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Abstract: The paper offers an approach to the investigation of the dynamics of nonlinear non-stationary
processes with the focus on the risk of dynamic system stability loss. The risk is assessed on the basis
of the accumulated knowledge about power supply system operation. New methods for power
supply modes analysis are developed and applied as follows: linear discrete point knowledge-based
models are developed for nonlinear non-stationary objects; wavelet analysis is used for non-stationary
processes; stability loss risks are analyzed through the investigation of spectral decompositions of
Gramians of these linear predictive models. Case studies are included.

Keywords: process identification; knowledgebase; associative search models; wavelet analysis;
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1. Introduction

In order to gain competitive advantages, industrial enterprises have to modernize their equipment
and introduce modern information technologies. A reliable power supply with consistently high power
quality is key to higher productivity, especially where AC motors are the key consumers. The ability to
predict process approach to stability thresholds is particularly important.

1.1. Problem Background

This study aims at the development of a systematic approach to assessing the risks of dynamic
systems stability loss based on the use of accumulated knowledge about the operation of power supply
systems. It also focuses on new methods for analyzing power supply modes planning. New methods
comprise linear point knowledge-based predictive models for a wide class of nonlinear non-stationary
objects, wavelet analysis and spectral decompositions of Gramians for those linear models.

Matrix Lyapunov equations play an important role in modern mathematics, including
the mathematical control theory [1,2]. The properties of their solutions are closely related with
the structural properties of controllability and observability that should be taken into account when
analyzing the static and transient stability of power systems [3–6]. Spectral methods have been widely
used over the past decades for studying the stability of linear and, to a lesser extent, nonlinear discrete
and continuous systems [7–11]. They are used for reducing the dimension of mathematical models
of power systems (model order reduction, MOR) [8,10,11] and for optimal global control of electric
power systems [3].

Further approaches to solving MOR problems are based on minimizing the square of H2-norm
of the residual and use the solution of the matrix Lyapunov equations [9]. Static and transient
stability in power systems are typically investigated with the help of linear and selective linear modal
analysis [5,11], the method of normal forms NF [3], the method of modal series [6] and the Koopman
Mode Decomposition (KMD) method.

Mathematics 2020, 8, 1943; doi:10.3390/math8111943 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0001-9319-6951
http://www.mdpi.com/2227-7390/8/11/1943?type=check_update&version=1
http://dx.doi.org/10.3390/math8111943
http://www.mdpi.com/journal/mathematics


Mathematics 2020, 8, 1943 2 of 18

1.2. Main Objectives and Research Methodology

The methods listed in the precious subsection are typically used with linear models that is
not always acceptable for many applications. Moreover, the available a priori information about
the control object may be insufficient for achieving the required control performance with the help
of traditional methods. In such cases, the application of intelligent modeling techniques based on
e-learning is preferable, especially for nonlinear, poorly structured or poorly formalized systems.
The development and application of models using knowledge bases for automatic control systems are
becoming increasingly relevant.

The paper shows the possibility of constructing high-precision linear point (i.e., virtual in the “here
and now” sense) models of nonlinear objects capable of describing processes dynamics in electric
power systems. These linear models created anew at each time step use all available information about
the plant both a priori and statistical. This enables the development of high-precision models even for
essentially nonlinear and time-varying systems.

Knowledge can be interpreted as patterns extracted from process data through data mining.
In the approach proposed by the authors, knowledge is formalized in the form of templates of input
and output variables that describe process operation. Thus, our method for analyzing the stability of
nonlinear systems can be briefly formulated as follows.

1. At the first stage, a point (the adjective “point” means here “for a certain time step”) linear
model of a nonlinear process is created. By data mining, the values of the input variables (in the general
case, a vector) are selected from the process history that are close to the current value of the input
variable subject to a certain criterion. The selected values of the historical data correspond to the actual
values of the outputs [12–14]. Further, a consistent system of linear equations is formed. The only
solution to this system by the least squares method gives the values of the linear model coefficients
as well as the forecast of the output at the next time step. The described identification method for
a nonlinear dynamic object may be called “intelligent least squares”.

2. At the second stage, the state of the system described by the point linear predictive model
is investigated. The paper discusses in detail the capabilities of the Gramian method for this
purpose. The main criterion of the system’s state approach to stability threshold is the unlimited
growth of the Frobenius norm for controllability Gramian. To that end, the energy of weakly stable
modes is investigated. It is calculated based on the spectral decomposition of the Gramians or
the spectral decomposition of the quadratic Frobenius norm of the system’s transfer function. We
study the weakly stable eigenvalues of the dynamics matrix of a linear (point) model of a dynamic
system [15–18]. Comparing this energy with the system’s total momentum energy makes it possible to
predict the potential center of unstable oscillation for the trajectories resulting in the cascade failure.
It was ascertained in [16,18] that for this purpose it is enough to investigate the Frobenius norm of
the transfer function.

Another method for studying the stability of a nonlinear system is the analysis of the wavelet
spectrum of its linear model constructed with the help of the associative search technique. The paper
offers a brief description of this approach and stability criteria. This method is less detailed than
the Gramian’s method; however, it gives good results for time varying systems.

Further text is organized as follows.
Section 2 focuses on the associative search models, i.e., the “point” identification models based on

data mining. In Section 2.1, the problem is stated. In Section 2.2, the approach to intelligent model
development based on inductive learning and knowledge formation is discussed.

Associative search procedure is described in Section 2.3, Section 2.4 discusses how the system of
linear equations can be solved in close loop with the LS method, in particular, for control systems with
identifier. Sections 2.5 and 2.6 outline the clustering-based associative search. Section 2.7 describes
the wavelet approach to the associative search technique for time-invariant processes. Section 2.8
investigates the associative model stability conditions in the sense of multi-scale wavelet expansion for
spectrum analysis.
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Section 3 outlines the approach to the stability analysis of predictive model based on
the Gramian method.

Section 4 examines two application cases: automatic remote diagnostics of power system readiness
to general primary frequency control (Section 4.1) and full power prediction (Section 4.2). Finally,
the Conclusion summarizes the main results and achievements.

2. Knowledge-Based Virtual Identification Models Research Methodology

The use of adjustable identification models has been a long-term trend in the identification theory
and applications. The convergence of the empirical distribution functional to the theoretical one with
the sample size increase has been analyzed [19].

Identification methods based on data mining [20] not only helped to overcome the challenges
posed by nonlinear and non-stationary behavior but also increased significantly the accuracy of analysis
and forecasting. Associative search algorithms develop point linear models of nonlinear processes
based on process history analysis. Thus, the dynamic adjustment of identification models is carried
out on the basis of e-learning, knowledge extraction and replenishment.

These intelligent identification algorithms have shown high accuracy results in various applications,
such as chemistry, oil refining, smart grids, and transport systems [21]. To analyze and predict
the stability of dynamical systems, an approach based on the study of multiscale wavelet expansion
can be used [22].

2.1. Predictive Intelligent Model Design Problem Statement

In knowledge-based modeling methods, knowledge is used for the most accurate reproduction of
the object’s image from its fragment [23]. In the associative search method, knowledge is understood as
an associative relationship between images. Set patterns of input and output variables are considered
as images. In [22], a model of associative thinking was presented. The memorization process is
interpreted as a sequential formation of associations of image pairs.

The model can be considered as an intermediate stage between logical models and neural networks.
In our case (associative search), we use pairs of patterns of input and output variables of a dynamic
system. At each time step, a new virtual model is created. In order to build a model for a specific time
step, a temporary “ad hoc” database of historic and current process data is generated. After calculating
the output forecast based on plant’s current state, this database is deleted without saving. The linear
dynamic prediction model looks as follows:

yt = a0 +
r∑

i=1

aiyt−i +
s∑

j=1

P∑
p=1

b j,kxt− j,p ∀ j = 1, S, (1)

where xt is the input vector value; yt is the predicted output value for the next time step; r and s are
the output and input memory depth, accordingly; P is the input vector length.

The identification algorithm forms an approximating hypersurface of the input vector space and
one-dimensional outputs of the dynamic object (Figure 1). The values of the coefficients of the linear
model and the predicted output value are determined on the basis of the least squares method.

In fact, the associative search method simulates the decision-making process of a human operator.
The sum

dt,t− j =
P∑

p=1

bxt,p − xt− j,pc ∀ j = 1, S (2)

can be considered as a metric in the P-dimensional input space, where j is typically less than t; xt,p are
the components of the input vector at the time step t. Source: authors’ illustration.
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2.2. Development of a Virtual Model on the Basis of Associative Search Technique

Assume that for the current input vector xt:∑P

p=1

∣∣∣xt,p
∣∣∣ = dt. (3)

In order to build an approximating hypersurface for xt, we select such vectors xt− j, j = 1, . . . , s
from the input data archive that for a given Dt the following conditions will hold:

dt,t− j ≤ dt +
∑P

p=1

∣∣∣xt− j,p
∣∣∣ ≤ dt + Dt, j = 1, . . . , s. (4)

The 2-D case is presented in Figure 2. Source: authors’ illustration.
If the domain D j selected on the basis of knowledge does not allow constructing a simultaneous

system of linear algebraic equations, the inputs selection criterion is weakened by increasing
the threshold D j.

The purpose of associative search is to restore all features of the object based on the accumulated
set of its images, the “dynamic twins”. Let R0 be the image that initiates the search; R is the resulting
image of the associative search. The pair (R0, R) may be called association. The set of all associations on
a set of images makes the content of the intelligent system’s knowledgebase.

To apply the associative search technique, a preliminary training stage is required, for which
an archive of images is created. The algorithm that implements the Ra image reconstruction procedure
based on R0

a can generally be described by the predicate (R0,i
a, Ri

a, Ta), where R0i
a
⊆ R0, Ri

a
⊆ R.

In particular, this predicate can be a function that asserts the truth or falsity of the input vector
membership in a certain area of the input space.
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2.3. Associative Search Technique in Short-Term Prediction

The associative search technique consists of two sequential stages: (i) the hypersurface is selected in
such way that it contains input vector xt− j, j = 1, . . . , s at the current time step t, and (ii) the hypersurface
is selected from the historical data archive corresponding to xN− j−1, j = 1, . . . , s, contains the input
vector at the previous time step t − 1. The predicate describing the choice will have the form:

Ξ
(
Ra

0, Ra, Ta
)
=


P∑

p=1

∣∣∣xt− j,p
∣∣∣ ≤ Dt −

P∑
p=1

∣∣∣xt,p
∣∣∣; P∑

p=1

∣∣∣xt− j−1,p
∣∣∣ ≤ Dt−1 −

P∑
p=1

∣∣∣xt,p
∣∣∣
. (5)

Within the framework of this approach, there is a possibility to improve the accuracy of
the procedure by increasing the memory, for example, to m steps (m < t):

Ξ
(
Ra

0, Ra, Ta
)
=


∑P

p=1

∣∣∣xt− j,p
∣∣∣ ≤ Dt −

∑P
p=1

∣∣∣xt,p
∣∣∣;∑P

p=1

∣∣∣xt− j−1,p
∣∣∣ ≤ Dt−1 −

∑P
p=1

∣∣∣xt,p
∣∣∣ ; . . .∑P

p=1

∣∣∣xt− j−l,p
∣∣∣ ≤ Dt−l −

∑P
p=1

∣∣∣xt,p
∣∣∣

. (6)

2.4. Solving the System of Linear Equations for the LS Method

The development of identification models with the help associative search algorithms in the closed
loop is, however, not always possible: The control faces the same challenges as the traditional methods
do. Dependent values are used in the closed-loop control; optimal controllers generate linear state
feedbacks that results in the degenerate problem [24]. In this case, one can apply the Moore–Penrose
method and the Singular Value Decomposition (SVD) [25,26] that allows to obtain pseudo-solutions of
a system of linear equations in order to apply the associative search method [22].

2.5. Associative Search Based on Clustering

The search of data making the best fit to the current values of the input variables may be exhaustive.
In order to improve the algorithm performance, one of the clustering methods can be applied. Such
methods allow to determine for the current time step the membership of the current input vector in
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a certain area of the multidimensional space. Further on, when using the associative search technique,
the input vectors close to the current one are selected within a specific cluster.

If the input vector is known to belong to a certain cluster, “close” (similar) vectors are selected
within the cluster Cxi

r , i, and the associative search procedure for Cxi
r , i = 1, . . . , P is applied, where P is

the dimension of the input vector r = 1, . . . ; R is the number of the cluster in the sub-space X ∈ Rp; X is
the set of inputs values:

X =
{
Cxi

r , i = 1, . . . , P, r = 1, . . . , R
}

:
{
x1(t) ∈ Cx1

r , x1(t− 1) ∈ Cx1
r , . . . , x1(t0) ∈ Cx1

r

}
,{

x2(t) ∈ Cx2
r , x2(t− 1) ∈ Cx2

r , . . . , x2(t0) ∈ Cx2
r

}
, . . . ,{

xp(t) ∈ C
xp
r , xp(t− 1) ∈ C

xp
r , . . . , xp(t0) ∈ C

xp
r

}
.

(7)

This approach does not require the knowledge of the nonlinear object structure.

2.6. Clusterizaton and Associative Search

Clustering acts as a convenient learning and pre-learning tool that allows to increase
the computational performance of associative search.

Crisp and fuzzy approaches may be considered. In the first case, each input vector belongs to only
one of the disjoint sets (clusters) of the input space. In case of fuzzy clustering, an object can belong
to several clusters simultaneously with various degrees of confidence. The degree of confidence is
determined by the selected membership function.

The associative search technique is as follows. The current input vector refers to a certain cluster
subject to the criteria of the minimum distance from the center:

min
k

∑K

k=1
‖gk − xN‖

2, (8)

where xN ∈ X is the current input vector of the control plant; gk is the center of the cluster k.
For associative search, the vectors close to the current input vector are selected within this cluster.

If they are not enough, the cluster can be expanded using single-channel methods that combine two
clusters with a minimum distance between members.

2.7. Wavelet Analysis of Time-Varying Processes

The recent years have been seeing the growing popularity of time-variant dynamic process
analysis based on the wavelet transform. The wavelet transform is a generalization of spectral analysis
with respect to Fourier transform. The first works on wavelet analysis examined time series [27];
the method was then considered as an alternative to Fourier transform with frequency localization.

Today, wavelet analysis is extensively used in many areas [28]. The most popular applications
include processing and synthesis of non-stationary signals, information compression and coding, image
processing, and pattern recognition, particularly in medicine. The method is effective for studying
geophysical fields and meteorological time series, as well as for earthquake prediction.

Wavelet analysis is based on a linear transform (called a wavelet transform) made by means of
soliton-like functions (wavelets) that form an orthonormal basis in L2. These basis functions are
localized in a limited area. Therefore, the wavelet transform allows, as against Fourier transform, to
obtain information on local properties of the signal. Wavelets also provide a powerful approximation
tool. They may be used with a minimal number of basis functions for synthesizing the functions that
are poorly approximated by other methods. Wavelet analysis allows you to investigate the properties
of a signal in the time and frequency domains.

The wavelet transform may be used in systems with identifier [29]. The expediency of using
it for the identification of nonlinear systems with unknown time-varying coefficients, which can be
represented as a linear combination of basic wavelet functions, was shown in [30].
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Moreover, to solve identification problems, various wavelet types are used (biorthogonal wavelets,
wavelet frames, wavelet networks, spline wavelets) [31].

2.8. Criteria of Linear System Stability in the Sence of the Spectrum of Multi-Scale Wavelet Expansion Analysis

A multiscale wavelet expansion of an associative predictive model of a nonlinear time-varying
object (1) for the selected detailing level L looks as follows [32]:

x(t) =
N∑

k=1
cx

L,k(t)ϕL,k(t) +
L∑

l=1

N∑
k=1

dx
l,k(t)ψl,k(t),

y(t) =
N∑

k=1
cy

L,k(t)ϕL,k(t) +
L∑

l=1

N∑
k=1

dy
l,k(t)ψl,k(t),

(9)

where L is the depth of the multi-scale expansion (1 ≤ L ≤ Lmax, where Lmax = log2 N∗, and N∗ is
the power of the set of states of the system in the system dynamics knowledgebase); ϕL,k(t) are
scaling functions; ψl,k(t) are the wavelet functions obtained from mother wavelets by means of
tension/compression and shift:

ψl,k(t) = 2l/2ψmother

(
2lt− k

)
. (10)

Haar wavelets are chosen as mother wavelets; l is the level of data detailing; cL,k are the scaling
coefficients, dl,k are the detailing coefficients. The coefficients are calculated by use of the Mallat
algorithm. The object equation is as follows:

N∑
k=1

cy
Lk(t)ϕLk(t) +

L∑
l=1

N∑
k=1

dy
lk(t)ψlk(t) =

N∑
k=1

(
m∑

i=1
aic

y
Lk(t− i)ϕLk(t− i)

)
+

+
L∑

l=1

N∑
k=1

(
m∑

i=1
aid

y
lk(t− i)ψlk(t− i)

)
+

N∑
k=1

 S∑
s=1

rs∑
j=1

bsjcs
Lk(t− j)ϕLk(t− j)

+
+

L∑
l=1

N∑
k=1

 S∑
s=1

rs∑
j=1

bsjds
lk(t− j)ψlk(t− j)

.

(11)

By considering the detailing and approximating parts of (7) separately, we have

dy
lk(t)ψlk(t) =

m∑
i=1

aid
y
lk(t− i)ψlk(t− i) +

S∑
s=1

rs∑
j=1

bsjds
lk(t− j)ψlk(t− j). (12)

The sufficient conditions of the object (1) stability for ∀k = 1, N for the detailing and approximating
coefficients respectively are as follows [33]:

- if m > R, R = max
s=1,S

rs: ∣∣∣amdy
lk(t−m)

∣∣∣ < ∣∣∣dy
lk(t)

∣∣∣,∣∣∣amcy
Lk(t−m)

∣∣∣ < ∣∣∣cy
Lk(t)

∣∣∣, (13)

- if m < R, R = max
s=1,S

rs, then: ∣∣∣∣∣∣ S∑
s=1

bsRds
lk(t−R)

∣∣∣∣∣∣ < ∣∣∣dy
lk(t)

∣∣∣,∣∣∣∣∣∣ S∑
s=1

bsRcs
Lk(t−R)

∣∣∣∣∣∣ < ∣∣∣cy
Lk(t)

∣∣∣, (14)
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- if m = R , 1, R = max
s=1,S

rs, then the condition of the stability for the detailing coefficients:

∣∣∣∣∣∣∣amdy
lk(t−m) +

S∑
s=1

bsmds
lk(t−m)

∣∣∣∣∣∣∣ < ∣∣∣dy
lk(t)

∣∣∣, (15)

for the approximating coefficients:∣∣∣∣∣∣∣amcy
Lk(t−m) +

S∑
s=1

bsmcs
Lk(t−m)

∣∣∣∣∣∣∣ < ∣∣∣cy
Lk(t)

∣∣∣, (16)

- if m = R = 1, R = max
s=1,S

rs, then the condition of the stability for the detailing coefficients:

∣∣∣∣∣∣∣a1dy
lk(t− 1) +

S∑
s=1

bs1ds
lk(t− 1)

∣∣∣∣∣∣∣ < ∣∣∣dy
lk(t)

∣∣∣, (17)

for the approximating coefficients:∣∣∣∣∣∣∣a1cy
Lk(t− 1) +

S∑
s=1

bs1cs
Lk(t− 1)

∣∣∣∣∣∣∣ < ∣∣∣cy
Lk(t)

∣∣∣. (18)

3. Determining Static Stability Degree by Gramian Method

The Gramian method [16] provides an effective tool for analyzing the stability degree of power
systems. It enables the investigation of system dynamics on the basis of a new mathematical technique
for solving Lyapunov and Sylvester equations [16]. The method is based on the decomposition of
the Gramian matrix, which is the solution of Lyapunov or Sylvester equations, into the spectrum of
the matrices of these equations. To study the stability of differential-algebraic equations describing
a power system, the system Gramian is calculated in real time using the asymptotic Frobenius
norms [15].

From the methods used for solving the discrete Lyapunov equation [34], we have chosen the one
offered in [35]. It applies the Fourier transform and z-transform to the discrete Lyapunov equation.
The solution of the Lyapunov equation is an integral in the complex area of the product of resolvents
of two matrices: the dynamics matrix and its transposed and adjoint one.

Therefore, we investigate the stability of the linear model described above. Let the linear stationary
discrete time-invariant system be as follows:

x(k + 1) = Ax(k) + Bu(k), x(0) = 0, (19)

y(k) = Cx(k),

where
x(k) ∈ Rn, u(k) ∈ Rm, y(k) ∈ Rm.

Suppose the matrices Adn×ne, Cdm×ne, Bdn×me are the real ones, where m, n integer positive numbers,
m ≤ n. Suppose that the system (19) is stable, fully controllable and observable; all matrix A eigenvalues
are distinct ones.

The system characteristics in the frequency domain are defined by the transfer function

H(z) =
Mn−1zn−1 + · · ·+ M1z + M0

N(z)
, M j = CA jB. (20)



Mathematics 2020, 8, 1943 9 of 18

The methods of selective modal analysis (SMA) and normal forms (NF) are the closest ones to
our approach. The most generic approach is based on the modal analysis (eigenvalue decomposition,
EVD) and the use of a linearized power system model in the system operating point (SEP).

(1) SMA and NF employ a linear model of an autonomous system, while for the Gramian method,
the model of a system with input actions is used.

(2) The main difficulty of calculations in the NF method is a formation of the initial conditions [15].
In the Gramian method, initial conditions are formed as the values of electrical and/or mechanical
moments; some known input functions may be specified instead.

(3) In the Gramian method, the calculating of stability loss risk is reduced to calculating the sums
of the energy functionals of dominant modes, while in the NF method, nonlinear interaction indices,
which depend on the initial conditions, play the similar role.

(4) Dominant modes in the Gramian method are determined by the participation factor of
the energy functional of the mode in the total value of the square of H2 norm of the power system’s
discrete transfer function [4,9]. The NF method uses nonlinear modal persistence indices for estimating
the extent of dominance of the mode combinations for the third-order continuous approximating model.

(5) Modern electric power systems feature high dimension of the tasks being solved. The main
method for constructing an approximating model for such systems is the interpolation based on the use
of controllability and observability Gramians for linear and bilinear systems [8–10,34].

Suppose that transfer function (20) is strictly proper. Consider the following algebraic discrete
Lyapunov (Stein) equation of the form [34]

APcA∗ + BB∗ = Pc,
A∗PoA + C∗C = Po.

(21)

It is known that the matrix A resolvent decomposition has the form:

[(Iz−A)]−1 =
n−1∑
j=0

z jA jN−1(z), (22)

where N(z) is characteristic polynomial of A. The matrices A j[n×n], called Fadeev matrices [36], can be
defined by means of Fadeev–Leverie algorithms [37]. Suppose that an = 1, An−1 = I.

Then the algorithm has the form

an−k = −
1
k

tr(AAn−k), An−k−1 = −an−kI + AAn−k, k = 1, 2, · · · , n. (23)

The solutions of Equation (19) in the time domain can be defined in the following way [38]:

Pc =
∞∑

k=0

AkBB∗(A∗)k, Po =
∞∑

k=0

(A∗)kC∗CAk. (24)

The solution in frequency domain looks as follows:

Pc =
1

2π

∫ 2π

0

(
e−iθ
−A

)−1
BB∗

(
e−iθ
−A∗

)−1
dθ, (25)

Po =
1

2π

∫ 2π

0

(
e−iθ
−A∗

)−1
C∗C

(
e−iθ
−A

)−1
dθ. (26)

The following variable change eiθ = z is made in the integrals:

Pc =
1

2πi

∫
γ

(
z−1I −A

)−1
BB∗z−1(zI −A∗)−1dz, (27)
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Po =
1

2πi

∫
γ

(
z−1I −A∗

)−1
C∗Cz−1(zI −A)−1dz, (28)

where γ is a unit circle, moving counter-clockwise. Therefore, all eigenvalues are distinct ones, and we
have the following resolvent decomposition:

(Iz−A)−1 =
∑n−1

j=0
∑n

k=1
z j

kA j
.

N(zk)

1
z−zk

,(
Iz−1
−A

)−1
=

∑n−1
j=0

∑n
k=1

z− j
k A j
.

N(zk)

1
z−1−zk

.
(29)

We introduce the following designations:

[
Res(zI −A)−1, z = zk

]
=

z j
kA j

.
N(zk)

= Rk, (30)

BB∗ = Qd =
[
qdρ,k

]
, C∗C = Wd =

[
wdρ,k

]
. (31)

After substituting this formula in Equations (27) and (28) we obtain:

Pc =
1

2πi

∫
γ

∑n

k=1
Rk

1
z− zk

BB∗z−1
(
z−1I −A∗

)−1
dz, (32)

Po =
1

2πi

∫
γ

∑n

k=1
z−1

(
z−1I −A∗

)−1
C∗CRk

1
z− zk

dz. (33)

Let us introduce the following designations for each sub-Gramian:

Pc
k =

1
2πi

∫
γ

Rk
1

z− zk
BB∗z−1

(
z−1I −A∗

)−1
dz, (34)

Po
k =

1
2πi

∫
γ

z−1
(
z−1I −A∗

)−1
C∗CRk

1
z− zk

dz. (35)

The integrands in Equations (34) and (35) are the analytic functions over the whole complex
plane with the exclusion of particular points = zk. By means of the Caushy residue theorem, we have
the Gramians spectral semi-decomposition in following way:

Pc =
∑n

k=1
Pc

k, Pc
k = RkBB∗

[
z−1

(
z−1I −A∗

)−1
]
z−zk

, (36)

Po =
∑n

k=1
Po

k, Po
k =

[
z−1

(
z−1I −A∗

)−1
]
z−zk

C∗CRk. (37)

We transform the matrix
[
z−1

(
z−1I −A∗

)−1
]
z−zk

by using matrix resolvent decomposition to vulgar

fractions [39]: [
z−1

(
z−1I −A∗

)−1
]
z−zk

= 1
zk

lim
z−1→zk

(
z−1
− zk

)(
z−1I −A∗

)−1
=

= 1
zk

[
Res

(
z−1I −A∗

)−1
, z−1 = zk

]
=

n∑
ρ=1

n−1∑
j=0

z− j
ρ A∗j

.
N(zρ)

1
1−zkzρ .

(38)

By substituting the Equations (36) and (37) to the above formulae, we obtain the full decomposition
of the Gramians in the form:

Pc =
∑n

k=1

∑n

ρ=1
Pc

k,ρ, Pc
k,ρ =

∑n−1

η=0

∑n−1

j=0

zηk z− j
ρ

.
N(zk)

.
N

(
zρ

) 1
1− zρzk

A jBB∗A∗η, (39)
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Pc
k,ρ =

1
1− zρzk

RkBB∗Rρ, (40)

Po =
∑n

k=1

∑n

ρ=1
Po

k,ρ, Po
k,ρ =

∑n−1

η=0

∑n−1

j=0

zηk z− j
ρ

.
N(zk)

.
N

(
zρ

) 1
1− zρzk

A∗ηC∗CA j, (41)

Po
k,ρ =

1
1− zρzk

RkC∗CRρ. (42)

Theorem 1. Consider LTI MIMO—the real discrete system with (A, B, C) presentation in the form where
the matrices A, B, C are the real ones. Suppose the system is stable, fully controllable and observable; its transfer
function is strictly proper, and the matrix A eigenvalues are distinct ones.

Then the following matrix equalities hold:

Pc =
1

2πi

∫
γ

∑n

k=1
Rk

1
z− zk

BB∗z−1
(
z−1I −A∗

)−1
dz ∀z : |z| < 1, (43)

Po =
1

2πi

∫
γ

∑n

k=1
z−1

(
z−1I −A∗

)−1
C∗CRk

1
z− zk

dz ∀z : |z| < 1, (44)

Pc
k =

1
2πi

∫
γ

Rk
1

z− zk
BB∗z−1

(
z−1I −A∗

)−1
dz ∀z : |z| < 1, (45)

Po
k =

1
2πi

∫
γ

z−1
(
z−1I −A∗

)−1
C∗CRk

1
z− zk

dz ∀z : |z| < 1, (46)

where Rk is the residue of the matrix A resolvent in the point equal to the matrix eigenvalue.
The Equations (43)–(46) define the semi-decomposition of the infinite controllability and observability
Gramians on the eigenvalues set to belong of unit circle:

Pc =
∑n

k=1

∑n

ρ=1
Pc

k,ρ, Pc
k,ρ =

∑n−1

η=0

∑n−1

j=0

zηk z− j
ρ

.
N(zk)

.
N

(
zρ

) 1
1− zρzk

A jBB∗A∗η ∀z : |z| < 1, (47)

Pc
k,ρ =

1
1− zρzk

RkBB∗Rρ ∀z : |z| < 1, (48)

Po =
∑n

k=1

∑n

ρ=1
Po

k,ρ, Po
k,ρ =

∑n−1

η=0

∑n−1

j=0

zηk z− j
ρ

.
N(zk)

.
N

(
zρ

) 1
1− zρzk

A∗ηC∗CA j ∀z : |z| < 1, (49)

Po
k,ρ =

1
1− zρzk

RkC∗CRρ ∀z : |z| < 1, (50)

and the Equations (39)–(42) define full decomposition of the infinite Gramians on the eigenvalues
set to belong to the interior of the unite circle on complex plane. Expressions for Gramians spectral
decomposition one can simplify Corollary [38]. If all eigenvalues of the matrix A are distinct, then
the matrix can be transformed to diagonal form by means of the similarity transform:

xd = Tx, xd(k + 1) = Λxd(k) + Bdu(k), yd(k) = Cdxd(k),

Λ = TAT−1, Bd = TB, Cd = CT−1,
(51)
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or

A =
[

u1 u2 · · · un
]


z1 0 0 0
0 z2 0

0
. . .

0 0 zn




v∗1
v∗2
...

v∗n

 = T−1ΛT, TV = VT = I, (52)

where matrix T−1 consists of the right eigenvectors ui, and matrix T consists of the left eigenvectors V∗i
corresponding to the eigenvalue s zi. The last equality is a condition for eigenvectors normalization.

The Gramians of diagonalized system are the solution of Lyapunov equations:

ΛPc
dΛ∗+BdB∗d = Pc

d, (53)

Λ∗Po
dΛ + C∗dCd = Po

d, (54)

which are defined from the formulae:

Pc
dk,ρ =

1
1− zρzk

RkBdB∗dRρ ∀z : |z| < 1, (55)

Po
dk,ρ =

1
1− zρzk

RkC∗dCdRρ ∀z : |z| < 1. (56)

The controllability Gramian Pc
d is linked with the Gramian Pc by equation

Pc = T−1Pc
d

(
T−1

)∗
. (57)

The observability Gramian Pc
d is linked with Gramian Pc by similar equation

Po = T∗Po
dT. (58)

We introduce the new designation 1ij for the matrix with all zeros except for the element “ij”,
which is equal to one (1):

1ij =



0 0 · · · 0 0
0 0 0 0
... 0 1 0

...
0 0 0
0 0 · · · 0 0


. (59)

For diagonalized matrix A, the following expressions are valid:

(Iz−Λ)−1 =
∑n

k=1
Rk(z− zk)

−1 =
∑n

k=1
1kk(z− zk)

−1, Rk = 1kk. (60)

Consider the spectral decomposition of the controllability and observability Gramians by pairwise
combinational spectrum of the dynamics matrix. In this case, the Equations (55) and (56) have the form:

Pc
dρ,k =

1
1− zρzk

1ρρQd1kk =
1

1− zρzk
1ρ,kqdρ,k, (61)

Po
dρ,k =

1
1− zρzk

1ρρWd1kk =
1

1− zρzk
1ρ,kwdρ,k. (62)
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Note that the premultiplication of the matrix Qd by the matrix 1ρρ and the post-multiplication by
the matrix 1kk allows us to cut from the matrix its element located in the intersection of the column “k”
and the row “p”. For the diagonalized system, we have the following formulae:

Pc
d =

⊕∑
ρ,k

1ρ,k

qdk,ρ

1− zρzk
, Po

d =
⊕∑

ρ,k
1ρ,k

wdk,ρ

1− zρzk
. (63)

These simple and compact expressions allow to compute sub-Gramians by computing their n2

elements. They are simpler than the common Equations (47)–(50) for Gramian spectral expansion. We
have got spectral separable Gramians decomposition in the form of a direct sum of n2 sub-Gramians
corresponding to the decomposition of controllability and observability Gramians by pairwise
combinational eigenvalues of the dynamics matrix’s spectrum.

As it is known [34], the necessary and sufficient condition for the energy stability of the system in
terms of the square of the H2 norm of the transfer function has the form:

‖G(z)‖22 < +∞. (64)

We define the stability loss risk functional as follows:

J(z1, z2, . . . , zn) = ‖G(z1, z2, . . . , zn)‖
2
2. (65)

As the system approaches the stability threshold caused by the approaching of the characteristic
equation roots to the imaginary axis, the risk functional approaches infinity. Let us define the acceptable
risk of stability loss in the form

J(z1, z2, . . . , zn) = Nperm. (66)

We will consider any system as conditionally unstable if all its roots are in the left half-plane, but
the functional of the stability loss risk exceeds the established acceptable risk value. Accordingly, we
will consider the system conditionally stable if

J(z1, z2, . . . , zn) < Nperm. (67)

The square of the H2 norm of the system transfer function can be calculated by solving the Lyapunov
matrix algebraic equation by means of substituting the known matrices A, B, C into it, while the spectrum
of the matrix A is not required to be calculated. On the other hand, the spectral expansions of the square
of the H2 norm of the system transfer function characterize the separability property of the stability loss
risk functional: It is equal to the sum of terms, each one corresponding either to a separate eigenvalue
of the dynamics matrix, or to their pairwise combination. The energy functional, which allows for only
the weakly stable components of the quadratic forms Jδ, makes it possible to determine the overall risk
of stability loss as well as to estimate the energy stability margin in decibels:

Mst = 10 · lg
Nperm

J
dB ≈ 10 · lg

Nperm

Jδ
dB. (68)

The mathematical model of the system is linear; however, the spectral decomposition of the square
of H2—norm of the power system discrete transfer function takes into account the nonlinear interaction
of modes. The group interaction of modes is limited by taking into account only pairwise combinations
of eigenvalues of the dynamics matrix.

The Gramians method can be used simultaneously for state monitoring and control of large-scale
power systems, in particular, for static stability analysis; for developing stability estimator; for detecting
dangerous free and forced oscillations; and for assessing the resonant interaction of dangerous
oscillations [38,39].
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4. Case Studies

4.1. Automatic Remote Diagnostics of the Readiness for General Primary Frequency Control in a Power System

Dynamic properties of power systems can be analyzed on the basis of the transient mode
monitoring technique implemented in the special equipment for real-time information recording
and transmitting. Modern primary frequency control systems contain digital models of generator
excitation, turbine speed controllers, dynamic load models, and protection and automation models.
In the event of an emergency situation resulting in a voltage drop in the network, all power plants
carry out primary frequency control by changing the power through automatic turbine unit speed
controllers, and the capacity of boilers, nuclear reactors, etc.

Primary frequency control should be carried out by power plants that have the prescribed primary
control characteristics. The participation of a specific power unit in the primary frequency control
is determined by a set of parameters that can change over the equipment life. If the characteristics
of generating facilities do not meet the conventional standards, this can result in the stability loss
of the entire power system in case of high frequency fluctuations. Therefore, it is very important
for the normal operation of the power system to diagnose the current state of the facilities and their
readiness for primary frequency control [21].

The only diagnostic technique available today is inspection test. However, for the entire testing
period, it is required to disable the generation process that is too expensive. We propose a technique
for remote diagnostics of the readiness of generating facilities for primary frequency control per
aggregated responses to sudden frequency changes during normal operation. Check tests include
checking the speed governors for each turbine; joint testing of the power unit; testing a section of a heat
block with a common steam pipe. The main requirements to be met by generating equipment are as
follows:

• The whole of main and auxiliary equipment, automation devices for power units, power plants,
and their operating modes should allow within the prescribed load limits the amplitude of
the primary control up to 20% of the rated power;

• When the power of the turbine unit changes in the range of ±10% of the nominal value, the power
value is formed by the basic and auxiliary equipment, as well as the process automation equipment
of the power unit/station. In this case, the speed governor must provide the specified transient time.

The regulatory control of operating mode parameters (the position of the turbine governor,
the inlet pressure of the steam turbine, etc.) should ensure the proximity of the experimental transient
response of the primary frequency control to the required one (which is verified during certification
tests).

The results of certification tests (empirical transient characteristics and parameter estimates), as
well as the type of turbine, frequency slope and deadband of turbine speed controllers, slopes and
deadbands of frequency shifts of power controllers, altogether make the content of the knowledgebase
of the automatic diagnostic system.

An aggregated dynamic model providing parameter estimates as well as static and dynamic
properties of certain parameters and their relationships is created on the basis of the associative search
technique (Figure 3).

Monitoring the changes in the parameters of associative models for turbine unit identification,
which were developed using the raw data from a real-life power system, makes it possible to identify
and predict negative trends in the operation of a specific unit and the performance of its control system
deteriorating the overall performance of the primary frequency control system. Source: illustration of
authors and collaborators.
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4.2. Full Power Forecast

The data of the overhead power line Kostroma Hydroelectric Power Plant (HPP)—Zagorka
Pumped Storage Plant (PSPP) [21] were used for model development. (PSPP is a hydroelectric power
plant that allows to mitigate daily electrical load changes). Transient monitoring data were collected
using PMUs (Phasor Measurement Units) on 500 kV transmission lines. The sample was taken during
20 ms every 10 min.

We analyze and predict the full power. The load actually imposed on the consumer is described.
This is the load imposed on electrical power elements (wires, cables, cabinets, transformers, power
lines). Full AC power, which determines the currents and voltages, consists of an active component
and inactive components of the power transmitted to the load (reactive, distortion and asymmetry)
and can be expressed as follows:

S(t) = a0 + a1S(t− 1) + b1Ua(t− 1) + b2Ia(t− 1), (69)

where S(t) is the full output forecast; S(t− 1) is the current total power; Ua(t− 1) is the current value of
the phase voltage, Ia(t− 1) is the current phase value of the current, a1, a2, b1—are the model coefficients.

Figure 4 shows the accuracy advantage of the associative model over the traditional linear model.
The conception of the authors and their collaborators was illustrated by Mathlab modeling. Process
forecast was obtained with the help of conventional linear and associative models running for 43.7 s
(2185 time steps, 20 ms per each step).
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5. Conclusions

In this paper, we investigated the possibility of combining associative search identification
technique with the Gramian method for predicting of the approaching of process dynamics to
the stability threshold. A new technique for solving discrete Lyapunov equations based on matrix
equations and semi-expansions of controllability Gramians was developed.

Features and novelty of the Gramian method are as follows:
(1) New methods of elementwise computation of the algebraic Lyapunov equation solution, based

on separable spectral expansions of the controllability and observability Gramians;
(2) New energy criteria for assessing the risk of the loss of electric power systems stability, based

on the identification and analysis of nonlinear effects caused by modes interaction;
(3) The method for identifying any potential swing centers and the forecast of the evolution of

swing processes caused by the interaction of the modes in the linear model.
In the analysis of static and transient stability in power systems, the Gramian method occupies

an intermediate position between the methods of selective modal analysis and normal forms. From
the first one, it differs by the fact that it is actually a nonlinear modal analysis technique because
the spectral expansions of Gramians in pairwise mode combinations include the products of second
order infinitesimals. It also differs from the second one owing to the capability of (i) obtaining a direct
assessment of stability loss risk based on the use of energy functionals and (ii) predicting the evolution
of the stability loss process.

A linear discrete model is developed for predicting the approach of the state of a nonlinear system
to the stability threshold. To build such a model, identification methods and algorithms based on
knowledge formation and analysis are proposed and named associative search algorithms.

It is shown how the proposed method uses data mining for performing dynamic predictive
remote diagnostics for the general primary frequency control in a power system. The application cases
discussed in the paper demonstrate the high accuracy of the estimates obtained with help of associative
search algorithm. The results of the theoretical investigation of identification models, algorithms, and
methods developed by the authors were applied in the Scientific and Technical Center of the Russian
Federal Grid Company.

Before applying the Gramian method, the approach of the system to the stability threshold can
be predicted on the basis of multiresolution wavelet decompositions. The features and novelties of
the proposed associative search algorithms are as follows:

(1) They allow to obtain linear models of nonlinear objects (at any given time step a new model is
developed based on data mining);

(2) The version of algorithms for non-stationary objects is developed on the basis of wavelet analysis;
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(3) New identification models feature high accuracy because they use the maximum of available
information about object operation.

The difficulties of predictive model development and the analysis of their stability for electric
power systems requires a systematic approach. Therefore, combining the methods proposed by
the authors for constructing identification models with Gramians methods for stability studying at
the stages of planning, monitoring, management, and optimization provides a synergistic effect and
opens up a wider application outlook.
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