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Abstract: The notion of sequential convergence in fuzzy partially ordered sets, under the name
oF-convergence, is well known. Our aim in this paper is to introduce and study a notion of net
convergence, with respect to the fuzzy order relation, named o-convergence, which generalizes the
former notion and is also closer to our sense of the classic concept of "convergence". The main result
of this article is that the two notions of convergence are identical in the area of complete F-lattices.
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1. Introduction

Zadeh, in his seminal paper [1] in 1971, introduced and studied the concept of fuzzy relation.
In particular, the notion of fuzzy order relation was initiated by generalizing the notions of reflexivity,
antisymmetry and transitivity. Since then, many authors have studied fuzzy orders and relations
by adopting different approaches [2–8]. Fuzzy orders have a wider range of utility when compared
to the classic orders by allowing the expression not only the preference for one alternative over
another, in a set of alternatives, but also the “power” of that preference. Generally, fuzzy relations
are important because of their applications in fuzzy modeling, fuzzy diagnosis, and fuzzy control
(see for example [9]).

Using a notion of fuzzy order, the authors in [3] defined and studied a notion of convergence for
sequences, in the sense of Birkhoff [10] which was further investigated in the context of fuzzy Riesz
spaces in [11,12], where is considered as net convergence. Moreover, this notion was redefined to
unbounded fuzzy order convergence in [13]. Motivated by the previous works, we provide, in the
general context of fuzzy posets, a notion of convergence for nets, in the sense of McShane [14].
Particularly, Section 2 contains preliminaries. In Section 3 we introduce and study o-convergence
which is a generalization of oF-convergence, considered in [3]. In Section 4, we prove that, in the setting
of complete F-lattices, both notions of convergence are equivalent with the equality of limit inferior and
limit superior, with respect to the fuzzy order relation and, therefore, coincide. Finally, in Section 5,
we add some concluding remarks for possible future study in this field.

2. Preliminaries

This section contains preliminary material that will be needed in the sequel.
Let X be a nonempty set. A fuzzy set α on X (due to Zadeh [15]) is a membership function

µα : X → [0, 1] with the value of µα(x) at x representing the “grade of membership” of x in α.
When α is an ordinary set its membership function µα reduces to its characteristic function and α is
called a crisp set on X.
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In what follows, we recall the basic notions and results from [3,7,16].

Definition 1 ([3]). Let X be a nonempty set. A fuzzy order on X is a fuzzy set on X× X whose membership
function µ satisfies the following properties:

(1) (reflexivity) for all x ∈ X, µ(x, x) = 1;
(2) (antisymmetry) for all x, y ∈ X, µ(x, y) + µ(y, x) > 1 implies x = y; and,
(3) (transitivity) for all x, z ∈ X, µ(x, z) >

∨
y∈X

[µ(x, y) ∧ µ(y, z)], where ∨ and ∧ denote the supremum

and the infimum, with respect to the usual order on the unit interval, respectively.

A set with a fuzzy order defined on it is called a fuzzy ordered set (or foset for short.)

Notation 1 ([7]). Let X be a foset and x ∈ X. With ↑x we will denote the fuzzy set on X defined by
↑x(y) = µ(x, y), for all y ∈ X. Dually, with ↓x we will denote the fuzzy set on X defined by ↓x(y) = µ(y, x),
for all y ∈ X. If M is a subset of X, ↑M =

∨
x∈M
↑x and ↓M =

∨
x∈M
↓x.

Definition 2 ([7]). Let M be a subset of a foset X. The upper bound U(M) of M is the fuzzy set on X,
defined as follows:

U(M)(y) =


0, if ↑x(y) 6 1/2 for some x ∈ M( ∧

x∈M
↑x
)
(y), otherwise.

Dually, the lower bound L(M) of M is the fuzzy set on X, defined as follows:

L(M)(y) =


0, if ↓x(y) 6 1/2 for some x ∈ M( ∧

x∈M
↓x
)
(y), otherwise.

If U(M)(x) > 0, for some x ∈ X, we write x ∈ U(M); in such case, we say that M is bounded from above
and we call x an upper bound of M. Similarly, if L(M)(x) > 0, then we write x ∈ L(M); in such case we say
that M is bounded from below and we call x a lower bound of M. If M is both bounded from above and bounded
from below, then M is said to be bounded.
An element z ∈ X is said to be the supremum of M (written z = sup M) if

(1) z ∈ U(M) and
(2) y ∈ U(M) implies y ∈ U(z).

Similarly, z ∈ X is said to be the infimum of M (written z = inf M) if

(3) z ∈ L(M) and
(4) y ∈ L(M) implies y ∈ L(z).

Theorem 1 ([7]). Let M be a subset of a foset X. Subsequently,

(1) inf M, if it exists, is unique;
(2) sup M, if it exists, is unique.

If M is a subset of a foset X, then we will adopt from [3] the notations ∨M and ∧M for sup M and
inf M, respectively. In the case that M is an indexed set i.e., M = {mi : i ∈ I} we will use alternatively,
when it is more convenient, the abbreviated symbols

∨
i∈I

mi and
∧
i∈I

mi for ∨{mi : i ∈ I} and

∧{mi : i ∈ I}, respectively.

Notation 2. x ∨ y = sup{x, y} and x ∧ y = inf{x, y}.
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Theorem 2 ([7]). Let X be a foset. Then the following identities hold, whenever the expressions referred exist.

(1) x ∧ x = x and x ∨ x = x.
(2) x ∧ y = y ∧ x and x ∨ y = y ∨ x.
(3) x ∧ (x ∨ y) = x ∨ (x ∧ y) = x.
(4) µ(x, y) > 1/2 if and only if x ∧ y = x.
(5) µ(x, y) > 1/2 if and only if x ∨ y = y.

Definition 3 ([7]). A foset X is called a fuzzy lattice (or F-lattice for short) if all finite subsets of X have
suprema and infima. A fuzzy lattice is said to be complete if every subset of X has a supremum and an infimum.

Definition 4 ([16]). Let D be a subset of a foset X.

(1) D is said to be directed to the right if for every finite subset E of D, D ∩U(E) 6= ∅.
(2) D is said to be directed to the left if for every finite subset E of D, D ∩ L(E) 6= ∅.
(3) D is said to be directed if it is both directed to the right and directed to the left.

In our terminology for nets, we follow Kelley [17] i.e., a net in a set X is an arbitrary function
s : A → X, where A is a nonempty directed set. If s(a) = sa, for all a ∈ A, then the net s will be
denoted by the symbol (sa)a∈A.

Definition 5 ([12]). Suppose that (X, µ) is a foset. A net (sa)a∈A, of elements in X, is said to be increasing
if a 6 b implies µ(sa, sb) > 1/2, in which case we shall write (sa)a∈A↑. Moreover, if x = ∨{sa : a ∈ A},
then we write (sa)a∈A↑x. The definition of a decreasing net and the symbols (sa)a∈A↓, (sa)a∈A↓x are dual.

The following notion of convergence in X, for the case of sequences, was introduced by I. Beg and
M. Islam [3] (the primary version for posets is due, in essence, to Birkhoff [10]). Below, we summarize
some basic notions and results from [3], where we refer the reader for more details.

Definition 6 ([3]). Let X be a foset. We say that a net (sa)a∈A in X is order-converging or (oF)-converging to
a point x ∈ X and we write (sa)a∈A

oF−→ x if there exists a pair of nets (ua)a∈A and (va)a∈A, in X, such that

(1) (ua)a∈A↑x, (va)a∈A↓x and
(2) µ(ua, sa) > 1/2 and µ(sa, va) > 1/2, for all a ∈ A.

Proposition 1 ([3]). Let X be a foset. The oF-convergence of sequences in X has the following properties:

(1) If (sn)n∈N↑, then (sn)n∈N
oF−→ x if and only if (sn)n∈N↑x.

(2) If (sn)n∈N↓, then (sn)n∈N
oF−→ x if and only if (sn)n∈N↓x.

(3) Any oF-convergent sequence is bounded.
(4) If µ(sn, tn) > 1/2, for all n ∈ N, and (sn)n∈N

oF−→ x, (tn)n∈N
oF−→ y, then µ(x, y) > 1/2.

(5) If (sn)n∈N
oF−→ x and (sn)n∈N

oF−→ y, then x = y.
(6) If (sn)n∈N

oF−→ x, then any subsequence of (sn)n∈N oF-converges to the same limit.
(7) If µ(tn, sn) > 1/2 and µ(sn, rn) > 1/2, for all n ∈ N and (tn)n∈N

oF−→ x, (rn)n∈N
oF−→ x, then

(sn)n∈N
oF−→ x.

Definition 7 ([3]). A (real) linear space X is said to be a fuzzy ordered linear space if X is a foset and the
following conditions both hold:

(1) If x1, x2 ∈ X such that µ(x1, x2) > 1/2, then µ(x1, x2) 6 µ(x1 + x, x2 + x), for all x ∈ X.
(2) If x1, x2 ∈ X, such that µ(x1, x2) > 1/2, then µ(x1, x2) 6 µ(rx1, rx2), for all r > 0.

Proposition 2 ([3]). Let X be a fuzzy ordered linear space. The oF-convergence of sequences in X has the
following properties:

(1) If (sn)n∈N
oF−→ x and (tn)n∈N

oF−→ y, then (sn + tn)n∈N
oF−→ x + y.

(2) If (sn)n∈N
oF−→ x and r ∈ R, then (rsn)n∈N

oF−→ rx.
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3. o-Convergence with Respect to the Fuzzy Order Relation

In this section we will introduce and study a notion of convergence in fosets, named o-convergence
(the primary version for posets is due, in essence, to McShane [14]). The importance of o-convergence
lies in the fact that, in addition to successfully generalizing oF-convergence, is closer to our
understanding of the concept of “convergence”, as we will see below.

Definition 8. Let X be a foset. We say that a net (sa)a∈A in X is o-converging to a point x ∈ X and we write
(sa)a∈A

o−→ x if there exist a directed to the right subset D of X and a directed to the left subset F of X, such that

(1) ∨D = ∧F = x and
(2) for every d ∈ D and every f ∈ F, µ(d, sa) > 1/2 and µ(sa, f ) > 1/2, eventually.

Proposition 3. Let X be a foset, (sa)a∈A be a net in X and x ∈ X. If (sa)a∈A
oF−→ x, then (sa)a∈A

o−→ x.

Proof. By hypothesis there exists a pair of nets (ua)a∈A and (va)a∈A, in X, such that

(a) (ua)a∈A↑x, (va)a∈A↓x and
(b) µ(ua, sa) > 1/2 and µ(sa, va) > 1/2, for all a ∈ A.

Consider the ranges of those nets i.e., the subsets

D = {ua : a ∈ A} and F = {va : a ∈ A}

of X. We will show that D is directed to the right (similarly, it can be proved that F is directed
to the left). Let E = {ua1 , . . . , uam} be a finite subset of D. We will show that D ∩ U(E) 6= ∅.
Indeed, since A is an ordinary directed set, there exists a0 ∈ A such that a0 > ai, for all i = 1, . . . , m.
Therefore, µ(uai , ua0) > 1/2, for all i = 1, . . . , m. The last implies that ua0 ∈ U(E). Evidently, ua0 ∈ D.
Furthermore, by hypothesis ∨D = ∧F = x, with respect to the fuzzy order on X. Let now d ∈ D and
f ∈ F be arbitrary. Then, there exist aj, ak ∈ A such that d = uaj and f = vak . Let al ∈ A such that
al > aj and al > ak. Subsequently, µ(ual , ua) > 1/2, for all a > al . Because µ(ua, sa) > 1/2, for all
a ∈ A and µ(uaj , ual ) > 1/2, transitivity yields µ(uaj , sa) > 1/2, for all a > al . That is µ(d, sa) > 1/2,
for all a > al . Analogously, we have µ(sa, f ) > 1/2, for all a > al .

The following examples shows that the converse implication of Proposition 3 does not hold.

Example 1. Let the set X = {a, b, c}. Define µ : X× X → [0, 1] by

µ(x, y) =


1, if x = y

2/3, if x = a and y = c

3/4, if x = b and y = c

0, otherwise.

One can easily check that µ is a fuzzy order relation on X. Let now the sequence (sn)n∈N, in X, defined by

sn =


a, if n = 1

b, if n = 2

c, otherwise.

The subsets D = {c} and F = {c} of X satisfy all the conditions of the Definition 8 that determines the
convergence (sn)n∈N

o−→ c. However, (sn)n∈N is not bounded, since it is not bounded below and, therefore,
by Proposition 1 (3) (sn)n∈N does not oF-converge.
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Example 2. Let the (real) linear space X = R2. Define µ : X× X → [0, 1] by

µ(x, y) =


1, if x1 = y1 and x2 = y2

2/3, if x1 = y1 and x2 < y2

4/5, if x1 < y1 and x2 6 y2

0, otherwise,

where x = (x1, x2) and y = (y1, y2). It is straightforward to verify that µ is a fuzzy order relation on X which
satisfies the properties of Definition 7. Therefore, X is a fuzzy ordered linear space. Let Z+ be the set of positive
integers ordered as follows

1 < 3 < 5 < 7 < . . . < 2 < 4 < 6 < 8 < . . . .

Clearly, Z+ is a directed set. Let now (sn)n∈Z+
be the net, in X, defined by

sn =

{
(1/n, 1/n), if n is even

(n, n), if n is odd.

By Definition 8, (sn)n∈Z+

o−→ (0, 0). However, (sn)n∈Z+
does not oF-converge to (0, 0). Indeed, suppose that

(sn)n∈Z+

oF−→ (0, 0). Subsequently, by Definition 6, there exists a pair of nets (un)n∈Z+
and (vn)n∈Z+

, in X,
such that

(a) (un)n∈Z+
↑(0, 0), (vn)n∈Z+

↓(0, 0) and
(b) µ(un, sn) > 1/2 and µ(sn, vn) > 1/2, for all n ∈ Z+.

By condition (b), µ(s1, v1) > 1/2. Let v1 = (v1,1, v1,2) and let n0 > 1 be a positive odd integer such that
v1,1 < n0 and v1,2 < n0. Subsequently, again, by condition (b) µ(sn0 , vn0) > 1/2, where sn0 = (n0, n0).
Let vn0 = (vn0,1, vn0,2). It follows that vn0,1 > n0 and vn0,2 > n0, i.e., µ(v1, vn0) > 1/2, which contradicts
the fact that by condition (a) (vn)n∈Z+

is a decreasing net since v1 6= vn0 . Thus, the net (sn)n∈Z+
does not

oF-converge to (0, 0). Note that the subnet (s2n)n∈Z+
of (sn)n∈Z+

oF-converges to (0, 0). This fact demostrates
that, in contrast to our common belief, the existense of additional terms in the "tail" of the net affects its
oF-convergence. Obviously, o-convergence overcomes this pathology.

Remark 1. From the previous examples, we observe that boundness is a property that is not retained in the case
of o-convergence, not even for sequences.

The o-convergence has, as we will see next, similar properties to oF-convergence.

Proposition 4. Let (sa)a∈A be a net in a foset X. Subsequently,

(1) (sa)a∈A↑x if and only if (sa)a∈A is increasing and (sa)a∈A
o−→ x;

(2) (sa)a∈A↓x if and only if (sa)a∈A is decreasing and (sa)a∈A
o−→ x.

Proof. (1) Let (sa)a∈A be an increasing net and (sa)a∈A
o−→ x. We will prove that x = ∨{sa : a ∈ A} i.e.,

(a) x ∈ U({sa : a ∈ A}) and
(b) y ∈ U({sa : a ∈ A}) implies y ∈ U(x).

Fix b ∈ A. By hypothesis there exist a directed to the right subset D of X and a directed to the left
subset F of X such that

(c) ∨D = ∧F = x and
(d) for every d ∈ D and every f ∈ F, µ(d, sa) > 1/2 and µ(sa, f ) > 1/2, eventually.
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Let f ∈ F be arbitrary. There exists a0 ∈ A such that µ(sa, f ) > 1/2, for every a > a0. Take any a1 ∈ A,
such that a1 > b and a1 > a0. It follows that, µ(sb, sa1) > 1/2 and µ(sa1 , f ) > 1/2. By transitivity we
have µ(sb, f ) > 1/2. Since f ∈ F was arbitrarily chosen, µ(sb, f ) > 1/2, for all f ∈ F. Thus, sb ∈ L(F).
Since ∧F = x, sb ∈ L(x) i.e., µ(sb, x) > 1/2. The last conclusion does not depend on the choice of
b ∈ A, so µ(sb, x) > 1/2, for all b ∈ A. Thus, x ∈ U({sa : a ∈ A}). Let now y ∈ U({sa : a ∈ A}).
Subsequently, µ(sa, y) > 1/2, for all a ∈ A. Let d ∈ D be arbitrary. There exists a′0 ∈ A such that
µ(d, sa) > 1/2, for all a > a′0. Thus, by transitivity µ(d, y) > 1/2. Since d ∈ D was arbitrarily chosen,
µ(d, y) > 1/2, for all d ∈ D, which further implies that y ∈ U(D). On account of ∨D = x, y ∈ U(x).
Therefore, conditions (a) and (b) are fulfilled, so x =

∨{sa : a ∈ A}. Hence, (sa)a∈A↑x.
Conversely, let (sa)a∈A↑x. Afterwards, (sa)a∈A is increasing and therefore, by Proposition 1 (1)

(sa)a∈A
oF−→ x. Hence, by Proposition 3 (sa)a∈A

o−→ x.
The proof of (2) is similar to the proof of (1).

Proposition 5. Let (sa)a∈A and (ta)a∈A be nets in a foset X and x, y ∈ X. If µ(sa, ta) > 1/2, for all a ∈ A
and (sa)a∈A

o−→ x, (ta)a∈A
o−→ y, then µ(x, y) > 1/2.

Proof. By hypothesis there exist directed to the right subsets Ds, Dt of X and directed to the left subsets
Fs, Ft of X such that

(a) ∨Ds = ∧Fs = x and ∨Dt = ∧Ft = y;
(b) for every ds ∈ Ds and every fs ∈ Fs, µ(ds, sa) > 1/2 and µ(sa, fs) > 1/2, eventually;
(c) for every dt ∈ Dt and every ft ∈ Ft, µ(dt, ta) > 1/2 and µ(ta, ft) > 1/2, eventually.

Fix ds ∈ Ds and let ft ∈ Ft be arbitrary. There exists a0 ∈ A such that, for all a > a0, µ(ds, sa) > 1/2,
µ(sa, ta) > 1/2 and µ(ta, ft) > 1/2. Transitivity yields that µ(ds, ft) > 1/2. Since ft ∈ Ft was arbitrarily
chosen, µ(ds, ft) > 1/2, for all ft ∈ Ft. Thus, ds ∈ L(Ft). Furthermore, ∧Ft = y yields ds ∈ L(y) i.e.,
µ(ds, y) > 1/2. The last conclusion does not depend on the choice of ds ∈ Ds, so µ(ds, y) > 1/2,
for all ds ∈ Ds. Thus, y ∈ U(Ds). Because ∨Ds = x, y ∈ U(x) i.e., µ(x, y) > 1/2.

Corollary 1. Let (sa)a∈A be a net in a foset X and x, y ∈ X. If (sa)a∈A
o−→ x and (sa)a∈A

o−→ y, then x = y.

Proof. Applying Proposition 5 by considering sa = ta, for all a ∈ A, we get µ(x, y) > 1/2 and
µ(y, x) > 1/2. Thus, µ(x, y) + µ(y, x) > 1. Antisymmetry property yields x = y.

Proposition 6. Let X be a foset. If (sa)a∈A
o−→ x and (tλ)λ∈Λ is any subnet of (sa)a∈A, then (tλ)λ∈Λ

o−→ x.

Proof. By hypothesis, there exists a directed to the right subset D of X and a directed to the left subset
F of X, such that

(a) ∨D = ∧F = x;
(b) for every d ∈ D and every f ∈ F, µ(d, sa) > 1/2 and µ(sa, f ) > 1/2, eventually.

Let now (tλ)λ∈Λ be a subnet of (sa)a∈A. There exists a function ϕ : Λ → A with the
following properties:

(c) t = s ◦ ϕ, or equivalently, tλ = sϕ(λ), for all λ ∈ Λ.
(d) For every a ∈ A there exists λ0 ∈ Λ such that ϕ(λ) > a, for all λ > λ0.

Let d ∈ D and f ∈ F be arbitrary. By condition (b) there exists a0 ∈ A, such that µ(d, sa) > 1/2 and
µ(sa, f ) > 1/2, for all a > a0. By condition (d), there exists λ′0 ∈ Λ such that ϕ(λ) > a0, for all λ > λ′0.
Thus, µ(d, sϕ(λ)) > 1/2 and µ(sϕ(λ), f ) > 1/2, for all λ > λ′0. Because, tλ = sϕ(λ), µ(d, tλ) > 1/2 and
µ(tλ, f ) > 1/2, for all λ > λ′0. Therefore, the directed to the right subset D of X and the directed to
the left subset F of X satisfy all the conditions of the Definition 8 that determines the convergence
(tλ)λ∈Λ

o−→ x.
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Proposition 7. Let (sa)a∈A, (ta)a∈A and (ra)a∈A be nets in a foset X and x ∈ X. If µ(sa, ra) > 1/2 and
µ(ra, ta) > 1/2, for all a ∈ A and (sa)a∈A

o−→ x, (ta)a∈A
o−→ x, then (ra)a∈A

o−→ x.

Proof. By hypothesis, there exist directed to the right subsets Ds, Dt of X and directed to the left
subsets Fs, Ft of X such that

(a) ∨Ds = ∨Dt = ∧Fs = ∧Ft = x;
(b) for every ds ∈ Ds and every fs ∈ Fs, µ(ds, sa) > 1/2 and µ(sa, fs) > 1/2, eventually; and,
(c) for every dt ∈ Dt and every ft ∈ Ft, µ(dt, ta) > 1/2 and µ(ta, ft) > 1/2, eventually.

Let ds ∈ Ds and ft ∈ Ft be arbitrary. There exists a0 ∈ A such that, for all a > a0 we have µ(ds, sa) >

1/2, µ(sa, ra) > 1/2, µ(ra, ta) > 1/2 and µ(ta, ft) > 1/2. Transitivity yields that µ(ds, ra) > 1/2 and
µ(ra, ft) > 1/2, for all a > a0. Therefore, the directed to the right subset Ds of X and the directed to
the left subset Ft of X satisfy all the conditions of the Definition 8 that determines the convergence
(ra)a∈A

o−→ x.

Proposition 8. Let X be a fuzzy ordered linear space, (sa)a∈A, (ta)a∈A be nets in X, x, y ∈ X and r ∈ R.
Subsequently, the following implications hold.

(1) If (sa)a∈A
o−→ x and (ta)a∈A

o−→ y, then (sa + ta)a∈A
o−→ x + y.

(2) If (sa)a∈A
o−→ x, then (rsa)a∈A

o−→ rx.

Proof. (1) By hypothesis there exist directed to the right subsets Ds, Dt of X and directed to the left
subsets Fs, Ft of X such that

(a) ∨Ds = ∧Fs = x and ∨Dt = ∧Ft = y;
(b) for every ds ∈ Ds and every fs ∈ Fs, µ(ds, sa) > 1/2 and µ(sa, fs) > 1/2, eventually; and,
(c) for every dt ∈ Dt and every ft ∈ Ft, µ(dt, ta) > 1/2 and µ(ta, ft) > 1/2, eventually.

We consider the following subsets of X:

D = {ds + dt : ds ∈ Ds and dt ∈ Dt} and F = { fs + ft : fs ∈ Fs and ft ∈ Ft}.

We will prove that D is directed to the right (similarly, it can be proved that F is directed to the left).
Let E = {ds1 + dt1 , . . . , dsk + dtk} be a finite subset of D. We will show that D ∩U(E) 6= ∅. Let the
finite subsets Es = {ds1 , . . . , dsk} and Et = {dt1 , . . . , dtk} of Ds and Dt, respectively. Since Ds and Dt

are directed to the right subsets of X, we have that Ds ∩U(Es) 6= ∅ and Dt ∩U(Et) 6= ∅. The last
yields that there exist ds ∈ Ds and dt ∈ Dt such that ds ∈ U(Es) and dt ∈ U(Et) i.e., for all i = 1, . . . , k,

µ(dsi , ds) > 1/2 and µ(dti , dt) > 1/2.

Therefore, by [3] (Remark 4.4), for all i = 1, . . . , k,

µ(dsi + dti , ds + dt) > 1/2.

Thus, ds + dt ∈ U(E) and so D ∩U(E) 6= ∅.
We will prove that ∨D = x + y. (Similarly, it can be proved that ∧F = x + y.) Indeed, by [3]

(Proposition 4.8),

∨D =
∨

ds∈Ds
dt∈Dt

(ds + dt) =
∨

ds∈Ds

ds +
∨

dt∈Dt

dt = ∨Ds + ∨Dt = x + y.

Let now ds + dt ∈ D and fs + ft ∈ F be arbitrary. By condition (b) there exists a1 ∈ A such that,
for all a > a1,

µ(ds, sa) > 1/2 and µ(sa, fs) > 1/2.



Mathematics 2020, 8, 1958 8 of 12

By condition (c), there exists a2 ∈ A such that, for all a > a2,

µ(dt, ta) > 1/2 and µ(ta, ft) > 1/2.

Let a0 ∈ A, such that a0 > a1 and a0 > a2. By [3] (Remark 4.4), for all a > a0,

µ(ds + dt, sa + ta) > 1/2 and µ(sa + ta, fs + ft) > 1/2.

Hence, the directed to the right subset D of X and the directed to the left subset F of X satisfy all of the
conditions of the Definition 8 determines the convergence (sa + ta)a∈A

o−→ x + y.

(2) By hypothesis, there exist a directed to the right subset D of X and a directed to the left subset F of
X, such that

(d) ∨D = ∧F = x and
(e) for every d ∈ D and every f ∈ F, µ(d, sa) > 1/2 and µ(sa, f ) > 1/2, eventually.

We consider the following subsets of X:

rD = {rd : d ∈ D} and rF = {r f : f ∈ F}.

Let r > 0. We will prove that rD is directed to the right (similarly, it can be proved that rF is directed to
the left). Let rE = {rd1, . . . , rdk} be a finite subset of rD, where E = {d1, . . . , dk} is a finite subset of D.
We will show that rD ∩U(rE) 6= ∅. Because D is directed to the right subset of X, we have that
D ∩U(E) 6= ∅. The last yields that there exists d ∈ D such that d ∈ U(E) i.e.,

µ(di, d) > 1/2, for all i = 1, . . . , k.

Therefore, by Definition 7 (2),

µ(rdi, rd) > 1/2, for all i = 1, . . . , k.

Thus, rd ∈ U(rE) and so rD ∩U(rE) 6= ∅.
We will prove that ∨rD = rx (similarly, it can be proved that ∧rF = rx). Indeed, by [3]

[Proposition 4.10],

∨rD =
∨

d∈D

(rd) = r

( ∨
d∈D

d

)
= r(∨D) = rx.

Let now rd ∈ rD and r f ∈ rF be arbitrary. By condition (e) there exists a1 ∈ A, such that, for all a > a1,

µ(d, sa) > 1/2 and µ(sa, f ) > 1/2.

Thus, for all a > a1,
µ(rd, rsa) > 1/2 and µ(rsa, r f ) > 1/2.

Hence, the directed to the right subset rD of X and the directed to the left subset rF of X satisfy all of
the conditions of the Definition 8 that determine the convergence (rsa)a∈A

o−→ rx.
Let r < 0. We will prove that rD is directed to the left (similarly, it can be proved that rF is directed

to the right). Let rE = {rd1, . . . , rdk} be a finite subset of rD, where E = {d1, . . . , dk} is a finite subset
of D. We will show that rD ∩ L(rE) 6= ∅. Because D is directed to the right subset of X, we have that
D ∩U(E) 6= ∅. The last yields that there exists d ∈ D such that d ∈ U(E) i.e.,

µ(di, d) > 1/2, for all i = 1, . . . , k.
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Therefore, by [3] (Proposition 4.5 (4)),

µ(rd, rdi, ) > 1/2, for all i = 1, . . . , k.

Thus, rd ∈ L(rE) and so rD ∩ L(rE) 6= ∅.
We will prove that ∧rD = rx (similarly, it can be proved that ∨rF = rx). Indeed, by [3]

(Corollary 4.11),

∧rD =
∧

d∈D

(rd) = r

( ∨
d∈D

d

)
= r(∨D) = rx.

Let now rd ∈ rD and r f ∈ rF be arbitrary. By condition (e), there exists a1 ∈ A, such that, for all a > a1,

µ(d, sa) > 1/2 and µ(sa, f ) > 1/2.

Thus, by [3] (Proposition 4.5 (4)), for all a > a1,

µ(r f , rsa) > 1/2 and µ(rsa, rd) > 1/2.

Hence, the directed to the left subset rD of X and the directed to the right subset rF of X satisfy all of
the conditions of the Definition 8 that determines the convergence (rsa)a∈A

o−→ rx.
The case r = 0 is trivial.

4. Coincidence of the Two Notions of Convergence

In this section, we will show that in the special context of complete F-lattices the notion of
o-convergence can be restated in terms of the notions of limit inferior and limit superior, with respect to
the fuzzy order relation, which will be introduced in the sequel. Apart from the fact that o-convergence
is characterized by another form that may be sometimes more useful and convenient, in this way it
can also be shown that it reduces to oF-convergence.

Definition 9. Let (sa)a∈A be a net in a complete F-lattice X. Subsequently, we may define the related nets
(ua)a∈A and (va)a∈A such that

ua =
∧
b>a

sb and va =
∨
b>a

sb.

The limit inferior and the limit superior (or lower limit and upper limit) of the net (sa)a∈A, denoted by lim inf sa

and lim sup sa, respectively, are defined by

lim inf sa =
∨

a∈A
ua =

∨
a∈A

∧
b>a

sb

and
lim sup sa =

∧
a∈A

va =
∧

a∈A

∨
b>a

sb.

Proposition 9. Let (sa)a∈A be a net in a complete F-lattice X. If ua and va are the nets mentioned in
Definition 9, then

(1) µ(ua, sa) > 1/2 and µ(sa, va) > 1/2, for all a ∈ A;
(2) (ua)a∈A is increasing and (va)a∈A is decreasing; and,
(3) µ(lim inf sa, lim sup sa) > 1/2.

Proof. (1) Let a ∈ A be arbitrary. Because ua =
∧

b>a
sb, ua ∈ L({sb : b > a}). Therefore, µ(ua, sa) > 1/2.

Similarly, we can prove that µ(sa, va) > 1/2, for all a ∈ A.
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(2) Let a1, a2 ∈ A be arbitrary and suppose that a1 6 a2. Since ua1 =
∧

b>a1

sb, ua1 ∈ L({sb : b > a1}).

Hence, µ(ua1 , sb) > 1/2, for all b > a1. Therefore, µ(ua1 , sb) > 1/2, for all b > a2, which further implies
ua1 ∈ L({sb : b > a2}). Because ua2 =

∧
b>a2

sb, ua1 ∈ L(ua2) i.e., µ(ua1 , ua2) > 1/2. Similarly, we can

prove that µ(va2 , va1) > 1/2.

(3) By (2) (ua)a∈A is increasing. By Definition 9, lim inf sa =
∨

a∈A
ua, thus (ua)a∈A↑lim inf sa.

By Proposition 4 (1), (ua)a∈A
o−→ lim inf sa. Similarly, we can prove that (va)a∈A

o−→ lim sup sa.
Taking into account (1), transitivity yields µ(ua, va) > 1/2, for all a ∈ A. Therefore, Proposition 5
applies and so, µ(lim inf sa, lim sup sa) > 1/2.

Lemma 1. Let (ua)a∈A be a net in a foset X and a0 ∈ A. Then (ua)a∈A↑x (resp. (ua)a∈A↓x) implies∨
a>a0

ua = x (resp.
∧

a>a0

ua = x).

Proof. Let a0 ∈ A. Because x ∈ U({ua : a ∈ A}), µ(ua, x) > 1/2, for all a ∈ A and thus µ(ua, x) > 1/2,
for all a > a0. Hence, x ∈ U({ua : a > a0}). Let y ∈ U({ua : a > a0}). Fix any a ∈ A. There exists
a1 ∈ A such that a1 > a0 and a1 > a. Then, µ(ua, ua1) > 1/2 and µ(ua1 , y) > 1/2. By transitivity,
µ(ua, y) > 1/2. However, a ∈ A was arbitrarily chosen, thus µ(ua, y) > 1/2, for all a ∈ A i.e.,
y ∈ U({ua : a ∈ A}). Because,

∨
a∈A

ua = x, y ∈ U(x). Therefore,
∨

a>a0

ua = x. The proof of the other

implication is analogous.

Theorem 3. Let (sa)a∈A be a net in a complete F-lattice X and x ∈ X. Subsequently, the following conditions
are equivalent:

(1) (sa)a∈A
o−→ x.

(2) lim inf sa = lim sup sa = x.
(3) (sa)a∈A

oF−→ x.

Proof. (1)⇒ (2) Let (ua)a∈A and (va)a∈A be the nets mentioned in Definition 9 with u =
∨

a∈A
ua and

v =
∧

a∈A
va. Subsequently, By Proposition 9 (2)

(ua)a∈A↑u and (va)a∈A↓v.

It will suffice to prove that u = v = x. We will prove that u = x (analogously, it can be
proved that v = x). By hypothesis there exist a directed to the right subset D of X and a directed
to the left subset F of X such that

(a) ∨D = ∧F = x and
(b) for every d ∈ D and every f ∈ F, µ(d, sa) > 1/2 and µ(sa, f ) > 1/2, eventually.

Let d ∈ D be arbitrary. By condition (b), there exists a1 ∈ A, such that µ(d, sa) > 1/2, for all a > a1

i.e., d ∈ L({sa : a > a1}). Taking into account that
∧

a>a1

sa = ua1 , d ∈ L(ua1). Thus, µ(d, ua1) > 1/2.

Because u =
∨

a∈A
ua, µ(ua, u) > 1/2, for all a ∈ A and so µ(ua1 , u) > 1/2. Consequently, transitivity

yields, µ(d, u) > 1/2. The last conclusion does not depend on the choice of d ∈ D, so µ(d, u) > 1/2,
for all d ∈ D. Thus, u ∈ U(D), which further implies u ∈ U(x). Therefore, µ(x, u) > 1/2.

Now, let f ∈ F be arbitrary. By condition (b), there exists a2 ∈ A, such that, µ(sa, f ) > 1/2,
for all a > a2. Because µ(ua, sa) > 1/2, for all a ∈ A, transitivity yields µ(ua, f ) > 1/2, for all a > a2.
Thus, f ∈ U({ua : a > a2}). By Lemma 1, u =

∨
a>a2

ua which in turn implies that f ∈ U(u). Hence,

µ(u, f ) > 1/2. The last conclusion does not depend on the choice of f ∈ F, so µ(u, f ) > 1/2,
for all f ∈ F. Thus, u ∈ L(F), which further implies u ∈ L(x). Therefore, µ(u, x) > 1/2.
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Consequently, µ(x, u) + µ(u, x) > 1 and, thus, by antisymmetry, u = x.

(2)⇒ (3) Let (ua)a∈A and (va)a∈A be the nets that are mentioned in Definition 9. By hypothesis,∨
a∈A

ua =
∧

a∈A
va = x.

Therefore, (ua)a∈A and (va)a∈A satisfy all of the conditions in the Definition 6, which determines the
convergence (sa)a∈A

oF−→ x.

(3)⇒ (1) See Proposition 3.

5. Conclusions

In the present paper, o-convergence is inserted as a generalization of oF-convergence.
Many of the properties of o-convergence are proved to be much alike the properties of oF-convergence
with the advantage that the notion of o-convergence is, in our opinion, closer to our initiation to the
concept of "convergence". In addition, the coincidence of the two notions is established in the area
of complete F-lattices. Future research options may investigate the notion of o-convergence and its
applications in the context of fuzzy Riesz spaces (see [18]) and, in a more theoretical perspective,
exploring the topological nature of the two notions of convergence and their correlation, while taking
into account the relevant induced topologies, in different types of fosets.
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