
mathematics

Article

Cure Models with Exponentiated Weibull Exponential
Distribution for the Analysis of Melanoma Patients

Mohamed Elamin Abdallah Mohamed Elamin Omer 1,*, Mohd Rizam Abu Bakar 1,
Mohd Bakri Adam 1,2 and Mohd Shafie Mustafa 1

1 Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia;
drrizam@gmail.com (M.R.A.B.); pmbakri@gmail.com (M.B.A.); msputra@gmail.com (M.S.M.)

2 Institute of Mathematical Research, Universiti Putra Malaysia, Serdang 43400, Malaysia
* Correspondence: gs51602@student.upm.edu.my; Tel.: +60-1121368001

Received: 31 August 2020; Accepted: 29 September 2020; Published: 2 November 2020
����������
�������

Abstract: In the survival data analysis, commonly, it is presumed that all study subjects will eventually
have the event of concern. Nonetheless, it tends to be unequivocally expected that a fraction of
these subjects will never expose to the event of interest. The cure rate models are usually used to
model this type of data. In this paper, we introduced a maximum likelihood estimates analysis for
the four-parameter exponentiated Weibull exponential (EWE) distribution in the existence of cured
subjects, censored observations, and predictors. Aiming to include the fraction of unsusceptible
(cured) individuals in the analysis, a mixture cure model, and two non-mixture cure models—bounded
cumulative hazard model, and geometric non-mixture model with EWE distribution—are proposed.
The mixture cure model provides a better fit to real data from a Melanoma clinical trial compared to
the other two non-mixture cure models.

Keywords: survival analysis; cure fraction models; exponentiated Weibull exponential distribution;
maximum likelihood method; right-censored data

1. Introduction

In survival analysis, the Weibull distribution is broadly used in cancer research studies [1] since
its hazard function is adjustable and it is easy to estimate its parameters. Nevertheless, datasets
in medicine studies commonly need more advanced parametric models. Therefore, to accomplish
this objective, Weibull distribution has been extended to new classes of parametric distributions,
for instance, the exponentiated Weibull [2], the generalized modified Weibull [3], and the exponentiated
Weibull exponential distributions [4]. Furthermore, another popular circumstance in the survival
data analysis happens, especially in cancer studies, when a portion of individuals is not exposed to
the event of concern. For this situation, if the distribution of survival time for susceptible patients is
specified, researchers usually prefer cure fraction models to parametric models. Cure fraction models
play an important role in the analysis of survival data with long-term survivors and are considered as
an extended version of the ordinary survival models. These models have been an object of research
since the 1940s. The two main classes of the cure fraction models are mixture and non-mixture cure
models. The assumption of the mixture cure model is that the population is divided into two groups,
namely unsusceptible (cured) and susceptible (uncured). The mixture cure model was first suggested
by Boag [5] and, after three years, Berkson and Gag [6] developed it further. Many researchers
have extensively studied the mixture cure model, for instance, Farewell [7], Goldman [8], Kuk and
Chen [9], Taylor [10], Maller and Zhou [11], Peng and Dear [12], Zhang and Peng [13] and Patilea and
Van Keilegom [14], among others. Chen et al. [15] suggested that the proportional hazard property for
the entire population is not validated by the mixture cure model. On the contrary, the non-mixture cure
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model was suggested to verify this property for all observations, while enabling the direct inference
of the predictors of the probability of being cured [16,17]. In their analysis of the previous study on
the bounded cumulative hazard model using statistical inference, Tsodikov et al. [18] pointed out
that the bounded cumulative hazard model is simple in terms of computations, has a meaningful
biological interpretation, and its structure is flexible for the survival function that could provide some
technical advantage when designing procedures for maximum likelihood estimation. The literature
has suggested various approaches to model the non-mixed cure model, see [19–22].

Cooner et al. [23] developed a unifying versatile family of cure models using latent activation
schemes. They provided the generalization for the bounded cumulative hazard model formula and
stated the marginal distribution of T as

S(t) = EN[P(T ≥ t
∣∣∣N)] = m[log(SN(t))], (1)

where EN(.) is the expectation calculated over N,SN(t) is a survival function of Z̃1, . . . , Z̃N latent event
times, N denotes the number of colognes cells, and it can have any distribution with finite-mean
integer-values, m(.) is the respective moment generating function (mgf), m(t) = E

(
etN

)
and a cure

rate defined by Pr(N = 0) = m(−∞). Based on work in [23], further possibilities for the distributions
of N beyond the Poisson distribution can be assumed, such as the geometric and negative binomial
distributions.

When modelling survival data with cured possibility, researchers are concerned about the
specification of distribution for the survival times of susceptible subjects, and the effect of independent
variables on cure rate and survival times. These two issues are very important in the analysis of
lifetime data. Cure fraction models can be applied for the analysis of the lifetime data in the existence
of cured subjects, and factors affecting the probability of being cured. An appropriate distribution for
survival times needs to be specified. Disregarding this specification may result in unreliable parameter
estimations. For survival data with cured possibility, and the ability to identify a suitable distribution
for survival time, cure fraction models are preferable to classical survival models.

The literature presents detailed research on cure fraction models regarding the choice of the best
model that fits the data and influences of covariates on the probability of being cured and survival
times of susceptible individuals. For more details on the effect of covariates on the response variable,
we refer the reader to [24–26]. Several works comparing the cure models’ performance regarding the
predictors’ effects on the cure fraction and survival times were done under the mixture cure model
and the bounded cumulative hazard model. However, a few other formulations of non-mixture cure
models have been employed. Therefore, in the present study, we propose a cure fraction model with
more flexible distribution for survival times and a geometric distribution for the latent variable.

In this article, we compare the performance of the mixture cure model, the bounded cumulative
hazard model, and the geometric non-mixture cure model based on exponentiated Weibull
exponential [4], which is flexible to accommodate different forms of the failure rate function.
For illustration, we use a melanoma dataset E1684, which is available in R package smcure [27],
considering the existence of the cure rate, censored observations, and predictors. Statistical analysis of
this data is performed under the maximum likelihood estimation technique.

This study aims to specify uncured melanoma patients’ survival times, to discuss the effects of
predictors on cure rate and survival times simultaneously, and to contribute to this growing area of
research by exploring the usefulness of the EWE distribution for the analysis of right-censored data.

The rest of the paper is outlined as follows. In Section 2, we describe a melanoma dataset.
Section 3 introduces the mixture cure model, the bounded cumulative hazard model, and the geometric
non-mixture cure models. Section 4 presents the EWE distribution and particular cases related to it.
The log-likelihood functions of the three proposed cure models are derived in Section 5. The model
choice is explained in Section 6. In Section 7, we report on the results obtained from the maximum
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likelihood estimation approach considering all cure models of interest fitted over the melanoma data.
We present a discussion in Section 8.

2. Melanoma Data

Melanoma is a dangerous form of skin cancer that starts in cells called melanocytes cells.
The incidence of melanoma rises at a rate beyond all solid tumors. In the United States, the overall
incidence of melanoma is estimated at 22.7 per 100,000 persons [28]. According to [29], 100,350 people
are estimated as new cases, and 6850 people are expected to die due to melanoma in 2020. Nonetheless,
in recent years, the chances of cure for patients with melanoma have increased due to the earlier
diagnosis and development of treatment and surgical techniques. It is worth mentioning that recent
research indicates that applying oleocanthal obtained from olive oil to human malignant melanomas
found that it had anti-cancer activity, suggesting that olive oil potentially helps protect against skin
cancer [30]. For more details about the olive oil industry, see [31]. Even though the majority of
melanoma patients are cured by their initial therapy, it is unattainable to differentiate them from
uncured patients. Therefore, it is of great importance to precisely estimate the probability of being
cured to plan further treatment to improve the survival of uncured melanoma patients.

In this study, we consider E1684 phase III melanoma data which is obtained from a clinical trial
conducted by the Eastern Cooperative Oncology Group (ECOG). This trial was a two-arm clinical trial:
high-dose interferon alpha−2b (IFNα− 2b) versus control (Observe). A total of 284 patients participated
in this trial, of whom 113 (40%) were female. Of the total number of patients, 144 (51%) were exposed to
the IFN treatment, and we found that 196 (69%) of patients experienced cancer relapse. The remaining
individuals were right-censored. For more details about these data, see Kirkwood et al. [32].

Figure 1a displays the overall survival curve of the melanoma data, which was obtained based on
the Kaplan–Meier technique; the existence of a “plateau” near to 0.3 in the curve suggests that a cure
fraction model is appropriate for the analysis of these data. The graph in Figure 1b shows survival
curves for the two types of treatment where steady plateaus can be seen at the right tail for each curve,
and this also confirms the efficacy of the cure model approach.
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Figure 1. (a) Overall survival curve obtained by Kaplan–Meier approach for the e1684 data; (b) Survival
curves for the two types of treatments.

The literature shows different studies related to the analysis of the melanoma data E1686.
For example, in the works of [15,23], it was presumed that the predictors only influence the cure
fraction, while Kutal and Qian [22] did not consider the covariates in their analysis. Here, we link the
covariates with both cure rate and survival times to discuss their effect on the probability of being
cured and the survival time of susceptible patients.
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3. Cur Models

In the literature, there are two main types of cure models that have been suggested to fit lifetime
data in medical studies, namely, mixture cure and non-mixture cure models. These models can be
applied for the analysis of real-life data in fields other than the medical field, for instance, in economics,
reliability, criminology, sociology education, and marketing, among others. The modelling approach
varies based on the researcher’s event of interest; the common idea is to observe time until the event,
but for some subjects, the event will never occur.

In this section, we introduce the mixture cure model and two different formulations of the
non-mixture cure model.

3.1. Mixture Cure Model

A mixture cure model (MCM) is a common approach for modelling data with long-term survivors.
The advantage of the MCM is that it enables covariates to have different effects on patients who are
cured and on the survival times of susceptible patients. On the other hand, this model cannot verify
the property of proportional hazard functions. Besides, the MCM does not appear to have a biological
interpretation meaning, especially in the cancer recurrence studies.

Let T denote the event’s time occurrence and let $ ∈ (0, 1) be a probability of being cured.
Furthermore, for susceptible subjects, assume that S∗(t) and f ∗(t) are survival and density functions,
respectively. Thus, the entire population survival function is

Smcm(t) = $+ (1−$)S∗(t), (2)

and the corresponding probability density function is fmcm(t) = (1−$) f ∗(t).
For S∗(t), different parametric distributions can be chosen, for instance, exponential, Weibull

and Fréchet.
Suppose we have a random sample of size m, and we observe the pair (t j, δ j) in which δ j represents

the censoring indicator variable that takes the values zero and one for censored and uncensored
observations, respectively, and j = 1, . . . , m. Considering MCM model (2), the likelihood function is

Lmcm =
m∏

j=1

[(1−$) f ∗(t j)]
δ j [$+ (1−$)S∗(t j)]

1−δ j . (3)

3.2. Bounded Cumulative Hazard Model (BCH)

Suggested by Yakovlev et al. [33], the BCH model provides a different method to model a cure
fraction. The mathematical definition of the BCH model shows that this model has a bounded
cumulative hazard function, and its survival function takes the form

Sbch(t) = $F∗(t) = exp[ln($)F∗(t)], (4)

where F∗(t) = 1− S∗(t) is the cumulative distribution function. For the BCH model (4), the likelihood
function is

Lbch =
m∏

j=1

[h(t j)]
δ j [S(t j)] =

m∏
j=1

[− ln($) f ∗(t j)]
δ j$F∗(t j) , (5)

in which h(.) is the hazard function.

3.3. Geometric Non-Mixture Cure Model

Following Cooner et al. [23], we assume that after the patient is exposed to genetic spoilage, his
body produced N mutated cells/tissues before the activation of the immune system. If the probability
of producing each new mutated cell is 1 − γ an efficient immune system able to devastate the last
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mutated cell to pause the process of mutation, then N has a geometric distribution with probability
mass function P(N = n) = (1− γ)γn, n = 0, 1, 2, . . . and mean γ/(1− γ). The corresponding mgf, m(t)
may be derived as follows

m(t) = E[exp(tN)]

=
∞∑

n=0
exp(tn)(1− γ)γn

=
∞∑

n=0
(1− γ)(γ exp(t))n =

(1−γ)
1−γ exp(t) .

(6)

Let
{
Z̃h

}N

h=1
be the independently and identically distributed promotion times of N mutated cells

remaining in the body and T = min1≤h≤NZ̃N; then, from Equations (1) and (6), we have

Sgnm cm(t) = EN[Pr(T ≥ t
∣∣∣ N)]

= m[log SN(t)] =
(1−γ)

1−γ exp(log SN(t))

=
(1−γ)

1−γSN(t) ,

(7)

which is the survival function of the entire population. In this case, the cure fraction$ can be defined as

$ = Pr(N = 0) = m(−∞) = (1− γ).

In what follows, we refer to the model in (7) as a geometric non-mixture cure model (GNMCM)
and we have SN(t) = S∗(t). Considering the GNMCM, the probability density function for the lifetime
T is given by

fgnmcm(t) = − d
dt Sgnmcm(t)

= γ(1− γ) f ∗(t)[1− γS∗(t)]−2,

and the respective risk function takes the form

hgnmcm(t) = − d
dt log[Sgnmcm(t)]

= γ f ∗(t)[1− γS∗(t)]−1.

Moreover, the likelihood function for GNMCM is

Lgnmcm =
m∏

j=1

[
hgnmcm(t j)

]δ j[
Sgnmcm(t j)

]
=

m∏
j=1

[
γ f ∗(t j)

1−γS∗(t j)

]δ j[ (1−γ)
1−γS∗(t j)

]
=

m∏
j=1

[
(1−$) f ∗(t j)

1−(1−$)S∗(t j)

]δ j[
$

1−(1−$)S∗(t j)

]
.

(8)

The GNMCM is appealing in many respects. First, it has a biologically meaningful interpretation;
second, its hazard function has an interesting structure. In contrast to the BCH model, the hazard ratio
is not constant over time.

4. Exponentiated Weibull Exponential Distribution (EWE)

Let us assume the EWE as a distribution of the susceptible subjects’ survival time. This distribution
has the following density function

f (t) =
aαζφ[eφt

−1]
ζ−1

exp
{
−

[
α(eφt

−1)
ζ
−φt

]}
{
1−exp

[
−α(eφt−1)

ζ
]}1−a , t > 0, (9)
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where a, ζ > 0 represents two shape parameters and α,φ > 0 are the two scale parameters.
Elgarhy et al. [4] proposed this distribution, which is adequate for accommodating different hazard
failure function shapes, including those that are bathtub-shaped. The survival function of EWE
distribution may be written as

S(t) = 1−
{
1− exp

{
−α[exp(φt) − 1]ζ

}}a
.

The EWE distribution is denoted by X ∼ EWE(a,α, ζ,φ) and its risk function takes the form

h(t) =
aαζφ(eφt

−1)
ζ−1

exp
{
−

[
α(eφt

−1)
ζ
−φt

]}
{
1−

{
1−exp

[
−α(eφt−1)ζ

]}a}{
1−exp

[
−α(eφt−1)ζ

]}1−a .

Equation (10) contains different sub-distributions of EWE distribution Elgarhy et al. [4]. These distributions
are given as follows:

• Exponentiated exponential exponential (EEE): when ζ = 1, the Equation (10) reduces to the
probability density function of an EEE, which is

fEEE(t) =
aαφ exp

{
−[α(eφt

−1)−φt]
}

{
1−exp[−α(eφt−1)]

}1−a .

• Exponentiated Rayleigh exponential (ERE): when we substitute ζ = 2 in the Equation (10), we have

fERE(t) =
2aαφ(eφt

−1) exp
{
−

[
α(eφt

−1)
2
−φt

]}
{
1−exp

[
−α(eφt−1)

2
]}1−a ,

which expresses the density function of an ERE distribution;
• Weibull exponential (WE): when a = 1, the Equation (10) becomes the probability density function

of the WE distribution, which is

fWE(t) = αζφ
(
eφt
− 1

)ζ−1
exp

{
−

[
α
(
eφt
− 1

)ζ
−φt

]}
.

Oguntude et al. [34] discuss the statistical properties of the WE distribution;
• Exponential exponential (EE): if a = 1 and ζ = 1 in the Equation (10), we have

fEE(t) = αφ exp
{
−

[
α
(
eφt
− 1

)
−φt

]}
,

which is the probability function of an EE distribution;
• Rayleigh Exponential (RE): this is special case of the EWE distribution when a = 1 and ζ = 2.

Its density function is given by

fRE(t) = 2αφ
(
eφt
− 1

)
exp

{
−

[
α
(
eφt
− 1

)2
−φt

]}
.
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5. The Log-Likelihood Functions

Let Ω = ($, a,α, ζ,φ)′ and assume the MCM (2), then the log-likelihood function for Ω is

lmcm(Ω) = ln(1−$)
m∑

j=1
δ j + [ln(a) + ln(α) + ln(ζ) + ln(φ)]

m∑
j=1

δ j

+(ζ− 1)
m∑

j=1
δ j ln

(
eφt j − 1

)
+

m∑
j=1

δ j

[
−α

(
eφt j − 1

)ζ
+ φt j

]
+(a− 1)

m∑
j=1

δ j ln
{
1− exp

[
−α

(
eφt j − 1

)ζ]}
+

m∑
j=1

(
1− δ j

)
ln

{
$+ (1−$)

[
1−

(
1− exp

{
−α

[
eφt j − 1

]ζ})a]}
.

(10)

The log-likelihood function for Ω under the BCH (4) can be expressed as

lbch(Ω) = ln(− ln($))
m∑

j=1
δ j + [ln(a) + ln(α) + ln(ζ) + ln(φ)]

m∑
j=1

δ j

+(ζ− 1)
m∑

j=1
δ j ln

(
eφt j − 1

)
+

m∑
j=1

δ j

[
−α

(
eφt j − 1

)ζ
+ φt j

]
+(a− 1)

m∑
j=1

δ j ln
{
1− exp

[
−α

(
eφt j − 1

)ζ]}
+ ln($)

m∑
j=1

{
1− exp

[
−α

(
eφt j − 1

)ζ]}a
.

(11)

Moreover, regarding the GNMCM model (6), the log-likelihood function for Ω may be written as

lgnmcm(Ω) = ln(1−$)
m∑

j=1
δ j + [ln(a) + ln(α) + ln(ζ) + ln(φ)]

m∑
j=1

δ j

+(ζ− 1)
m∑

j=1
δ j ln

(
eφt j − 1

)
+

m∑
j=1

δ j

[
−α

(
eφt j − 1

)ζ
+ φt j

]
+(a− 1)

m∑
j=1

δ j ln
{
1− exp

[
−α

(
eφt j − 1

)ζ]}
+

m∑
j=1

ln($)

−

m∑
j=1

δ j ln
{
1− (1−$)

[
1−

(
1− exp

{
−α

[
eφt j − 1

]ζ})a]}
−

m∑
j=1

ln
{
1− (1−$)

[
1−

(
1− exp

{
−α

[
eφt j − 1

]ζ})a]}
.

(12)

Furthermore, for these three cure models, we assume that the probability of being cured is “$”
and the shape parameter “a” could be linked to a vector of covariates q = (q1, . . . , qk) by substituting
“$”and “a” in the expressions (11)–(13) by

$ j = 1/
{
1 + exp

[
−

(
u0 + u1q1 j + u2q2 j + . . .+ ukqkj

)]}
(13)

and
a j = exp

(
γ0 + γ1q1 j + γ2q2 j + . . .+ γkqkj

)
, (14)

where (u0, u1, . . . , uk) and (γ0,γ1, . . . ,γk) are two sets of unknown coefficients.

6. Model Choice

The comparison between MCM, BCH model and GNMCM based on different distributions
was evelauated by applying the Akaike Information Criteria (AIC) proposed by [35], the Bayesian
Information Criteria (BIC) introduced by [36], and Hannan-Quinn Information Criteria (HQIC)
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suggested by [37]. A smaller value of information criteria indicates a preferable model fit. The AIC,
BIC and HQIC are defined as follows

AIC = −2 ln[L(Ω)] + 2k, BIC = −2 ln[L(Ω)] + k ln(m) and
HQIC = −2 ln[L(Ω)] + 2k ln[ln(m)],

where L(Ω) is the likelihood function, k represents the number of free parameters in the model, and m
is the number of observations.

7. Results

In Tables 1–3, we have the maximum likelihood estimates, standard errors, and information
criterion values for AIC, BIC, and HQIC obtained by MCM, the BCH model, and GNMCM based on
the probability distributions of interest considering the melanoma data and not including covariates,
respectively. From Table 1, it is apparent that the smallest values of selection criteria are provided by
EWE distribution, which indicates that the MCM based on this distribution is the preferable model
compared with EEE, ERE, WE, and RE distributions. Considering Table 2, it is clear that the BCH model
with EWE distribution is the best in comparison with the other parametric distributions. Using the
results in Table 3, we note that the GNMCM based on EWE distribution also provides a better fit to
the data compared with the other particular cases of EWE distributions. Assuming EWE distribution,
and comparing MCM, the BCH model, and GNMCM, we observe similar results, which indicates that
the three cure models fit the data equally. Therefore, the GNMCM is a good candidate to be considered.
However, the MCM illustrates slightly better results, which indicates that this model provides a better
fit to the data compared with the BCH model and GNMCM. These conclusions are demonstrated in
Figures 2 and 3.

Table 1. Results of maximum likelihood estimates, considering the mixture cure model (MCM) for
e1684 data without covariates.

Model Parameter Estimate SE AIC BIC HQIC

Exponentiated Weibull exponential
(EWE)

a 36.6333 3.0515 746.73 764.98 754.05
α 10.6678 2.9226
ζ 0.2245 0.0157
φ 0.0192 0.0240
$ 0.2746 0.0310

Exponentiated exponential exponential
(EEE)

a 0.9341 0.0892 773.90 788.49 779.75
α 79.7462 3.3616
φ 0.0106 0.0012
$ 0.3008 0.0277

Exponentiated Rayleigh exponential
(ERE)

a 0.3038 0.0243 812.40 826.99 818.25
α 114.6477 2.4514
φ 0.0320 0.0023
$ 0.3007 0.0277

Weibull exponential
(WE)

α 63.6647 7.8138 771.22 785.82 777.07
ζ 0.9051 0.0508
φ 0.0094 0.0027
$ 0.2985 0.0279

Exponential exponential
(EE)

α 42.0198 7.9631 773.33 784.28 777.72
φ 0.0209 0.0041
$ 0.3017 0.0277

Rayleigh Exponential
(RE)

α 583.4913 2.9729 1095.92 1106.86 1100.30
φ 0.0235 0.0008
$ 0.3030 0.0275
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Table 2. Results of maximum likelihood estimates, considering the bounded cumulative hazard (BCH)
model for e1684 data without covariates.

Model Parameter Estimate SE AIC BIC HQIC

Exponentiated Weibull exponential
(EWE)

a 28.3822 4.7037 747.34 765.59 754.66
α 10.4742 4.3050
ζ 0.2201 0.0204
φ 0.0082 0.0160
$ 0.2656 0.0335

Exponentiated exponential exponential
(EEE)

a 1.0809 0.0940 764.31 778.90 770.16
α 89.2253 5.0486
φ 0.0077 0.0011
$ 0.2932 0.0277

Exponentiated Rayleigh exponential
(ERE)

a 0.3735 0.0257 793.19 807.79 799.05
α 25.8418 1.7292
φ 0.0555 0.0047
$ 0.2779 0.0271

Weibull exponential
(WE)

α 48.5827 16.1932 765.29 779.89 771.14
ζ 0.9998 0.0553
φ 0.0129 0.0053
$ 0.2933 0.0279

Exponential exponential
(EE)

α 69.2621 5.6978 763.16 774.11 767.55
φ 0.0091 0.0012
$ 0.2934 0.0280

Rayleigh Exponential
(RE)

α 590.7876 4.2111 1010.19 1021.14 1014.58
φ 0.0214 0.0008
$ 0.2426 0.0251

Table 3. Results of maximum likelihood estimates, considering the geometric non-mixture cure model
(GNMCM) for e1684 data without covariates.

Model Parameter Estimate SE AIC BIC HQIC

Exponentiated Weibull exponential
(EWE)

a 41.1013 4.0777 746.74 764.99 754.06
α 4.3889 0.7884
ζ 0.1769 0.0167
φ 0.3142 0.2804
$ 0.2871 0.0344

Exponentiated exponential exponential
(EEE)

a 1.2516 0.1018 756.94 771.54 762.80
α 58.9720 6.9200
φ 0.0092 0.0018
$ 0.2876 0.0281

Exponentiated Rayleigh exponential
(ERE)

a 0.4902 0.0321 771.52 786.12 777.37
α 92.8296 0.8239
φ 0.0284 0.0029
$ 0.2711 0.0266

Weibull exponential
(WE)

α 49.6468 3.6326 759.39 773.98 765.24
ζ 1.1371 0.0627
φ 0.0143 0.0037
$ 0.2882 0.0281

Exponential exponential
(EE)

α 8.0216 19.1489 762.05 772.99 766.44
φ 0.0480 0.1125
$ 0.2929 0.0299

Rayleigh Exponential
(RE)

α 551.1492 4.2086 908.94 919.88 913.32
φ 0.0188 0.0009
$ 0.1845 0.0209
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Figure 2 illustrates the Kaplan–Meier curves with predicted survival curves (results from
Tables 1–3). From this figure, we observe that the estimated curves obtained by MCM, BCH model and
GNMCM based on the EWE distribution (top left panel) are very close to the curves of Kaplan–Meier,
compared to all other distributions, suggesting that the EWE distribution provides a better fit to the
data. Moreover, WE, EE, and ER distributions, after we exponentiated them, became EWE, EEE,
and ERE, respectively. They significantly improve the estimation of the survival function; this can be
seen clearly in the case of RE and ERE distributions.Mathematics 2020, 8, x FOR PEER REVIEW 11 of 16 

 

 
Figure 2. Estimated survival curves for the melanoma data obtained from the MCM, BCH and 
GNMCM based on the EWE distribution and its special cases. For comparison purpose, curves of 
Kaplan–Meier estimates are displayed in all plots. 

Plots of survival curves obtained by the Kaplan–Meier approach versus respective predicted 
survival values obtained by MCM, BCH and GNMCM based on EWE distribution are depicted in 
Figure 3. There is no significant difference between the graphs in the three panels, which illustrates 
that these three cure models based on EWE distribution equally fit the data. 

 
Figure 3. Plots of the Kaplan–Meier estimates for the survival functions versus the respective 
estimated survival values provided by MCM, BCH and GNMCM based on the EWE distribution. An 
ideal consent between the predicted survival values and Kaplan–Meier estimates is represented by 
the diagonal straight lines. 

To discuss the effect of the predictors on the probability of cure and survival function shape, 
three covariates, sex (zero for male, 1 for female), treatment (zero for Observe group, 1 for IFN 
treatment group) and age, are linked to the cure fraction “ϖ ” and the shape parameter “ a ” using 
the expressions (14) and (15). Therefore, we have 

( ){ }1 1 2 2 3 31 / 1 expϖ  = + − + + + j j j ju u q u q u q
 

 

and 
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based on the EWE distribution and its special cases. For comparison purpose, curves of Kaplan–Meier
estimates are displayed in all plots.

Plots of survival curves obtained by the Kaplan–Meier approach versus respective predicted
survival values obtained by MCM, BCH and GNMCM based on EWE distribution are depicted in
Figure 3. There is no significant difference between the graphs in the three panels, which illustrates
that these three cure models based on EWE distribution equally fit the data.
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To discuss the effect of the predictors on the probability of cure and survival function shape,
three covariates, sex (zero for male, 1 for female), treatment (zero for Observe group, 1 for IFN treatment
group) and age, are linked to the cure fraction “$” and the shape parameter “a” using the expressions
(14) and (15). Therefore, we have

$ j = 1/
{
1 + exp

[
−

(
u◦ + u1q1 j + u2q2 j + u3q3 j

)]}
and

a j = exp
(
γ◦ + γ1q1 j + γ2q2 j + γ3q3 j

)
, (15)

where q1 j denotes the patient gender, q2 j for the treatment type and q3 j is the age of the patient. Table 4
presents the maximum likelihood estimates, 95% confidence intervals, and information criterion values
obtained by the MCM, BCH, and GNMCM based on the EWE distribution for the melanoma data with
covariates. From this table, we note that the values of each one of three selection criteria are quite
similar, meaning that these models likely fit the data equally. However, the MCM model provides
a better fit to the data compared to the BCH model and GNMCM. Moreover, the 95% confidence
intervals for u2, in the three cure models, do not include the value of zero, which indicates that the
IFN treatment has a significant influence on the cure rate. The predictors, namely, sex and age, do not
significantly affect the cure rate and the shape of the survival function.

Since the MCM based on EWE distribution shows a better fit for the melanoma data (with and
without covariates) compared with the BCH model and GNMCM, we focus on the MCM model to
analyze these data further. Figure 4a presents the predicted population survival curves provided
by MCM with EWE distribution, where the respective estimated susceptible survival functions are
illustrated in Figure 4b (values of Table 4). There is a significant dissimilarity in the population survival
functions between treatment groups. Similar conclusions could be drawn if we consider the two
non-mixture cure models (BCH and GNMCM).
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Figure 4. (a) Predicted population survival functions between groups calculated at median value of
AGE; (b) predicted survival function of the uncured patients between groups, considering e1684 data.

Table 4. Maximum likelihood estimate results, obtained by MCM, BCH and GNMC models with the
EWE distribution for the melanoma data, and the covariates are linked all to the cure fraction parameter
“$” and the parameter of shape “a”.

Model Parameter Estimate 95% CI AIC BIC HQIC

MCM γ0(intercept) 15.9907 (15.6206, 16.360) 745.54 785.68 761.63
γ1(sex) −0.0049 (−0.2918, 0.2821)

γ2(treatment) 0.2747 (−0.0086, 0.558)
γ3(age) 0.0003 (−0.0116, 0.012)
α 17.4105 (17.3947, 17.4262)
ζ 0.0468 (0.0395, 0.0541)
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Table 4. Cont.

Model Parameter Estimate 95% CI AIC BIC HQIC

φ 0.4450 (0.4318, 0.4583)
u0(intercept) −1.2486 (−1.7325, −0.7648)

u1(sex) 0.0410 (−0.5226, 0.6045)
u2(treatment) 0.5846 (0.0300, 1.1393)

u3(age) −0.0146 (−0.0361, 0.0068)

BCH γ0(intercept) 16.2160 (15.8938, 16.5382) 746.71 786.85 762.80
γ1(sex) −0.0002 (−0.2550, 0.2547)

γ2(treatment) 0.1746 (−0.0787, 0.4279)
γ3(age) 0.0018 (−0.0088, 0.0124)
α 16.8090 (16.792, 16.826)
ζ 0.0387 (0.0319, 0.0454)
φ 0.5793 (0.5542, 0.6045)

u0(intercept) −1.1960 (−1.6561, −0.7360)
u1(sex) 0.0320 (−0.5001, 0.5642)

u2(treatment) 0.5254 (0.0041, 1.0468)
u3(age) −0.0106 (−0.0306, 0.0094)

GNMCM γ0(intercept) 13.5769 (13.3155, 13.8383) 747.30 787.45 763.39
γ1(sex) −0.0059 (−0.2497, 0.2379)

γ2(treatment) 0.0938 (−0.1489, 0.3366)
γ3(age) 0.0021 (−0.0079, 0.0122)
α 13.5437 (13.4899, 13.5974)
ζ 0.0397 (0.0332, 0.0462)
φ 0.7130 (0.6880, 0.7379)

u0(intercept) −1.1704 (−1.6074, −0.7334)
u1(sex) 0.0419 (−0.4564, 0.5402)

u2(treatment) 0.4893 (0.0001, 0.9785)
u3(age) −0.0077 (−0.0263, 0.0110)

Figure 5 illustrates the fitted population risk functions (Figure 5a), and the estimated susceptible
hazard functions (Figure 5b) obtained by the MCM based on EWE distribution (results of Table 4).
From this figure, we notice that, during the first two years after treatment, the predicted population
risk functions reveal that the hazard of cancer relapse diminishes sharply until a value of about 0.11,
and then gradually decreases until the end of the study. The danger of cancer relapse for susceptible
patients is very high immediately after the treatment, declines rapidly until a value of around 0.5,
and almost remains constant around this value till the end of the follow-up time.Mathematics 2020, 8, x FOR PEER REVIEW 14 of 16 

 

 
Figure 5. (a) Predicted population risk functions considering MCM model with EWE distribution; (b) 
respective susceptible hazard functions. 

8. Discussion 

The present study aims to specify the distribution of the survival times of susceptible melanoma 
E1684 patients and to investigate the influence of covariates on cure rates and survival times. To 
achieve these goals, we propose three cure fraction models—MCM, BCH model, and GNMCM—
based on EWE distribution for the analysis of the melanoma data. 

Cure fraction models are useful for estimating the probability of being cured. Moreover, they 
can be reduced to classical survival models when there are no cure subjects in the population under 
study. The important issues associated with cure models are identifiability of the cure rate, the 
distribution of survival time of susceptible subjects, and the length of follow-up time. Discussion of 
these issues is beyond the scope of this study. 

The Kaplan–Meier curve is usually used to identify the presence of cure subjects. If the right tail 
of the curve is long and steady (shows a plateau level), then there would be evidence of the existence 
of cure subjects. The graph in Figure 1 provides evidence that a cure fraction exists. Therefore, we 
compared the performance of the MCM, BCH, and GNMCM considering different susceptible 
distributions for the e1684 data. We observe that the three cure models provide similar results. 
However, the MCM model based on EWE distribution is found to be the best model to fit the given 
data, suggesting that the distribution of survival times of uncured melanoma patients followed from 
EWE distribution in the best way. Moreover, the treatment has a significant influence on the cure 
fraction within all the models, indicating that the Interferon alpha-2b improves the rate of cure, and 
these results are in agreement with the findings of [21,38]. Besides this, the results of this study are 
also consistent with those of [39], who concluded that the melanoma recurrence probability is lower 
for the treatment group compared to the observed group. It is worth mentioning that the other 
covariates (age and sex) have no significant effect on the probability of being cured and the shape of 
the survival function; this may be due to the similarity between the immune systems of men and 
women in their response to melanoma cancer and IFN treatment. 

In conclusion, in the analysis of melanoma patients’ data, we found that the EWE distribution is 
the best distribution for the survival time of susceptible patients compared with EEE, ERE, EE, WE, 
and RE distributions. Moreover, the interferon alpha − 2b significantly ameliorates the portion of 
immune patients, while the predictors, age, and sex did not show a considerable influence on cure 
fraction. In addition to that, the results of this study reveal that the GNMCM can be considered as a 
good candidate to model these data. 

The study undertaken has highlighted a topic on which further research would be beneficial, 
and this relates to an analysis of the e1684 data. It might be possible to use alternative generalized 
distributions under the Bayesian inference techniques, because the experience of an oncologist on an 

Figure 5. (a) Predicted population risk functions considering MCM model with EWE distribution;
(b) respective susceptible hazard functions.



Mathematics 2020, 8, 1926 13 of 15

8. Discussion

The present study aims to specify the distribution of the survival times of susceptible melanoma
E1684 patients and to investigate the influence of covariates on cure rates and survival times. To achieve
these goals, we propose three cure fraction models—MCM, BCH model, and GNMCM—based on
EWE distribution for the analysis of the melanoma data.

Cure fraction models are useful for estimating the probability of being cured. Moreover, they can
be reduced to classical survival models when there are no cure subjects in the population under study.
The important issues associated with cure models are identifiability of the cure rate, the distribution of
survival time of susceptible subjects, and the length of follow-up time. Discussion of these issues is
beyond the scope of this study.

The Kaplan–Meier curve is usually used to identify the presence of cure subjects. If the right
tail of the curve is long and steady (shows a plateau level), then there would be evidence of the
existence of cure subjects. The graph in Figure 1 provides evidence that a cure fraction exists. Therefore,
we compared the performance of the MCM, BCH, and GNMCM considering different susceptible
distributions for the e1684 data. We observe that the three cure models provide similar results.
However, the MCM model based on EWE distribution is found to be the best model to fit the given
data, suggesting that the distribution of survival times of uncured melanoma patients followed from
EWE distribution in the best way. Moreover, the treatment has a significant influence on the cure
fraction within all the models, indicating that the Interferon alpha − 2b improves the rate of cure,
and these results are in agreement with the findings of [21,38]. Besides this, the results of this study are
also consistent with those of [39], who concluded that the melanoma recurrence probability is lower for
the treatment group compared to the observed group. It is worth mentioning that the other covariates
(age and sex) have no significant effect on the probability of being cured and the shape of the survival
function; this may be due to the similarity between the immune systems of men and women in their
response to melanoma cancer and IFN treatment.

In conclusion, in the analysis of melanoma patients’ data, we found that the EWE distribution is
the best distribution for the survival time of susceptible patients compared with EEE, ERE, EE, WE,
and RE distributions. Moreover, the interferon alpha − 2b significantly ameliorates the portion of
immune patients, while the predictors, age, and sex did not show a considerable influence on cure
fraction. In addition to that, the results of this study reveal that the GNMCM can be considered as a
good candidate to model these data.

The study undertaken has highlighted a topic on which further research would be beneficial,
and this relates to an analysis of the e1684 data. It might be possible to use alternative generalized
distributions under the Bayesian inference techniques, because the experience of an oncologist on an
anticipated fraction of patients who are cured can be included in a prior distribution of the parameter
of the cure rate, $, resulting in more accurate inferences.
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