

tit
owner

Num
famAct1

Sta
te
Act2

Am
ount

Yea
r

0

0.1

0.2

0.3

R
el

ev
an

ce
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Figure 4. Results of the gain ratio for the German Credit dataset.

In the case of German Credit dataset (Figure 4), the most influential variable is
account_check_status. This feature aims to determine the current amount of the account. The other four
most relevant variables are foreign_worker, credit_history, duration and credit_amount. The rest of the
features have marginal importance. Again, economic attributes are more relevant than social variables.

PCA is a technique used for feature extraction; thus, the output is a new dataset with new variables
that are a combination of the input variables. It is very difficult to explain the meaning of the new
variables. In the case of the IEF semi-synthetic dataset, the first 10 dimensions of PCA explain 25.34%
of the total variability. This percentage is relatively low, but the next variables grow in very small
increments of less than 5% of the previous explained variability.

In the German Credit case, the first dimension of PCA expresses 99.997% of the total dataset inertia.
It is possible that this situation was created by the small size of the dataset. We decided to selected the
five first dimensions because there is a small value of variance, but the possible interpretation of the
tested models would not be logical except for the GLMlogit models.

Then, the dataset for the three proposed methods is adjusted. The execution time and the root
mean square error (RMSE) are obtained by entering the features according to their contribution to
the model. The results of these experiments are collected in Table 5 for RMSE and in Table 6 for
execution times.

Table 5. Root mean square error (RMSE).

Dataset GLM LMM RBS

IEF Dataset

Raw 0.3635 0.3660 -

Discretize 0.3527 0.3572 0

Gain Ratio 0.3680 0.3960 0.3184

PCA 0.3966 0.4181 0.1809

German Credit

Raw 0.3955 0.4037 -

Discretize 0.4048 0.4120 0

Gain Ratio 0.4045 0.4082 0.4303

PCA 0.4275 0.4414 0.4082
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Table 6. Execution times (in s).

Dataset GLM LMM RBS

IEF Dataset

Raw 533.18 347.77 -

Discretize 693.17 521.96 15.02

Gain Ratio 17.687 32.092 0.4980

PCA 23.184 53.952 0.928

German Credit

Raw 0.042 0.179 -

Discretize 0.042 0.107 0.085

Gain Ratio 0.015 0.095 0.041

PCA 0.011 0.089 0.039

As we can see from the results in Table 5, the version of the dataset that performs worst is the
selected dimensions of PCA, except for the RBS, which we analyze below. Moreover, the best version
depends on the dataset used, although it is clear that it is a completed version. The difference between
the two datasets is the individual’s total variability. In the case of the IEF dataset, there is a large
number of cases and the discretization process reduces this number. In contrast, the German Credit
Dataset contains a limited number of cases and the discretization process does not add value but
homogenizes users who should not be equal but statistically cannot constitute an individual class.

RBS is the best method in most cases (it only shows worse results using gain ratio selection for the
German Credit dataset, as seen in Figure 5). However, this model is not dynamic, because it is not able
to adapt and predict new combinations of variables. For this reason, we must consider that this model
does not assume that groups of observations may contain different combinations than the initial ones.
RBS is a method that does not explain all combinations because it is focused on those of greater value.
We can see the execution time of training models in Table 6, but they do not offer us relevant information
on their own, beyond the fact that with a greater number of variables, there is more computational
effort. In fact, if we consider those cases not collected by the model, whether positive or negative,
we find that they perform worse except in two particular cases (gain ratio and PCA for German Credit
considering accepting credit).
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Figure 5. Relation between RMSE and time.
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The mixture of the model precision (RMSE) with computational cost (time) is particularly
interesting and is illustrated in Figure 5 The combination of a low time requirement and low value of
RMSE shows the best methods. Three groups can be identified based on the results:

• The first group is formed by a complete dataset trained with a linear method. This group has the
highest execution times and the second lowest RMSE. The best relationship within this group is
LMM, because it saves more than 30%, losing less than 2% compared to GLMLogit.

• The second group is formed by a selected dataset with two proposed methods. This group has the
second-lowest execution times and the worst RMSE. In general, GLMlogit behaves well; it obtains
a good RMSE and shorter execution times. Within the methodologies used, the gain ratio is more
effective than the PCA in view of the results.

• The last group is formed by RBS models regardless of whether there is a selection of variables or
not. This stands out due to its low execution times, whatever the volume of data, and the best
precision results. In this case, it is observed that the method of removing information makes the
model lose precision.

4. Conclusions

We attempted to find efficient methods, discarding those with the lowest efficiency, for use with a
banking dataset. For this reason, we used our own design with the IEF dataset, using some synthetic
variables such as the target variable and borrowed amount.

Two feature selection methods were proposed using the elbow method, gain ratio and PCA.
We calculated the measures of effectiveness (RMSE) and efficiency for the models adjusted with LMM,
GLMlogit and RBS.

It is important to note that the method proposed in this variable selection investigation in its first
step calculates the credit score with all the variables entered in the model. Once calculated, a selection
is made using the most efficient proposed methods that offer more relevant information for making
credit decisions. These variables are those that will be taken into account when deciding whether or
not to grant a loan to a potential borrower, without having to enter the rest of the information, since it
is irrelevant. As it is a dynamic model—i.e., new risk factors are added that are not constant over time
and depend on economic, financial, political and even health changes (for example, COVID-19)—there
are changes both in the calculation of the credit scoring and in the selection of variables. Therefore, it is
important to interpret the results obtained in terms of variables that are part of the model; moreover,
there is the possibility that new variables will appear and that they will have a greater weight, as well
as that others will disappear or influence the decision less.

In the temporal analysis proposed in this research, the most important features with respect to
the gain ratio in the IEF dataset used to predicting default probability were “Correctorincome” and
“Familyincome”. These variables have a 51% weight, with respect to the total features. In the case
of German Credit, the most important variables are “account_check_status” and “foreign_worker”,
but these variables have only a 13.55% weight, with respect to the total features. When applying PCA,
it is observed that, up to the 10th dimension, the inertia grows slowly in the IEF dataset. In the case of
German Credit, it is observed that, up to the third dimension, practically all the inertia is represented.

RBS is the most effective method regarding accuracy, except that it is not an expert system and
does not create responses for all cases. This situation may mean that, in stable environments, it can be
used to estimate provisions for credit losses with customers where extensive knowledge is available
for a financial institution or to provide a first filter for access to credit.

On the other hand, LMM has proven to be very efficient, practically equaling GLMlogit, and so
this method could be a candidate to replace the logistic regressions (GLMlogit) used in the industry,
since it remains a linear method, allows a simple interpretation but allows—through the random
effect—the simplification of the adjustment of variables that are not particularly important but that
should be introduced in the model.
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For these reasons, RBS and LMM are proposed to evaluate credit risk in the presence of big data
problems that need prior feature selection to reduce the dimensionality of a dataset. This method is
applicable to any database and time horizon, because it selects the most important variables within the
analyzed database while taking into account all of the information.
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