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Abstract: The radial basis function (RBF) is a class of approximation functions commonly used in
interpolation and least squares. The RBF is especially suitable for scattered data approximation
and high dimensional function approximation. The smoothness and approximation accuracy of
the RBF are affected by its shape parameter. There has been some research on the shape parameter,
but the research on the optimal shape parameter of the least squares based on the RBF is scarce.
This paper proposes a way for the measurement of the optimal shape parameter of the least squares
approximation based on the RBF and an algorithm to solve the corresponding optimal parameter.
The method consists of considering the shape parameter as an optimization variable of the least
squares problem, such that the linear least squares problem becomes nonlinear. A dimensionality
reduction is applied to the nonlinear least squares problem in order to simplify the objective function.
To solve the optimization problem efficiently after the dimensional reduction, the derivative-free
optimization is adopted. The numerical experiments indicate that the proposed method is efficient
and reliable. Multiple kinds of RBFs are tested for their effects and compared. It is found through the
experiments that the RBF least squares with the optimal shape parameter is much better than the
polynomial least squares. The method is successfully applied to the fitting of real data.

Keywords: least squares; radial basis function; optimal shape parameter; nonlinear least squares;
derivative-free optimization

1. Introduction

The radial basis function (RBF) is a class of approximation functions that are widely used
nowadays in many fields. It is generally believed that the RBF method was originally introduced in
Hardy’s work [1]. Since then, there have been many theoretical research and application methods of
RBF approximation. Two valuable books [2,3] are recommended here. There are two groups of radial
basis functions: global RBF and compactly supported RBF [2–5].

The RBF approximation function space P = span{Φ1(x), . . . , ΦM(x)} for any Rd can be obtained
by a one-dimensional radial function φ(r)(r > 0) and the given center points {yj}M

j=1 in Rd. Here,
Φj(x) = φ(||x− yj||), ∀1 ≤ j ≤ M. Because the number and the distribution of center points are
almost arbitrary, P is flexible and easily constructed. Therefore, the RBF approximation is suitable for
the scattered data approximation and the high dimensional function approximation.

Almost all radial functions have a shape parameter. The shape parameter of RBF is related to the
shape of the basis function and the approximation function space P. Therefore, the selection of shape
parameters can affect the approximation accuracy of the RBF and computational stability. An important
problem is how to define and select a parameter that can achieve the optimal approximation accuracy
for RBF approximation. The problem is called the selection of optimal shape parameters in this paper.
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The research on the selection of optimal shape parameters is mainly focused on the RBF finite
difference, the RBF least squares and the RBF interpolation.

Feng and Duan [6] discussed the influence of shape parameters of RBF finite differences on the
approximation errors and hl gave the optimal shape parameters of multiquadric RBF finite difference,
which yields a convergence order of RBF finite difference twice that of polynomial finite difference on
the same stencil. Liu, C.S. and Liu, D.J. [7] proposed an energy gap functional (EGF) for the elliptic
partial differential equation and defined an optimal shape parameter that can minimize the EGF.
Chen et al. [8] studied the optimal shape parameter in the Kansa method with the multiquadric RBF.
They proposed a sample solution for every PDE problem and applied the optimal shape parameter to
the Kansa method for the PDE problem.

Majdisova and Skala [9,10] examined the RBF least squares with real data and synthetic data.
They tried to improve the approximation by changing the shape parameters and defined the optimal
shape parameters by abundant experiments.

Rippa [11] employed the idea of cross validation in statistics and then constructed the cost function
for the RBF interpolation. He obtained the optimal shape parameter by minimizing the cost function.
This method is known as the leave-one-out cross validation method (abbr. LOOCV) in the RBF
interpolation. Fasshauer and Zhang [12] combined the idea of the LOOCV method with approximate
moving least squares (abbr. AMLS) and obtained the optimal shape parameter in AMLS based on RBF.
Azarboni et al. [13] extended Rippa’s method, changed the “one out” into “two out”, and proposed
the leave-two-out cross validation method (abbr. LTOCV) in the RBF interpolation, which can also be
used in AMLS. Luh also performed a series of studies on the selection of optimal shape parameters
in the RBF interpolation. One of Luh’s important works [14] proposes an error upper bound for the
multiquadrics RBF interpolation. Luh obtained the optimal shape parameter by minimizing the error
upper bound in regard to the shape parameter.

All of the above studies proposed a way of measuring the optimal shape parameters for their
respective research problems and provided a method to obtain those parameters.

However, the research on the optimal shape parameter of the least squares based on the RBF is
scarce. Most of the existing research in this field provided the optimal shape parameter by experiments
and trials. Therefore, this paper focuses on how to define a method of measuring the optimal shape
parameter in RBF least squares approximation and to obtain that parameter efficiently.

The rest of the paper is organized as follows. In Section 2, we introduce the nonlinear least squares
problem and define the optimal shape parameter. To simplify the nonlinear least squares problem,
we perform a dimensional reduction of the nonlinear least squares problem in Section 3. To efficiently
solve the problem after the dimensional reduction, Powell’s DFO method is introduced and applied in
Section 4. In Section 5, there are various numerical experiments about the convergence, the efficiency
and the curved surface fitting. Section 6 presents the conclusion and a possible generalization.

2. The Nonlinear Least Squares with Optimal Shape Parameter

The least squares method is a classical and widely used approximation method. The general
form of the RBF least squares is as follows: for a sampling function f (x) : Ω → R and the given
sampled data {(xi, fi)}N

i=1, the RBFs {Φj(x; α)}M
j=1 are obtained by the given center points {yj}M

j=1 and
a radial function φ(r; α) : R+ → R. Here, Φj(x; α) = φ(||x− yj||; α), ∀1 ≤ j ≤ M. The following
optimization problem

min
c∈RM

N

∑
i=1

(
fi −

M

∑
j=1

(
cj ·Φj(xi; α)

))2

(1)

is solved in the approximation function space P = span{Φ1(x; α), . . . , ΦM(x; α)}, where α is a given
parameter called the shape parameter, c is the coefficient vector, and cj is the j-th component of c.
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Since this paper focuses on the selection of the shape parameter, we assume that the solution to
problem (1) always exists and is unique. Hence, M ≤ N. We set the solution to problem (1) to be c,
and the corresponding approximation function is s(x; α) = ∑M

j=1 cj ·Φj(x; α).
Research has been conducted on the RBF least square approximation. Fasshauer discussed

the solvability conditions and approximation error bounds of problem (1) in his work Meshfree
Approximation Methods with Matlab [3]. Majdisova and Skala indicated the excellent performances of
RBF least squares in applications in [9,10].

The basic idea of the least squares is that the smaller the object function of problem (1) is,
the closer the approximation function s(x; α) is to the sampling function f (x). Hence, the optimal value
of problem (1) under a certain shape parameter α, i.e., ∑N

i=1 ( fi − s(xi; α))2, can be used to measure the
shape parameter. We change the shape parameter from a constant into a variable and add it into the
optimization problem to get the following optimization problem:

min
c∈RM ,α∈D

N

∑
i=1

(
fi −

M

∑
j=1

(
cj ·Φj(xi; α)

))2

, (2)

where D is the domain of definition of the shape parameter or a given restricted interval.
The dimension of the object function thus changes from M to M + 1, and the corresponding least

squares problem changes from linear to nonlinear.
We set the solution to problem (2) to be (c∗, α∗), and refer to α∗ as the optimal shape parameter for

the RBF least squares. The approximation function s∗(x) = ∑M
j=1 c∗j ·Φj(x; α∗) is the closest function to

f (x) under the l2 norm.
According to the references [15,16], the classical method for solving such a least squares problem

is the Gauss–Newton method and the methods derived from it, such as the Levenberg–Marquardt
method, the structural Newton method, and the generalized Gauss–Newton method. However,
all of these methods require the derivative of the object function or the generalized derivative of the
object function.

The derivative properties of different types of radial basis functions vary greatly, and M can be
huge in some applications and research. These two points make it unwise to solve problem (2) directly
using the Gauss–Newton method.

3. The Dimensional Reduction of Nonlinear Least Squares

As described in the previous section, it is not recommended to solve problem (2) directly.
According to the literature [17], problem (2) is a separable nonlinear least squares problem, and there
is an equivalent problem

min
α∈D

R2(α), (3)

where

R2(α) := min
c∈RM

N

∑
i=1

(
fi −

M

∑
j=1

(
cj ·Φj(xi; α)

))2

. (4)

It is worth noting that, after the dimensional reduction, problem (3) becomes one-dimensional,
but the expression of R2(α) is not clear.

Remark 1. For a given α, the calculation of R2(α) is to solve a classical linear least squares problem, so it
is relatively easy to obtain the value of R2(α). However, for the variable α, it is difficult to obtain a specific
expression of R2(α) with respect to α. This process is particularly difficult when M is large.

Golub and Pereyra have proven the equivalency between problem (2) and problem (3) in [17].
We thus begin to describe an important theorem in the literature [17].
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We use F to denote the vector [ f1, . . . , fN ]
T and define the following matrix

Φ(α) :=


Φ1(x1; α) · · · ΦM(x1; α)

...
. . .

...

Φ1(xN ; α) · · · ΦM(xN ; α)

 . (5)

We use R(c, α) to denote the objective function of problem (2), namely

R(c, α) =
N

∑
i=1

(
fi −

M

∑
j=1

(
cj ·Φj(xi; α)

))2

. (6)

Theorem 1. R(c, α) and R2(α) are defined as (6) and (4), respectively. We assume that, in the open set Ω ⊆ R,
Φ(α) has a constant rank r ≤ min(M, N).

(a) If α̂ is a critical point (or a global minimizer) of R2(α)in Ω, and

ĉ = Φ(α̂)+F, (7)

then (ĉ, α̂) is a critical point of R(c, α) (or a global minimizer for α ∈ Ω) and R(ĉ, α̂) = R2(α̂).
(b) If (ĉ, α̂) is a global minimizer of R(c, α) for α ∈ Ω, then α̂ is a global minimizer of R2(α) in Ω and

R2(α̂) = R(ĉ, α̂). Furthermore, if there is an unique α̂ among the minimizing pairs of R(c, α), then α̂

must satisfy (7).

The proof of Theorem 1 is too complicated to be given here, so no proof will be given.
Interested readers can refer to the proof in the literature [17]. We have supposed that the solution
to problem (1) always exists and is unique, so the condition of Theorem 1 is always true. Therefore,
we can claim that problem (2) is equivalent to problem (3). The solution to problem (3) is our optimal
shape parameter for the RBF least squares.

Remark 2. The symbol Φ(α̂)+ in (7) represents the Moore–Penrose generalized inverse of Φ(α). When the
basis functions are linearly independent and M ≤ N, the rank of Φ(α) is M, and ĉ in (7) is the solution
to problem (1) corresponding to α. Theorem 1 indicates that, if the radial basis functions we use are linearly
independent, problem (2) is equivalent to problem (3). Hence, we can obtain the optimal shape parameter by
solving problem (3).

4. The Solution of Optimal Shape Parameter

We have proposed the definition of the optimal shape parameter and the corresponding
optimization problem in Section 2. The dimension of the equivalent problem (3) is reduced from M + 1
to 1 in Section 3. Although the dimension of the problem has been reduced, how to solve problem (3)
efficiently still needs to be discussed.

Golub and Pereyra have conducted some research on the separable nonlinear least square problem
such as problem (2) in [17]. They point out that it is feasible to use the Gauss–Newton method to solve
problem (2) and problem (3) when the initial value is close to the solution. Their experiments show that,
when M is relatively small, the efficiency of the Gauss–Newton method in solving (3) is equivalent to
that of the Gauss–Newton method in solving (2). If M is substantially increased, obtaining the specific
expression of R2(α) will become extremely difficult, thereby increasing the cost of solving problem (3)
with the Gauss–Newton method.

The problems that Cotnoir and Terzić discussed in [18] are rooted in practical problems, naturally
involving quite large N and M. They believe that it is difficult to solve a problem like (3) by using
gradient-based methods, including the Gauss–Newton method, when M or N is large. Hence,
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they suggest using the direct search method to solve problem (3). Among the direct methods,
they recommend the genetic algorithm (GA) method.

In order to efficiently and accurately obtain the optimal shape parameter in the case of the
relatively big N or M, we use the derivative-free optimization (DFO) method instead of the above
methods to solve problem (3). Among the various DFO methods, we choose Powell’s UOBYQA
method [19] for problem (3). Powell’s UOBYQA replaces the objective function with its quadratic
interpolation in iteration. Intuitively, the convergence rate of the method is nonlinear. Among several
classic DFO methods, the performance of Powell’s UOBYQA was outstanding in our trials.

The UOBYQA method is proposed for an arbitrary dimension optimization problem.
The construction and updating of the interpolation point set is complicated for high dimension
problems. Because our problem (3) is one-dimensional, we can simplify the construction and updating
of the interpolation point set in the original UOBYQA method. Hence, we propose a matching
algorithm combining the characteristics of problem (3) with the UOBYQA method.

4.1. Powell’s UOBYQA Method

UOBYQA, short for unconstrained optimization by quadratic approximation, is a trust-region
derivative-free optimization method for solving unconstrained optimization problems. Its essence is
to replace the objective function with its quadratic interpolation in each trust region, so as to solve the
subproblem of the trust region.

For the objective function F(x), the UOBYQA method begins with an initial point x0,
an interpolation set N0, and a trust-region radius r0. In the method, N0 must guarantee that the
quadratic interpolation of F(x) exists and is unique. At each step, xk, Nk and rk are changed. At step
(k + 1), the quadratic interpolation on Nk is set to mk(x), the iterate point is set to xk, and the current
trust-region radius is set to rk. The subproblem of the trust region is then

min
‖x−xk‖2≤rk

mk(x).

We set the solution to the subproblem to x̃, and then calculate the number

ρ =
F(xk)− F(x̃)

mk(xk)−mk(x̃)
.

If ρ > 0, we make xk+1 = x̃ and update the interpolation set Nk+1, or else xk+1 = xk and
Nk+1 = Nk. The update of the trust-region radius rk+1 depends on the size of ρ.

The UOBYQA method has two obvious advantages. Firstly, the method does not need the
derivative of the objective function or even the specific expression of the objective function. The method
only requires the value of F(x) for any x. Secondly, due to the sequence {xk}∞

k=0 obtained by
the UOBYQA method, the corresponding function value sequence {F(xk)}∞

k=0 is a monotonic
decreasing sequence.

The disadvantages of the UOBYQA method are also obvious. If x ∈ Rd, the interpolation set Nk
for each k has 1

2 (d + 1)(d + 2) points, and these points must satisfy specific distribution conditions.
Hence, the difficulty of updating Nk increases with d. If d is relatively large, the interpolation of the
objective function at each step is difficult. Therefore, the UOBYQA method is not efficient for the high
dimension problems.

4.2. A Modified UOBYQA Method

It is worth noting that problem (3) is one-dimensional, so it can be appropriately solved by the
UOBYQA method. For problem (3), Nk has three different points, which can make the interpolation
exist and unique. However, it is also worth noting that problem (3) may not be an unconstrained
optimization problem. Generally, the D in problem (3) is R \ {0} or R+ \ {0}. According to the
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characteristics of the radial basis function, D = R \ {0} can be converted to D = R+ \ {0}.
When D = R+ \ {0}, problem (3) is an unconstrained optimization problem.

In conclusion, for different kinds of RBFs, D in problem (3) can be processed accordingly, making
the problem an unconstrained problem, so that the UOBYQA method can solve problem (3) efficiently.

Since problem (3) is one-dimensional, the difficulty of quadratic interpolation is low. In order
to make the interpolation more accurate and the update of the set Nk easier, the set Nk is specially
constructed at each step. Specifically, Nk = {xk − 1

2 rk, xk, xk +
1
2 rk}. These three points can always

divide the trust region into five equal parts.
After applying Powell’s UOBYQA method to problem (3) and achieving a small improvement,

we obtain the following algorithm (Algorithm 1):

Algorithm 1 DFO algorithm
Input: objective function R2(α), trust-region radius r, initial value α0
Output: optimal shape parameter α∗

1: Set k = 0;
2: Set D = 1;
3: while D > 10−6 do
4: Set αa=αk- 1

2 r, αb=αk+ 1
2 r;

5: Set Nk = {(αa, R2(αa)), (αk, R2(αk)), (αb, R2(αb))};
6: Calculate the interpolation mk(α) of R2(α) on Nk;
7: α̃=arg min

α∈[αk−r,αk+r]
mk(α);

8: ρ= R2(αk)−R2(α̃)
mk(αk)−mk(α̃)

;
9: if ρ > 0.75 then

10: r=2r;
11: end if
12: if ρ < 0.5 then
13: r= 1

4 r;
14: end if
15: if ρ > 0 then
16: αk+1 = α̃;
17: D=|αk+1 − αk|;
18: k=k+1;
19: else
20: αk+1 = αk;
21: k=k+1;
22: end if
23: end while
24: α∗ = αk;
25: return α∗

Remark 3. The above algorithm is a trust-region method. Compared with the classical line search methods,
the algorithm can converge quickly with a wide range of convergence. The algorithm avoids complicated
derivative calculations and does not concern the specific expression of R2(α); thus, it is easy to apply the above
algorithm to different kinds of basis functions or sampling points. For different problems, all we need to do is to
modify the objective function R2(α) without any other preparation like the Gauss–Newton method. Namely,
the above algorithm is simple and convenient for programming implementation when solving problems such as
problem (3), and has a wide applicability.

In the following section, we would use the DFO method to denote Algorithm 1.
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5. Numerical Experiments

To demonstrate the feasibility and efficiency of our DFO method, we conduct a series of numerical
experiments with it. In these experiments, in which the default experimental data are sampled from
the Franke’s test function, its expression is

f (x, y) =
3
4

exp(
(9x− 2)2 + (9y− 2)2

4
) +

3
4

exp(− (9x− 2)2

49
− (9y + 1)2

10
)

− 1
5

exp(−(9x− 4)2 − (9y− 7)2) +
1
2

exp(
(9x− 7)2 + (9y− 3)2

4
),

(x, y) ∈ [0, 1]× [0, 1].

In all experiments, N represents the number of sampling points, and M represents the number
of basis functions. Our sampling points and center points are all the quasi-scattered Halton
points [3,20] in (0, 1) × (0, 1). The default initial value α0 of our DFO method equals 1, if there
are no additional instructions.

We use the error between the approximation function and the sample value

R2(α
∗) = R(c∗, α∗) =

N

∑
i=1

(
fi −

M

∑
j=1

(
c∗j ·Φj(xi; α∗)

))2

(8)

to measure the shape parameter α∗, where c∗ is the solution to the classical least squares corresponding
to α∗. The above formula not only measures the shape parameter, but also shows the approximation
effect of the approximation function to the sampling function.

All experiments were implemented on a CPU with Intel Core i7-8700 and with a main frequency
of 3.20 GHz. The programming language which we use is Matlab R2019a.

We have opened the sample point sets and center point sets of each experiment, so that the
interested readers can reproduce those experiments. Those data are in the Supplementary Materials.

5.1. The Comparison of the DFO Method and the Gauss–Newton Method

In this section, the radial basis function is the thin plate spline function (TPS)

φ(r) = (αr)2 · ln (αr), α > 0.

As mentioned in Section 3, if M is relatively large, obtaining the objective function R2(α) of
problem (3) is difficult. If M is particularly large, the computational cost of obtaining the expression
and derivative of R2(α) can be higher than that of solving problem (3). Hence, the Gauss–Newton
method is used to solve problem (2), and the DFO method is used to solve problem (3) in this section.
Although the problems are solved differently, the Formula (8) can be used to measure the shape
parameters in these two ways.

The initial value of the Gauss–Newton method is (c0, α0), here c0 = α0 ∗ (1, . . . , 1)T .

5.1.1. The Convergence Comparison

The classical Gauss–Newton method is a method with local convergence. It can converge quickly
when the initial point is near the critical point. In addition, our DFO method is a trust-region method.
Its convergence rate is theoretically higher than that of the line search method. Hence, we first compare
the convergence between the Gauss–Newton method and the DFO method.

In this experiment, N = 5000, and M takes 50, 60, 70, and 80, respectively. At first, we set α0 = 1.
The results of the two methods in these cases are shown in Table 1.
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Table 1. The results of the Gauss–Newton method and the DFO method on different M values with
α0 = 1.

α0 = 1
Method

M
50 60 70 80

R2(α
∗)

DFO 0.2307 0.1812 0.1156 0.0928

Gauss-Newton 0.3156 0.2540 0.1910 0.1072

α∗
DFO 0.0350 0.0840 0.3971 0.4590

Gauss-Newton 0.9489 0.9338 0.9215 0.9271

The results in Table 1 indicate that α∗ obtained by the two methods can be different in the same
case. According to the size of R2(α

∗), α∗ obtained by the DFO method is more likely to be the optimal
shape parameter than that obtained by the Gauss–Newton method. In order to further understand the
reason for the result, we use a numerical method to draw the image of R2(α) for the case of M = 50
around two α∗s obtained by the two methods in Figure 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

R
2(

)

Figure 1. The image of R2(α).

In Figure 1, the red asterisk represents the α∗ obtained by the Gauss–Newton method, and the
red circle represents the α∗ obtained by the DFO method. We can find that, beginning with α0 = 1,
the DFO method can “climb” over a maximum to a minimum on the left, but the Gauss–Newton
method can only reach a minimum near the initial value.

We then set α0 = 0.5. The results of the two methods are shown in Table 2.

Table 2. The results of the Gauss–Newton method and the DFO method on different M values with
α0 = 0.5.

α0 = 0.5
Method

M
50 60 70 80

R2(α
∗)

DFO 0.2307 0.1812 0.1160 0.0928

Gauss-Newton 0.2307 0.1812 0.1160 0.092

α∗
DFO 0.0350 0.0840 0.3971 0.4590

Gauss-Newton 0.0350 0.0840 0.3971 0.4590

According to Table 2, the results of DFO are almost identical to those of Gauss–Newton.
Comparing the results in Table 2 with those in Table 1, the DFO method can achieve the same minimum
point beginning with two different initial values. This shows that our DFO method is independent of
the initial value selection, while the Gauss–Newton method depends on the initial value.
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5.1.2. The Comparison of Computational Efficiency

At first, we set α0 = 1. In order to compare the computational efficiency of the DFO method with
that of the Gauss–Newton method, we list their computational times in Table 3, when the α∗s obtained
by the two methods are almost the same. In this experiment, N = 5000, but M takes 10, 20, 30,
and 40, respectively.

Table 3. The comparison of computational time (unit:s) with α0 = 1.

α0 = 1
Method

M
10 20 30 40

t
DFO 0.3824 0.7489 0.8911 1.2423

Gauss-Newton 0.2628 0.6813 5.3983 2.1273

α∗ the two methods 0.6073 0.6027 0.2354 0.4456

The results in Table 3 indicate that, when M is small, the Gauss–Newton method takes less time
than the DFO method. However, with the increase of M, the computational time of the DFO method is
significantly lower than that of the Gauss–Newton method. Such results are predictable. The problem
that the Gauss–Newton method solves is (M + 1)-dimensional, but the problem that the DFO method
solves is one-dimensional. This shows that our dimensional reduction is meaningful.

Thus, we set α0 = 0.5. The initial value is nearer to the α∗ in Table 3. We list their computational
times in Table 4.

Table 4. The comparison of computational time (unit:s) with α0 = 1.

α0 = 0.5
Method

M
10 20 30 40

t
DFO 0.3117 0.7575 0.9185 1.2580

Gauss–Newton 0.3346 9.7267 1.3497 1.5833

α∗ the two methods 0.6073 0.6027 0.2354 0.4456

Comparing the results in Table 4 with those in Table 3, the computational time of DFO is hardly
affected by the initial value, but the computational time of Gauss–Newton is heavily affected by the
initial value. The efficiency of the DFO method is less dependent on the initial value.

According to Table 4, the nearer initial value can not make the Gauss–Newton faster than DFO.
Combining these results with those in Table 3, we conclude that, when M is large, the computational
efficiency of the DFO method is higher than that of the Gauss–Newton method.

Remark 4. Ideally, we should use the Gauss–Newton method to solve problem (3) in order to make a comparison
with the DFO method. However, obtaining the expression and derivatives of R2(α) is difficult. The time of
obtaining R2(α) and R′2(α) is longer than the time shown in Table 3. Hence, we choose to use the Gauss–Newton
method to solve problem (2) instead of problem (3).

5.2. The Results of the DFO Method with a Larger Amount of Data

In practice, we often need to approximate large-scale data and use a large number of bases in
order to obtain better approximation results. Namely, both N and M are large in general. Hence,
we test the DFO method with larger N and M. The RBF is still the TPS function. N = 10, 000 and M
takes 25, 50, 100, 200, 400, and 800, respectively. Just like in the previous experiment, we use R2(α

∗)
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to show the approximation effect. In this experiment, we introduce a graph of R2(α
∗) and a graph of

the computational time of the DFO method in relation to M.
Figure 2 shows the relationship between the error R2(α

∗) and M. Figure 3 shows the relationship
between the computational time and M.

0 100 200 300 400 500 600 700 800

M

10-4

10-3

10-2

10-1

100

101

102

R
2(

* )

Figure 2. The graph of the variety of R2(α
∗) with M.
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Figure 3. The graph of the variety of the computational time with M.

Figure 2 indicates that, for the same sampling data, the error R2(α
∗) decreases rapidly with

the increase of M. In other words, the RBF least squares with a large M and our optimal shape
parameter can achieve an excellent approximation. Figure 3 indicates that the relationship between the
computational time and M is approximately linear. Hence, the DFO method and our optimal shape
parameter are suitable for the case of a large M.

5.3. The Comparison of Results on Different Radial Bases

In order to compare the results on different radial bases adequately, we conduct experiments
in two cases. Just like in the previous experiment, we use R2(α

∗) to show the approximation effect.
At first, we compare R2(α

∗) and the computational time on different radial bases under two sizes
of sampling datasets. Secondly, we add some new test functions and show the results of different
radial bases.

Although there are many kinds of RBFs at present, our experiment is only carried out under four
commonly used kinds. The four kinds of RBFs are shown in Table 5.
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Table 5. The four kinds of RBFs.

RBF φ(r) Domain of Definition

Thin plate spline (TPS) (αr)2 ∗ ln (αr) α > 0

Multi-Quadric (MQ) (r2 + α2)
1
2 α > 0

Inverse-Quadric (IQ) 1
(r2+α2)

1
2

α > 0

CS-RBF (φ3,1(r)) (1− αr)4
+(4αr + 1) α > 0

We compare the approximation effects and computational time of the DFO method with these
basis functions in every experiment.

5.3.1. The Comparison of Two Sizes of Sampling Datasets

The number of sampling datasets is N = 5000. They are the quasi-scattered Halton points.
The number of center points, M, takes 10, 20, . . . , 100, respectively. Figure 4 shows the relationship
between R2(α

∗) and M corresponding to the four kinds of basis functions.

10 20 30 40 50 60 70 80 90 100

M

10-2

10-1

100

101

R
2(

* )

TPS
MQ
IQ
CSRBF

Figure 4. The graph of the variety of R2(α
∗) with M corresponding to the four kinds of basis functions

under N = 5000.

Figure 5 shows the relationship between the computational time and M corresponding to the four
kinds of basis functions.
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t

TPS
MQ
IQ
CSRBF

Figure 5. The graph of the variety of computational time with M corresponding to the four kinds of
functions under N = 5000.

In Figures 4 and 5, the red polyline represents TPS-RBF, the green polyline represents MQ-RBF,
the blue polyline represents IQ-RBF, and the black polyline represents CS-RBF [2].
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Figure 4 indicates that, whatever the basis function is, R2(α
∗) decreases rapidly with the increase

of M. When M is small, the differences among R2(α
∗) of the four basis functions are significant. In this

case, the R2(α
∗) of IQ is the lowest, and the R2(α

∗) of TPS is the highest. When M becomes large,
all the R2(α

∗) values of the four basis functions decrease rapidly. In most cases, the approximation
effect of IQ is the best, and the approximation effect of TPS is the worst.

Figure 5 indicates that, when M is small, the differences among the computational time of the
four kinds of basis functions are not significant. As M increases, the differences in the computational
time become obvious. In most cases, the computational time of IQ is the lowest. However, if M = 100,
the computational time of IQ becomes relatively high.

We then reduce the N from 5000 to 2500, and others are unchanged. The results of this experiment
are shown in Figures 6 and 7.
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* )
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MQ
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Figure 6. The graph of the variety of R2(α
∗) with M corresponding to the four kinds of basis functions

under N = 2500.
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t
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Figure 7. The graph of the variety of computational time with M corresponding to the four kinds of
basis functions under N = 2500.

If we compare the results in Figures 6 and 7 with those in Figures 4 and 5, we can find that the
conclusions are similar. The performance of IQ in our experiments is excellent, which is compared
with the other three kinds of basis functions.

Based on the above analysis, we find that the performance of IQ is the best in the four kinds of
RBFs. Hence, we recommend IQ-RBF for the high-precision problems.
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5.3.2. The Comparison of the Four New Test Functions

In this section, we add the following four new test functions,

g1(x, y) =
tanh(9y− 9x) + 1

9
,

g2(x, y) =
1.25 + cos(5.4y)
6 + 6(3x− 1)2 ,

g3(x, y) =
1
3

exp(−5.0625((x− 0.5)2 + (y− 0.5)2)),

g4(x, y) =
1
3

exp(−20.25((x− 0.5)2 + (y− 0.5)2)).

They are functions commonly used to test the performance of the RBF approximation. The four
test functions are only used in this section.

In this section, the number of sampling datasets is always N = 5000, and M takes 10, 20, . . . , 100,
respectively. The approximation effects and computational times of the DFO method are shown in
Figures 8 and 9, respectively. Each of the two figures has four subfigures corresponding to the four
test functions.
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(a) The R2(α
∗) of g1(x, y) corresponding to the four kinds

of basis functions.
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(b) The R2(α
∗) of g2(x, y) corresponding to the four kinds

of basis functions.
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(c) The R2(α
∗) of g3(x, y) corresponding to the four kinds

of basis functions.
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(d) The R2(α
∗) of g4(x, y) corresponding to the four kinds

of basis functions.

Figure 8. The R2(α
∗) of the four test functions corresponding to the four kinds of basis functions.
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(a) The computational time of the DFO method for the four
kinds of basis functions to approximate g1(x, y).
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(b) The computational time of the DFO method for the four
kinds of basis functions to approximate g2(x, y).
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(c) The computational time of the DFO method fo the four
kinds of basis functions to approximate g3(x, y).

10 20 30 40 50 60 70 80 90 100

M

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

t

TPS
MQ
IQ
CSRBF

(d) The computational time of the DFO method for the four
kinds of basis functions to approximate g4(x, y).

Figure 9. The computational time of the DFO method for the four kinds of basis functions to
approximate the four test functions.

Figure 8 shows that the performances of MQ and IQ are better than that of TPS and CSRBF. In most
cases, the R2(α

∗) of IQ is the lowest among the four kinds of basis functions. However, as shown in
Figure 8d, when M = 100, the R2(α

∗) of g4(x, y) based on IQ indicates that the DFO method may
have failed.

Figure 9c shows that there is a special case in which the DFO method may take longer than
expected. In most cases, the computational time of every basis function is low and the relationship
between the computational time and M is approximately linear, though we cannot prove this in
theory yet. According to Figure 9, CSRBF spends the longest time in most cases, IQ has a good
performance with respect to g1(x, y) and g4(x, y), and TPS has a good performance with respect to
g2(x, y) and g3(x, y).

Combining the results of Section 5.3.1 with those of this section, although there may be some
unexpected results with respect to IQ-RBF on the approximation effect and computational time,
IQ-RBF is the most recommended of the four basis functions in most cases.

5.4. Curved Surface Fitting

In this section, we present the application of the RBF least squares with the optimal shape
parameter to the surface fitting of the simulated data and real data. We compare the approximation
effect of the RBF least squares with that of the polynomial least squares with the same dimension on
the simulated data.
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5.4.1. Curved Surface Fitting on Simulated Data

In this experiment, the simulated data were sampled from Franke’s test function. Figure 10 is the
image of Franke’s test function.

Figure 10. Franke’s test function on [0, 1]× [0, 1].

We sampled exactly at N = 5000 points to construct the simulated data, which are used for the
least squares approximation with a polynomial basis and IQ-RBF. The polynomial space is selected as
a binary polynomial space with a total degree less than or equal to 8. The dimension of the polynomial
space is 45. Accordingly, the IQ-RBF approximation space is constructed with M = 45 basis functions.

The approximation function of the least squares based on polynomial is p∗(x, y).
The approximation function p∗(x, y) and the error function |p∗(x, y) − f (x, y)| on [0, 1] × [0, 1] are
shown in Figures 11 and 12 respectively.

Figure 11. The approximation function p∗(x, y) on [0, 1]× [0, 1].

Figure 12. The error function |p∗(x, y)− f (x, y)| on [0, 1]× [0, 1].
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According to Figures 11 and 12, the error at some points is relatively large, though the
approximation function p∗(x, y) has a certain approximation accuracy to the surface by the simulation
data. A comparison between Figures 10 and 11 shows an obvious difference between p∗(x, y) and
f (x, y). In Figure 12, the maximum error is 0.2577, and the average error is 0.0132.

The optimal shape parameter of IQ-RBF with these data is α∗ = 0.3047; the optimal approximation
function of the least squares based on IQ-RBF is s∗(x, y). The approximation function s∗(x, y) and the
error function |s∗(x, y)− f (x, y)| on [0, 1]× [0, 1] are shown in Figures 13 and 14, respectively.

Figure 13. The approximation function s∗(x, y) on [0, 1]× [0, 1].

Figure 14. The error function |s∗(x, y)− f (x, y)| on [0, 1]× [0, 1].

Figures 10, 11 and 13 show that s∗(x, y) is closer to f (x, y) than p∗(x, y). Figure 14 indicates that
the error |s∗(x, y)− f (x, y)| oscillates violently, but the numbers are small. In Figure 14, the maximum
error is 0.0463, and the average error is 0.0049.

By comparing Figure 12 with Figure 14, we can find that the maximum error and average error of
s∗(x, y) are lower than those of p∗(x, y).

Table 6 shows the errors of the least squares approximation for the binary polynomial spaces with
a total degree less than or equal to 6–10, respectively. The errors of the IQ-RBF approximation whose
approximation space has the same dimension as the corresponding polynomial spaces are also shown
in the table.
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Table 6. The errors of least squares approximation based on different polynomial spaces and
RBF space with the same dimension.

Dimension
Polynomial Basis RBF

Total Degree Max Error Average Error Max Error Average Error

28 6 0.2448 0.0266 0.0831 0.0118

36 7 0.1737 0.0187 0.0674 0.0078

45 8 0.2577 0.0132 0.0463 0.0049

55 9 0.1493 0.0105 0.0468 0.0037

66 10 0.1068 0.0069 0.0353 0.0022

According to Table 6, the results about the binary polynomial spaces with a total degree less
than or equal to 8 appear to be extensive. Therefore, we think that the curved surface fitting by the
RBF least squares with the optimal shape parameter is better than that by the least squares based on
polynomial bases.

5.4.2. Curved Surface Fitting on Real Data

The real data set is obtained from GPS data of Mount Vel’ký Rozsutec in the Malá Fatra through the
online tool GPSVisualizer (http://www.gpsvisualizer.com/elevation). These data have 24,190 points
in total and are shown in Figure 15.

Figure 15. The data of the Mount Velky Rozsutec.

We only use IQ-RBF to fit the real data and select the M = 500 points in the region as the center
point to generate the RBF approximation function space. We begin our DFO method with the initial
value α0 = 1. In this case, the optimal shape parameter is α∗ = 424.8005, and the fitting surface is
shown in Figure 16.

http://www.gpsvisualizer.com/elevation
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Figure 16. The surface fitting with real data.

By comparing Figure 15 with Figure 16, we find that the RBF least squares with the optimal
shape parameter have a smooth and continuous approximation. The peaks, ridges, and ravines of the
mountain are well reconstructed. This approximation is acceptable.

We tabulate the error of RBF least approximation on different shape parameters in Table 7.
The error is the famous RMSE (root mean square error).

Table 7. The RMSE of the RBF least squares approximation on different shape parameters.

α 1 10 100 200 400 α∗ = 424.8005 600

RMSE 69.8787 49.4357 10.4753 5.3136 4.0813 4.0787 4.8043

The initial value is far away from our optimal shape parameter α∗ = 424.8005. The error at the
initial value α0 = 1 is very high. The results in Table 7 show that the optimal shape parameter can
significantly improve the error, and our DFO method is effective when it begins with a bad initial value.

6. Conclusions

This paper investigates the selection of shape parameters in the RBF least squares.
The approximation error of the least squares is used to measure the shape parameter, and we propose a
corresponding optimization problem (2) to obtain the optimal shape parameter. In order to reduce the
difficulty in solving the problem, an equivalent one-dimensional optimization problem (3) is obtained
through variable separation. According to the characteristics of problem (3), we propose to solve it by
using the derivative-free optimization method.

Among the various DFO methods, we choose Powell’s UOBYQA method, and we propose our
DFO method by combining the characteristics of problem (3) with Powell’s method in Section 4.

We test our method in different cases by numerical experiments. Our method outperforms the
classical Gauss–Newton method in the experiments. The performance of our DFO method to solve the
least squares approximation based on IQ-RBF is excellent. The surface fitting by the RBF least squares
with the optimal shape parameter is better than that by the least squares based on polynomial bases.

The approximation function s∗(x) with the optimal shape parameter can approximate the
sampling function more closely than the normal least squares approximation. Hence, the optimal
shape parameter is applied to the various applications of least squares. For example, when solving
partial differential equations with least squares, we can approximate the exact solution better with the
method proposed in Section 4; alternatively, when fitting the surface, we can approximate the sampled
surface better by the least squares based on RBF with the optimal shape parameter.

The method used in this paper to define the optimal shape parameter directly implies the
generalization that each basis function has an independent shape parameter, which would mean
that the problem (2) would become a 2M-dimensional optimization problem. Such a generalization
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will undoubtedly improve the approximation effect, but the difficulty of solving problem (2) will
further increase. How the 2M-dimensional nonlinear optimization can be solved efficiently is
worth considering.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-7390/8/11/1923/
s1.
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