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Abstract: In the paper, a survey of the main results concerning univariate and multivariate
exponential power (EP) distributions is given, with main attention paid to mixture representations of
these laws. The properties of mixing distributions are considered and some asymptotic results based
on mixture representations for EP and related distributions are proved. Unlike the conventional
analytical approach, here the presentation follows the lines of a kind of arithmetical approach in the
space of random variables or vectors. Here the operation of scale mixing in the space of distributions
is replaced with the operation of multiplication in the space of random vectors/variables under
the assumption that the multipliers are independent. By doing so, the reasoning becomes much
simpler, the proofs become shorter and some general features of the distributions under consideration
become more vivid. The first part of the paper concerns the univariate case. Some known results are
discussed and simple alternative proofs for some of them are presented as well as several new results
concerning both EP distributions and some related topics including an extension of Gleser’s theorem
on representability of the gamma distribution as a mixture of exponential laws and limit theorems
on convergence of the distributions of maximum and minimum random sums to one-sided EP
distributions and convergence of the distributions of extreme order statistics in samples with random
sizes to the one-sided EP and gamma distributions. The results obtained here open the way to deal
with natural multivariate analogs of EP distributions. In the second part of the paper, we discuss the
conventionally defined multivariate EP distributions and introduce the notion of projective EP (PEP)
distributions. The properties of multivariate EP and PEP distributions are considered as well as limit
theorems establishing the conditions for the convergence of multivariate statistics constructed from
samples with random sizes (including random sums of random vectors) to multivariate elliptically
contoured EP and projective EP laws. The results obtained here give additional theoretical grounds
for the applicability of EP and PEP distributions as asymptotic approximations for the statistical
regularities observed in data in many fields.
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1. Introduction

Let α > 0. The symmetric exponential power (EP) distribution is an absolutely continuous distribution
defined by its Lebesgue probability density

pα(x) =
α

2Γ( 1
α )
· e−|x|α , −∞ < x < ∞. (1)

To make notation and calculation simpler, hereinafter we will use a single parameter α in
representation (1) because this parameter determines the shape of distribution (1). If α = 1, then relation
(1) defines the classical Laplace distribution with zero expectation and variance 2. If α = 2, then relation
(1) defines the normal (Gaussian) distribution with zero expectation and variance 1

2 . Any random
variable (r.v.) with probability density pα(x) will be denoted Qα.

The distribution (1) was introduced and studied by M. T. Subbotin in 1923 [1]. In that
paper distribution (1) was called generalized Laplace distribution. For distribution (1), several other
different terms are used. For example, this distribution is called exponential power distribution ([2,3],
power exponential distribution ([4–6]), generalized error distribution ([7–9]), generalized exponential
distribution ([10]), generalized normal ([11]) and generalized Gaussian ([12–14]). Distribution (1) is widely
used in Bayesian analysis and various applied problems from signal and image processing to astronomy
and insurance as more general alternatives to the normal law. The paper [14] contains a survey of
applications of univariate EP distributions. Particular fields of application of multivariate EP models
are enlisted in [15] and [13]. Concerning the methods of statistical estimation of the parameters of
these distributions, see [13] and the references therein.

In the present paper we focus on mixture representations for EP and related distributions. In [16] it
was proved that for 0 < α 6 2, distributions of type (1) can be represented as scale mixtures of normal
laws. Ten years later this result was re-proved in [17] with no reference to [16]. In the present paper, this
result is generalized. We also consider and discuss some alternative uniform mixture representations
for univariate and multivariate EP distributions and obtain some unexpected representations for the
exponential and normal laws. Mixture representations of EP and related distributions are of great
interest due to the following reasons.

In the book [18], a principle was implicitly formulated that a formal model of a probability
distribution can be treated as reliable or trustworthy in applied probability only if it is an asymptotic
approximation or a limit distribution in a more or less simple limit setting. This principle can be
interrelated with the universal principle stating that in closed systems the uncertainty does not
decrease, as it was done in the book [19]. It is a convention to measure the uncertainty of a probability
distribution by entropy. It has already been mentioned that with 0 < α 6 2 the EP distribution
can be represented as a scale mixture of normal laws. As is known, the normal distribution has the
maximum (differential) entropy among all distributions with finite second moment and supported by
the whole real axis. In the book [19], it was emphasized that in probability theory the principle of the
non-decrease of entropy manifests itself in the form of limit theorems for sums of independent r.v.s.
Therefore, if the system under consideration was information-isolated from the environment, then the
observed statistical distributions of its characteristics could be regarded as very close to the normal
law which possesses maximum possible entropy. However, by definition, a mathematical model
cannot take into account all factors which influence the evolution of the system under consideration.
Therefore, the parameters of this normal law vary depending on the evolution of the “environmental”
factors. In other words, these parameters should be treated as random depending on the information
interchange between the system and environment. Therefore, mixtures of normal laws are reasonable
mathematical models of statistical regularities of the behavior of the observed characteristics of systems
in many situations. Therefore, the EP distribution (1), being a normal mixture, is of serious analytical
and practical interest.

Probably, the simplicity of representation (1) has been the main (at least, substantial) reason
for using the EP distributions in many applied problems. The first attempt to provide “asymptotic”
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reasons of possible adequacy of this model was made in [20]. In this paper we prove more general
results than those presented in [20] and demonstrate that the (multivariate) EP distribution can be
asymptotic in simple limit theorems for those statistics constructed from samples with random sizes,
that are asymptotically normal, if the sample size is non-random, in particular, in the scheme of
random summation.

The EP distributions (at least with 0 < α 6 2) turn out to be closely related with stable
distributions. The book [21] by V. M. Zolotarev became a milestone on the way of development of the
theory of stable distributions. The representation of an EP distribution with 0 < α 6 2 as a normal
scale mixture can be easily proved using the famous ‘multiplication’ Theorem 3.3.1 in [21]. Moreover,
in these representations the mixing distributions are defined via stable densities. In the present paper,
we show that these mixing laws that play an auxiliary role in the theory of EP distributions, can play
quite a separate role being limit laws for the random sample size providing that the extreme order
statistics follow the gamma distribution.

This paper can be regarded as a complement to the recent publication [14]. We give a survey of
main results concerning univariate and multivariate EP distributions, consider the properties of mixing
distributions appearing in the generalizations mentioned above and prove some asymptotic results
based on mixture representations for EP and related distributions. Unlike the conventional analytical
approach used in [14], here the presentation follows the lines of a kind of arithmetical approach in the
space of random variables or vectors. Here the operation of scale mixing in the space of distributions
is replaced with the operation of multiplication in the space of random vectors/variables under the
assumption that the multipliers are independent. By doing so, the reasoning becomes much simpler,
the proofs become shorter and some general features of the distributions under consideration become
more vivid. Section 2 contains some preliminaries. Section 3 concerns the univariate case. We discuss
some known results mentioned in [14] and present simple alternative proofs of some of them as well
as several new results concerning both EP distributions and some related topics including an extension
of Gleser’s theorem on representability of the gamma distribution as a mixture of exponential laws
and limit theorems on convergence of the distributions of maximum and minimum random sums to
one-sided EP distributions and convergence of the distributions of extreme order statistics in samples
with random sizes to the one-sided EP and gamma distributions. The results obtained here open
the way to deal with natural multivariate analogs of EP distributions. In Section 4, we discuss the
conventionally defined multivariate EP distributions and introduce the notion of projective EP (PEP)
distributions. The properties of multivariate EP and PEP distributions are considered as well as limit
theorems establishing the conditions for the convergence of multivariate statistics constructed from
samples with random sizes (including random sums of random vectors) to multivariate elliptically
contoured EP and projective EP laws. The results obtained here give additional theoretical grounds
for the applicability of EP and PEP distributions as asymptotic approximations for the statistical
regularities observed in data in many fields.

2. Mathematical Preliminaries

The symbol d
= will stand for the coincidence of distributions. The symbol � marks the end of

the proof. The indicator function of a set A will be denoted IA(z): if z ∈ A, then IA(z) = 1, otherwise
IA(z) = 0. The symbol ◦ denotes product of independent random elements.

All the r.v.s and random vectors will be assumed to be defined on one and the same probability
space (Ω,A, P). The symbols L(Y) and L(Y) will denote the distribution of an r.v. Y and an r-variate
random vector Y with respect to the measure P, respectively.

An r.v. with the standard exponential distribution will be denoted W1:

P(W1 < x) =
[
1− e−x]I[0, ∞)(x).
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A gamma-distributed r.v. with shape parameter r > 0 and scale parameter λ > 0 will be
denoted Gr,λ,

P(Gr,λ < x) =
∫ x

0
g(z; r, λ)dz, with g(x; r, λ) =

λr

Γ(r)
xr−1e−λxI[0, ∞)(x),

where Γ(r) is Euler’s gamma-function,

Γ(r) =
∫ ∞

0
xr−1e−xdx, r > 0.

In this notation, obviously, G1,1 is an r.v. with the standard exponential distribution: G1,1 = W1.

It is easy to make sure that G1/α,1
d
= |Qα|α.

Let γ > 0. The distribution of the r.v. Wγ:

P
(
Wγ < x

)
=
[
1− e−xγ]I[0, ∞)(x),

is called the Weibull distribution with shape parameter γ. It is easy to see that W1/γ
1

d
= Wγ. Moreover,

if γ > 0 and γ′ > 0, then P(W1/γ
γ′ > x) = P(Wγ′ > xγ) = e−xγγ′

= P(Wγγ′ > x), x > 0, that is, for any
γ > 0 and γ′ > 0

Wγγ′
d
= W1/γ

γ′ .

The standard normal distribution function (d.f.) and its density will be denoted Φ(x) and ϕ(x),

ϕ(x) =
1√
2π

e−x2/2, Φ(x) =
∫ x

−∞
ϕ(z)dz,

respectively. An r.v. with the standard normal distribution will be denoted X.
By gα,θ(x) and Gα,θ(x) we will respectively denote the probability density and the d.f. of the

strictly stable law with characteristic exponent α and symmetry parameter θ corresponding to the
characteristic function

gα,θ(t) = exp
{
− |t|α exp

{
− iπθα

2
signt

}}
, t ∈ R, (2)

with 0 < α 6 2, |θ| 6 θα = min{1, 2
α − 1} (see, e.g., [21]). An r.v. with characteristic function (2) will be

denoted Sα,θ . To symmetric strictly stable distributions there correspond the value θ = 0 and the ch.f.

f(t; α, 0) = e−|t|
α
, t ∈ R. It is easy to see that S2,0

d
=
√

2X.
The values θ = 1 and 0 < α 6 1 correspond to one-sided strictly stable distributions concentrated

on the nonnegative halfline. The couples α = 1, θ = ±1 correspond to the distributions degenerate
in ±1, respectively. All other stable distributions are absolutely continuous. Stable densities cannot
explicitly be represented via elementary functions except for four cases: the normal distribution (α = 2,
θ = 0), the Cauchy distribution (α = 1, θ = 0), the Lévy distribution (α = 1

2 , θ = 1) and the distribution
symmetric to the Lévy law (α = 1

2 , θ = −1). Stable densities can be expressed in terms of the Fox
functions (generalized Meijer G-functions), see [22,23].

According to the «multiplication theorem» (see, e.g., Theorem 3.3.1 in [21]) for any admissible
pair of parameters (α, θ) and any α′ ∈ (0, 1], the product representation

Sαα′ ,θ
d
= S1/α

α′ ,1 ◦ Sα,θ (3)

holds, in which the factors on the right-hand side are independent. From (3), it follows that for any
α ∈ (0, 2]

Sα,0
d
=
√

2Sα/2,1 ◦ X, (4)
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that is, any symmetric strictly stable distribution can be represented as a normal scale mixture.
As is well known, if 0 < α < 2, then E|Sα,θ |β < ∞ for any β ∈ (0, α), while the moments of the r.v.

Sα,θ of orders β > α do not exist (see, e.g., [21]). Although the densities of stable distributions cannot
be explicitly expressed in terms of elementary functions, it can be shown [24] that

E|Sα,0|β =
2β

√
π
·

Γ
( β+1

2
)
Γ
( α−β

α

)
Γ
( 2−β

β

) (5)

for 0 < β < α < 2 and

ESβ
α,1 =

Γ
(
1− β

α

)
Γ(1− β)

(6)

for 0 < β < α 6 1.

3. Univariate Case

3.1. Higher-Order EP Scale Mixture Representations and Related Topics

Proposition 1. Let α ∈ (0, 2], α′ ∈ (0, 1]. Then

Qαα′
d
= Qα ◦U−1/α

α,α′ , (7)

where Uα,α′ is an r.v. such that: if α′ = 1, then Uα,α′ = 1 for any α ∈ (0, 2] and if 0 < α′ < 1, then Uα,α′ is
absolutely continuous with probability density

uα,α′(x) =
α′Γ( 1

α )

Γ( 1
αα′ )
·

gα′ ,1(x)
x1/α

· I(0,∞)(x).

Proof. From (2), it follows that the symmetric (θ = 0) strictly stable distribution has the
characteristic function

gα,0(t) = e−|t|
α
, t ∈ R.

Rewrite (3) with θ = 0 in terms of characteristic functions:

e−|t|
αα′

=
∫ ∞

0
e−|t|

αzgα′ ,1(z)dz. (8)

Then, changing the notation t 7−→ x, by formal transformations of Equality (8), we obtain

pαα′(x) =
αα′

2Γ( 1
αα′ )

e−|x|
αα′

=
αα′

2Γ( 1
αα′ )
·

2Γ( 1
α )

α

∫ ∞

0

αz1/α

2Γ( 1
α )

exp{−|x|αz}
gα′ ,1(z)

z1/α
dz =

=
∫ ∞

0

αz1/α

2Γ( 1
α )

exp{−|x|αz} ·
α′Γ( 1

α )

Γ( 1
αα′ )

gα′ ,1(z)
z1/α

dz =
∫ ∞

0
z1/α pα(xz1/α)uα,α′(z)dz. (9)

It can be easily verified that uα,α′(z) is the probability density of a nonnegative r.v. Indeed, since
pα(z) is a probability density, for any z > 0 we have∫ ∞

−∞
z1/α pα(xz1/α)dx = 1.

Therefore, it follows from (9) that

1 =
∫ ∞

−∞
pα(x)dx =

∫ ∞

−∞

∫ ∞

0
z1/α pα(xz1/α)uα,α′(z) dz dx =
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=
∫ ∞

0
uα,α′(z)

( ∫ ∞

−∞
z1/α pα(xz1/α) dx

)
dz =

∫ ∞

0
uα,α′(z)dz.

The proposition is thus proved. �
Let 0 < β 6 α 6 2. Then the assertion of Proposition 1 can be rewritten as

Qβ
d
= Qα ◦U−1/α

α,β/α. (10)

It is easily seen that Q2
d
= 1√

2
X. Setting α = 2, from (10) we obtain

Corollary 1. [16] Any symmetric EP distribution with α ∈ (0, 2] is a scale mixture of normal laws:

Qα
d
=
√

1
2 U−1

2,α/2 ◦ X.

Now let α = 1. The r.v. having the Laplace distribution with variance 2 will be denoted Λ. As it

has already been noted, Q1
d
= Λ. It is well known that

Λ d
=
√

2W1 ◦ X. (11)

On the other hand, from Corollary 1 it follows that

Λ d
= Q1

d
=
√

1
2 U−1

1, 1/2 ◦ X. (12)

Therefore, by virtue of identifiability of scale mixtures of normal laws (see [25] and details below),
having compared (11) and (12), we obtain

U1, 1/2
d
= 1

4 W−1
1 ,

that is, the r.v. U−1
1, 1/2 has the exponential distribution with parameter 1

4 whereas the r.v. U1, 1/2 has the
inverse exponential (Fréchet) distribution, P(U1, 1/2 < x) = exp{− 1

4x}, x > 0.

Corollary 2. Any symmetric EP distribution with α ∈ (0, 1] is a scale mixture of Laplace laws:

Qα
d
= U−1

1,α ◦Λ.

For α ∈ (0, 1], from Corollary 2 we obtain one more representation of the EP distribution as a scale
mixture of normal laws:

Qα
d
= U−1

1,α ◦
√

2W1 ◦ X. (13)

Corollary 3. If α ∈ (0, 1], then L(Qα) is infinitely divisible.

Proof. By virtue of identifiability of scale mixtures of normal laws, from (13) and Corollary 1 we obtain
that if α ∈ (0, 1], then the distribution of the r.v. U−1

2,α/2 is mixed exponential:

U−1
2,α/2

d
= 4U−2

1,α ◦W1. (14)

Hence, in accordance with the result of [26] which states that the product of two independent
non-negative r.v.s is infinitely divisible, provided one of the two is exponentially distributed, from (14)
it follows that, with α ∈ (0, 1], the distribution of U−1

2,α/2 is infinitely divisible. It remains to use
Corollary 1 and a well-known result that a normal scale mixture is infinitely divisible, if the mixing
distribution is infinitely divisible (see, e.g., [27], Chapter XVII, Section 3). �
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The interval (0, 1] does not cover all values of α providing the infinite divisibility of L(Qα).
Another obvious value of α for which L(Qα) is infinitely divisible is α = 2: the distribution of
Q2 is normal and hence, infinitely divisible as well. Moreover, as is shown in [14], with values of
α /∈ (0, 1]

⋃{2}, the EP distributions are not infinitely divisible.
From Proposition 1, as a by-product, we can obtain simple expressions for the moments of

negative orders of one-sided strictly stable distributions.

Corollary 4. If 1
2 6 δ < ∞ and 0 < α < 1, then

ES−δ
α,1 =

Γ( δ
α )

αΓ(δ)
.

Proof. As it was made sure in the proof of Proposition 1, the function u1/δ,α(x) is a probability density,
that is, ∫ ∞

0
u1/δ,α(x)dx =

αΓ(δ)
Γ( δ

α )

∫ ∞

0
x−δgα,1(x)dx = 1.

Therefore,

ES−δ
α,1 =

∫ ∞

0
x−δgα,1(x)dx =

Γ( δ
α )

αΓ(δ)
.

�
Now consider some properties of the mixing r.v. Uα,α′ in (7). First, we present some inequalities

for the tail of the distribution of Uα,α′ .

Proposition 2. (i) For any α ∈ (0, 2) and α′ ∈ (0, 1), we have

P(Uα,α′ > x) = O(x−(α
′+1/α))

as x→ ∞.
(ii) Let 0 < δ < α′ 6 1, α ∈ (0, 2]. Then for any x > 0

P(Uα, α′ > x) 6
α′Γ( 1

α )Γ(1−
δ
α′ )

Γ( 1
αα′ )Γ(1− δ)xδ+1/α

.

(iii) For any 0 < β < α < 2, α′ ∈ (0, 1) and x > 0, we have

P(Uα,α′ > x) >
Γ( 1

α )Γ(
1

α′β )

Γ( 1
αα′ )Γ(

1
β )
· x

α−β
αβ · P(Uβ,α′ > x).

Proof. (i) With the account of the well-known relation

lim
x→∞

xα′(1− Gα′ ,1(x)
)
= (some) c ∈ (0, ∞)

(e.g., see [18], Chapter 7, Section 36) we conclude that for any x > 0, there exists a c ∈ (0, ∞) such that

x1/αP(Uα,α′ > x) = x1/α
∫ ∞

x

gα′ ,1(u)
u1/α

du 6 1− Gα′ ,1(x) 6
c

xα′
.

Therefore, P(Uα,α′ > x) = O(x−(α
′+1/α)) as x → ∞.

(ii) With the account of (6), we have

P(Uα, α′ > x) =
∫ ∞

x
uα, α′(y)dy =

α′Γ( 1
α )

Γ( 1
αα′ )

∫ ∞

x

yδgα′ ,1(y)
yδ+1/α

dy 6
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6
α′Γ( 1

α )

Γ( 1
αα′ )xδ+1/α

∫ ∞

0
yδgα′ ,1(y)dy =

α′Γ( 1
α )Γ(1−

δ
α′ )

Γ( 1
αα′ )Γ(1− δ)xδ+1/α

.

(iii) We have

P(Uα,α′ > x) =
α′Γ( 1

α )

Γ( 1
αα′ )

∫ ∞

x

gα′ ,1(u)
u1/α

du =
α′Γ( 1

α )

Γ( 1
αα′ )

∫ ∞

x

u
α−β
αβ gα′ ,1(u)

u1/β
du >

> x
α−β
αβ ·

α′Γ( 1
α )

Γ( 1
αα′ )

∫ ∞

x

gα′ ,1(u)
u1/β

du = x
α−β
αβ ·

Γ( 1
α )Γ(

1
α′β )

Γ( 1
αα′ )Γ(

1
β )

P(Uβ,α′ > x).

�

Proposition 3. (i) Let α ∈ (0, 2], α′ ∈ (0, 1]. The moments of the r.v. Uα,α′ of orders δ > 1
α + α′ are infinite,

whereas for δ < 1
α + α′, we have

EUδ
α,α′ =

α′Γ( 1
α )Γ(

α(α′−δ)+1
αα′ )

Γ( 1
αα′ )Γ(1− δ + 1

α )
. (15)

(ii) Let δ > − 1
α . Then,

EU−δ
α,α′ =

Γ( 1
α )Γ(

δα+1
αα′ )

Γ( 1
αα′ )Γ(

δα+1
α )

. (16)

Proof. (i) To prove (15), notice that, by the definition of uα,α′(x),

EUδ
α,α′ =

∫ ∞

0
xδuα,α′(x)dx =

α′Γ( 1
α )

Γ( 1
αα′ )

∫ ∞

0
xδ−1/αgα′ ,1(x)dx =

α′Γ( 1
α )

Γ( 1
αα′ )
· ESδ−1/α

α′ ,1

and use (6).
(ii) To prove (16), note that for arbitrary β ∈ (0, 2] and γ > β− 1

E|Qβ|γ =
β

Γ( 1
β )

∫ ∞

0
e−xβ

xγdx =
1

Γ( 1
β )

∫ ∞

0
e−xx(γ+1)/β−1dx =

Γ( γ+1
β )

Γ( 1
β )

.

Then (7) implies
Γ( γ+1

αα′ )

Γ( 1
αα′ )

=
Γ( γ+1

α )

Γ( 1
α )
· EU−γ/α

α,α′ (17)

Letting δ = γ/α, from (17) we obtain (16). The proposition is proved. �
Now consider the property of identifiability of scale mixtures of EP distributions. Recall the

definition of identifiability of scale mixtures. Let Q be an r.v. with the d.f. FQ(x), V1 and V2 be
two nonnegative r.v.s. The family of scale mixtures of FQ is said to be identifiable, if the equality

Q ◦V1
d
= Q ◦V2 implies V1

d
= V2.

Lemma 1. [25]. Let F+(x) be a d.f. such that F+(0) = 0. The family of scale mixtures of F+ is identifiable,
if the Fourier–Stieltjes transform of the d.f. F̂+(x) = F+(ex) is not identically zero in some nondegenerate
real interval.

Proposition 4. For any fixed α ∈ (0, 2], the family of scale mixtures of EP distributions (1) is identifiable;

that is, if V1 and V2 are two nonnegative r.v.s, then the equality Qα ◦V1
d
= Qα ◦V2 implies V1

d
= V2.
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Proof. First assume that |Qα| ◦V1
d
= |Qα| ◦V2 and prove that V1

d
= V2. For this purpose use Lemma 1.

Denote F+
α (x) = P(|Qα| < x), F̂+

α (x) = F+
α (ex), x > 0. We obviously have

`+α (x) ≡ d
dx

F+
α (x) =

α

Γ( 1
α )
· e−xα

, x > 0. (18)

Therefore, by the chain differentiation rule we have

d
dx

F̂+
α (x) =

d
dx

F+
α (ex) =

d
dz

F+
α (z)

∣∣∣
z=ex
· d

dx
ex =

α

Γ( 1
α )
· exe−eαx

.

Hence, the Fourier–Stieltjes transform ψ̂+
α (t) of the d.f. F̂+

α (x) is

ψ̂+
α (t) =

∫ ∞

0
eitxdF̂+

α (x) =
α

Γ( 1
α )

∫ ∞

0
eitxexe−eαx

dx, t ∈ R.

Multiplying the integrand in the last integral by 1 = e−αxeαx and changing the variables eαx 7−→ y
so that dy = αeαxdx and ex = y1/α, we obtain

ψ̂+
α (t) =

α

Γ( 1
α )

∫ ∞

0
eitxexe−eαx

e−αxeαxdx =
1

Γ( 1
α )

∫ ∞

0
y(it+1)/α−1e−ydy =

Γ( it+1
α )

Γ( 1
α )

, t ∈ R.

The reference to Lemma 1 proves that V1
d
= V2. Now assume that Qα ◦ V1

d
= Qα ◦ V2. Then,

obviously, |Qα| ◦V1
d
= |Qα| ◦V2 and the desired result follows from what has just been proved. �

Proposition 5. Let 0 < γ 6 β 6 α 6 2. Then,

Uα,γ/α
d
= Uα,β/α ◦Uα/β

β,γ/β.

Proof. From Proposition 1 (see (10)) we have

Qγ
d
= Qβ ◦U−1/β

β,γ/β
d
= Qα ◦U−1/α

α,β/α ◦U−1/β
β,γ/β

and
Qγ

d
= Qα ◦U−1/α

α,γ/α.

That is,
Qα ◦U−1/α

α,β/α ◦U−1/β
β,γ/β

d
= Qα ◦U−1/α

α,γ/α.

Now the desired result follows from Proposition 4 which states that the family of scale mixtures

of EP distributions (1) is identifiable; that is, if α ∈ (0, 2] and Qα ◦V1
d
= Qα ◦V2 for some r.v.s V1 and

V2, then V1
d
= V2. In the case under consideration V1 = U−1/α

α,β/α ◦U−1/β
β,γ/β, V2 = U−1/α

α,γ/α. �

Proposition 5 relates the distributions of the r.v.s Uα,α′ with different values of α′ but with the
same values of α. As regards the relation between the distributions of the r.v.s Uα,α′ with different
values of α but with the same values of α′, it can be easily seen that for any α′ ∈ (0, 1] and α, β ∈ (0, 2]

uβ, α′(x) =
Γ( 1

β )Γ(
1

αα′ )

Γ( 1
α )Γ(

1
βα′ )
· x(β−α)/(αβ)uα, α′(x). (19)

In other words, for any x > 0

P(Uβ, α′ > x) = E
[
U(β−α)/(αβ)

α, α′ · I(x,∞)(Uα, α′)
]
.
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Consider some properties of the one-sided EP distribution of the r.v. |Qα|. Obviously, the density
`+α (x) of |Qα| is given by (18), so that for δ > −1

E|Qα|δ =
α

Γ( 1
α )

∫ ∞

0
xδe−xα

dx =
Γ( δ+1

α )

Γ( 1
α )

.

Lemma 2. A d.f. F(x) such that F(0) = 0 corresponds to a mixed exponential distribution, if and only if its
complement 1− F(x) is completely monotone: F ∈ C∞ and (−1)n+1F(n)(x) > 0 for all x > 0.

Proof. This statement immediately follows from the Bernstein theorem [28]. �

Proposition 6. The distribution of the r.v. |Qα| can be represented as mixed exponential if and only if α ∈ (0, 1].
In that case the mixing density is u1,α(x).

Proof. Let α ∈ (0, 1]. As is known, the Laplace–Stieltjes transform ψα(s) of the nonnegative strictly
stable r.v. Sα,1 is

ψα(s) = Ee−sSα,1 =
∫ ∞

0
e−sxgα,1(x)dx = e−sα

, s > 0.

Hence, by formal transformation, we obtain

`+α (s) =
α

Γ( 1
α )

∫ ∞

0
xe−sx · gα,1(x)

x
dx =

∫ ∞

0
xe−sxu1,α(x)dx, (20)

where the function u1,α(x) was introduced in Proposition 1 and proved to be a probability density
function. Relation (20) means that if α ∈ (0, 1], then the distribution of |Qα| is mixed exponential.

Now, let α > 1. We have

d2

dx2 F+
α (x) =

d
dx

`+α (x) = − α2

Γ( 1
α )

(
xα−1e−xα)

and
d3

dx3 F+
α (x) =

d2

dx2 `
+
α (x) = − α2

Γ( 1
α )

d
dx
(
xα−1e−xα)

=
α2

Γ( 1
α )
· xα−2e−xα[

α(xα − 1) + 1
]
.

It can be easily seen that for x > xα ≡ (1− 1/α)1/α we have d3

dx3 F+
α (x) > 0 while for x 6 xα we

have d3

dx3 F+
α (x) 6 0 with strict inequalities for x 6= xα. Hence, by Lemma 2 the distribution of |Qα| is

not mixed exponential. The proposition is proved. �
In terms of r.v.s the statement of Proposition 6 can be formulated as

|Qα|
d
= W1 ◦U−1

1,α (21)

provided α ∈ (0, 1] (also see Corollary 1).

Corollary 5. Let α ∈ (0, 1]. Then the d.f. F+
α (x) is infinitely divisible.

Proof. This statement immediately follows from (21) and the result of [26] which states that the
product of two independent non-negative r.v.s is infinitely divisible, provided one of the two is
exponentially distributed. �

3.2. Convergence of the Distributions of Maximum and Minimum Random Sums to One-Sided EP Laws

From Corollary 1 and (13), we obtain
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Corollary 6. F+
α (x) is a scale mixture of folded normal distributions: if α ∈ (0, 2], then

|Qα|
d
=
√

1
2 U−1

2, α/2 ◦ |X|;

moreover, if α ∈ (0, 1], then |Qα|
d
=
√

2W1 ◦U−1
1,α ◦ |X|.

In this section we demonstrate that the one-sided EP distribution can be limiting for maximum
sums of a random number of independent r.v.s (maximum random sums), minimum random sums
and absolute values of random sums. Convergence in distribution will be denoted by the symbol =⇒.

Consider independent not necessarily identically distributed r.v.s X1, X2, . . . with EXi = 0 and
0 < σ2

i = DXi < ∞, i ∈ N. For n ∈ N denote Sn = X1 + . . . + Xn, Sn = max16i6n Si, Sn = min16i6n Si,
B2

n = σ2
1 + . . . + σ2

n . Assume that the r.v.s X1, X2, . . . satisfy the Lindeberg condition: for any τ > 0

lim
n→∞

1
B2

n

n

∑
i=1

∫
|x|>τBn

x2dP(Xi < x) = 0. (22)

It is well known that under these assumptions P
(
Sn < Bnx

)
=⇒ Φ(x) (this is the classical

Lindeberg central limit theorem) and P
(
Sn < Bnx

)
=⇒ 2Φ(x)− 1, x > 0, and P

(
Sn < Bnx

)
=⇒ 2Φ(x),

x 6 0, (this is one of manifestations of the invariance principle).
Let N1, N2, . . . be a sequence of nonnegative r.v.s such that for each n ∈ N the r.v.s Nn, Y1, Y2, . . .

are independent. For n ∈ N let SNn = X1 + . . . + XNn , SNn = max16i6Nn Si, SNn = min16i6Nn Si
(for definiteness assume that S0 = S0 = S0 = 0). Let {dn}n>1 be an infinitely increasing sequence of
positive numbers. Here and in what follows convergence is meant as n→ ∞.

Lemma 3. Assume that the r.v.s X1, X2, . . . and N1, N2, . . . satisfy the conditions specified above. In particular,
let Lindeberg condition (22) hold. Moreover, let Nn → ∞ in probability. Then the distributions of normalized
random sums weakly converge to some distribution; that is, there exists an r.v. Y such that d−1

n SNn =⇒ Y, if
and only if any of the following conditions holds:

(i) d−1
n |SNn | =⇒ |Y|;

(ii) there exists an r.v. Y such that d−1
n SNn =⇒ Y;

(iii) there exists an r.v. Y such that d−1
n SNn =⇒ Y;

(iv) there exists a nonnegative r.v. U such that d−2
n B2

Nn
=⇒ U.

Moreover, P
(
Y < x

)
= EΦ

(
xU−1/2), x ∈ R; P

(
Y < x

)
= 2EΦ

(
xU−1/2), x 6 0; P

(
Y < x

)
=

P
(
|Y|<x

)
= 2EΦ

(
xU−1/2)− 1, x > 0.

The proof of Lemma 3 was given in [29].

Lemma 3 and Corollary 6 imply the following statement.

Proposition 7. Let α ∈ (0, 2]. Assume that the r.v.s X1, X2, . . . and N1, N2, . . . satisfy the conditions specified
above. In particular, let the Lindeberg condition (22) hold. Moreover, let Nn → ∞ in probability. Then the
following five statements are equivalent:

d−1
n SNn =⇒ Qα; d−1

n SNn =⇒ |Qα|; d−1
n SNn =⇒ −|Qα|; d−1

n |SNn | =⇒ |Qα|; d−2
n B2

Nn
=⇒ 1

2 U2, α/2.
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3.3. Extensions of Gleser’s Theorem for Gamma Distributions

In [30], it was shown that a gamma distribution can be represented as mixed exponential if
and only if its shape parameter is no greater than one. Namely, the density g(x; r, µ) of a gamma
distribution with 0 < r < 1 can be represented as

g(x; r, µ) =
∫ ∞

0
ze−zx p(z; r, µ)dz,

where

p(z; r, µ) =
µr

Γ(1− r)Γ(r)
·
I[µ, ∞)(z)
(z− µ)rz

. (23)

In [31], it was proved that if r ∈ (0, 1), µ > 0 and Gr, 1 and G1−r, 1 are independent
gamma-distributed r.v.s, then the density p(z; r, µ) defined by (23) corresponds to the r.v.

Zr,µ =
µ(Gr, 1 + G1−r, 1)

Gr, 1

d
= µZr,1

d
= µ

(
1 + 1−r

r R1−r,r
)
, (24)

where R1−r,r is the r.v. with the Snedecor–Fisher distribution corresponding to the probability density

f (x; 1− r, r) =
(1− r)1−rrr

Γ(1− r)Γ(r)
·

I(0, ∞)(x)
xr[r + (1− r)x]

. (25)

In other words, if r ∈ (0, 1), then

Gr, µ
d
= W1 ◦ Z−1

r, µ. (26)

A natural question arises: is there a product representation of Gr, µ in terms of exponential r.v.s for
r > 1 similar to (26)? The results of the preceding section can give an answer to this question.

For simplicity, without loss of generality let µ = 1.

Proposition 8. Let r > 1. Then,

Gr,1
d
= W1/r

1 ◦U−1/r
1,1/r

d
= Wr ◦U−1/r

1,1/r . (27)

Proof. As it has been already mentioned,

Gr,1
d
= |Q1/r|1/r. (28)

Therefore, with the account of (21), we obtain the desired result. �
Gamma distributions, as well as one-sided EP distributions, are particular representatives of

the class of generalized gamma distributions (GG distributions), that was first described (under
another name) in [32,33] in relation with some hydrological problems. The term “generalized
gamma distribution” was proposed in [34] by E. W. Stacy who considered a special family of lifetime
distributions containing both gamma and Weibull distributions. However, these distributions are
particular cases of a more general family introduced by L. Amoroso [35]. A generalized gamma
distribution is the absolutely continuous distribution defined by the density

g(x; r, α, µ) =
|α|µr

Γ(r)
xαr−1e−µxαI[0, ∞)(x)

with α ∈ R, µ > 0, r > 0. An r.v. with the density g(x; r, α, µ) will be denoted Gr,α,µ. It is easy to see
that

Gr,α,µ
d
= G1/α

r,µ
d
= µ−1/αG1/α

r,1
d
= µ−1/αGr,α,1. (29)
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The following statement can be regarded as a generalization of (27).

Proposition 9. Let r > 1
2 , t > 1. Then,

Grt,1
d
= G1/t

r,1 ◦U−1/t
1/r,1/t

d
= Gr,t,1 ◦U−1/t

1/r,1/t. (30)

Proof. From Proposition 1 it follows that if α ∈ (0, 2] and α′ ∈ (0, 1], then

|Qαα′ |
d
= |Qα| ◦U−1/α

α,α′ .

Now let α = 1/r, α′ = 1/t and use (28) to obtain the desired result. �

3.4. Alternative Mixture Representations

Let −∞ < a < b < ∞. By Y[a,b] we will denote an r.v. with the uniform distribution on the
segment [a, b].

Lemma 4. For any α ∈ [1, ∞)

Qα
d
= Y[−

√
2,
√

2] ◦ G1/α
1+α, 1

d
= Y[−

√
2,
√

2] ◦ G1+α, α, 1 (31)

For the proof see [36].

Note that Lemma 4 with α = 2 yields an ‘unexpected’ uniform mixture representation for the
normal distribution:

X d
=
√

2Q2
d
= Y[−2, 2] ◦

√
G3/2, 1. (32)

The following statement extends and generalizes a result of [36] (see Lemma 4).

Proposition 10. For any α ∈ (0, ∞), the EP distribution can be represented as a scale mixture of uniform
distributions: the case α > 1 is covered by Lemma 4 and if 0 < α 6 1, then

Qα
d
= Y[−

√
2,
√

2] ◦
(
G1+β, 1 ◦U−1

β, α/β

)1/β d
= Y[−

√
2,
√

2] ◦ G1+β, β, 1 ◦U−1/β
β, α/β, (33)

for any β ∈ [1, 2].

Proof. Let 0 < α 6 1 6 β 6 2. From (10) with the positions of α and β switched and Lemma 4 we have

Qα
d
= Qβ ◦U1/β

β,α/β
d
= Y[−

√
2,
√

2] ◦
(
G1+β, 1 ◦U−1

β, α/β

)1/β.

Now it remains to use (29). �
Setting α = 2, we obtain

Corollary 7. Let α ∈ (0, 2]. Then

Qα
d
= Y[−2,2] ◦

√
G3/2, 1 ◦U−1

2, α/2. (34)

Now turn to other mixture representations. If in (28) r = 1/α, then |Qα|
d
= G1/α

1/α, 1. From this fact
and Gleser’s result (26), we obtain the following statement.

Proposition 11. If α > 1, then the one-sided EP distribution is a scale mixture of Weibull distributions:

|Qα|
d
= Wα ◦ Z−1/α

1/α, 1. (35)
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Let Y±1 be an r.v. such that P(Y±1 = 1) = P(Y±1 = −1) = 1
2 . For α > 1 define the r.v. Vα as the

symmetrized r.v. Z1/α
1/α, 1:

Vα = Y±1 ◦ Z1/α
1/α, 1.

With the account of (25), it is easy to make sure that the probability density vα(x) of the r.v. Vα

has the form

vα(x) =
α

2(α− 1)1/αΓ( α−1
α )Γ( 1

α )
·

|x|α−1I(−∞,−1]∪[1, ∞)(x)

(|x|α − 1)1/α[1 + (α− 1)(|x|α − 1)]
, α > 1.

It is worth noting that the probability density of the r.v. Z1/α
1/α, 1 is 2vα(x), x > 1. Then, from

Proposition 11 we obtain one more mixture representation for the EP distribution with α > 1 via the
Weibull distribution.

Corollary 8. Let α > 1. Then,

Qα
d
= Wα ◦V−1

α .

As by-products of Proposition 10 and Corollary 7, consider some mixture representations for the
exponential and normal distributions. Using Corollary 1 we obtain for 0 < α 6 2 that

G1/α,1
d
= |Qα|α

d
= |X|α ◦

( 1
2 U−1

2,α/2

)α/2 d
=
( 1

2 χ2
1 ◦U−1

2,α/2

)α/2 d
=
(
G1/2,1 ◦U−1

2,α/2

)α/2. (36)

Here we use the notation χ2
m for the r.v. having the chi-squared distribution with m degrees

of freedom. Setting α = 1 in (36), we obtain the following representation for the exponentially
distributed r.v.:

W1
d
= |Q1|

d
=
√

G1/2,1 ◦U−1
2, 1/2. (37)

Now on the left-hand side of (37) use the easily verified relation W1
d
=
√

2W1 ◦ |X| and on the

right-hand side of (37) use relation G1/2, 1
d
= W1 ◦ Z−1

1/2, 1 (see (26)). Then (37) will be transformed into

W1 ◦ X2 d
= W1 ◦ (2Z1/2, 1 ◦U2, 1/2)

−1

and since the family of mixed exponential distributions is identifiable, this yields the following mixture
representation for the folded normal distribution:

|X| d
=
√

2|Q2|
d
= (2Z1/2, 1 ◦U2, 1/2)

−1/2. (38)

Along with (32), from (38) we obtain one more product representation for the normal r.v., this time
in terms of the ‘scaling’ r.v.s in (26) and Corollary 1:

X d
=
√

2Q2
d
= Y±1 ◦ (2Z1/2, 1 ◦U2, 1/2)

−1/2. (39)

Since the r.v. Y±1 has the discrete uniform distribution on the set {−1, +1}, relation (39) can be
regarded as one more uniform mixture representation for the normal distribution.

3.5. Some Limit Theorems for Extreme Order Statistics in Samples with Random Sizes

Proposition 11 declares that the one-sided EP distribution with α > 1 is a scale mixture of Weibull
distribution with shape parameter α. In other words, relation (35) can be expressed in the following
form: for any x > 0

P(|Qα| > x) = 2
∫ ∞

0
e−zxα

vα(z)dz. (40)
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At the same time, Proposition 8 means that any gamma distribution with shape parameter r > 1
can also be represented as a scale mixture of the Weibull distribution with the same shape parameter.
In other words, relation (27) can be expressed in the following form: for any x > 0

P(Gr,1 > x) =
∫ ∞

0
e−zxr

u1,1/r(z)dz. (41)

From (40) and (41), it follows that one-sided EP distribution with α > 1 and the gamma
distribution with r > 1 can appear as a limit distribution in limit theorems for extreme order statistics
constructed from samples with random sizes. To illustrate this, we will consider the limit setting
dealing with the min-compound doubly stochastic Poisson processes.

A doubly stochastic Poisson process (also called Cox process) is defined in the following way.
A stochastic point process is called a doubly stochastic Poisson process, if it has the form N1(L(t)),
where N1(t), t ≥ 0, is a time-homogeneous Poisson process with intensity equal to one and the
stochastic process L(t), t ≥ 0, is independent of N1(t) and has the following properties: L(0) = 0,
P(L(t) < ∞) = 1 for any t > 0, the trajectories of L(t) are right-continuous and do not decrease. In this
context, the Cox process N(t) is said to be lead or controlled by the process L(t).

Now let N(t), t ≥ 0, be the a doubly stochastic Poisson process (Cox process) controlled by the
process L(t). Let T1, T2, . . . be the points of jumps of the process N(t). Consider a marked Cox point
process {(Ti, Xi)}i>1, where X1, X2, . . . are independent identically distributed (i.i.d.) r.v.s assumed to
be independent of the process N(t). Most studies related to the point process {(Ti, Xi)}i>1 deal with
compound Cox process S(t) which is a function of the marked Cox point process {(Ti, Xi)}i>1 defined as
the sum of all marks of the points of the marked Cox point process which do not exceed the time t,
t > 0. In S(t), the operation of summation is used for compounding. Another function of the marked
Cox point process {(Ti, Xi)}i>1 that is of no less importance is the so-called max-compound Cox
process which differs from S(t) by that compounding operation is the operation of taking maximum
of the marking r.v.s. The analytic and asymptotic properties of max-compound Cox processes were
considered in [37,38]. Here we will consider the min-compound Cox process.

Let N(t) be a Cox process. The process M(t) defined as

M(t) =


+∞, if N(t) = 0,

min
16k6N(t)

Xk, if N(t) > 1,

t > 0, is called a min-compound Cox process.

We will also use the conventional notation lext(F) = inf{x : F(x) > 0}.

Lemma 5. Assume that there exist a positive infinitely increasing function d(t) and a positive r.v. L such that

L(t)
d(t)

=⇒ L

as t → ∞. Additionally assume that lext(F) > −∞ and the d.f. PF(x) ≡ F
(
lext(F)− x−1) satisfies the

condition: there exists a number γ > 0 such that for any x > 0

lim
y→∞

PF(yx)
PF(y)

= x−γ. (42)

Then there exist functions a(t) and b(t) such that

P

(
M(t)− a(t)

b(t)
< x

)
=⇒ H(x)
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as t→ ∞, where

H(x) =
∫ ∞

0
(1− e−λxγ

)dP(L < λ)

for x > 0 and H(x) = 0 for x < 0. Moreover, the functions a(t) and b(t) can be defined as

a(t) = lext(F), b(t) = sup
{

x : F(x) 6
1

d(t)

}
− lext(F). (43)

Proof. This lemma can be proved in the same way as Theorem 2 in [37] dealing with max-compound
Cox processes using the fact that min{X1, . . . , XN(t)} = −max{−X1, . . . ,−XN(t)}. �

Proposition 12. Let α > 1. Assume that there exists a positive infinitely increasing function d(t) such that

L(t)
d(t)

=⇒ Z1/α
1/α, 1

as t→ ∞. Additionally assume that lext(F) > −∞ and the d.f. PF(x) ≡ F
(
lext(F)− x−1) satisfies condition

(42) with γ = α. Then there exist functions a(t) and b(t) such that

M(t)− a(t)
b(t)

=⇒ |Qα| (44)

as t→ ∞. Moreover, the functions a(t) and b(t) can be defined by (43).

Proof. This statement directly follows from Lemma 5 with the account of (40). �

Proposition 13. Let r > 1. Assume that there exists a positive infinitely increasing function d(t) such that

L(t)
d(t)

=⇒ U1,1/r

as t→ ∞. In addition, assume that lext(F) > −∞ and the d.f. PF(x) ≡ F
(
lext(F)− x−1) satisfies condition

(42) with γ = r. Then there exist functions a(t) and b(t) such that

M(t)− a(t)
b(t)

=⇒ Gr,1 (45)

as t→ ∞. Moreover, the functions a(t) and b(t) can be defined by (43).

Proof. This statement directly follows from Lemma 5 with the account of (41). �
Propositions 11 and 12 describe the conditions for the convergence of the distributions of extreme

order statistics to one-sided EP distributions with α > 1 and to gamma distributions with r > 1,
respectively. Using (21) and (26) instead of (40) and (41) correspondingly, we can also cover the cases
α ∈ (0, 1] and r ∈ (0, 1).

Proposition 14. Let α ∈ (0, 1]. Assume that there exists a positive infinitely increasing function d(t) such that

L(t)
d(t)

=⇒ U1, α

as t→ ∞. In addition, assume that lext(F) > −∞ and the d.f. PF(x) ≡ F
(
lext(F)− x−1) satisfies condition

(42) with γ = 1. Then there exist functions a(t) and b(t) such that (44) holds as t → ∞. Moreover, the
functions a(t) and b(t) can be defined by (43).

Proof. This statement directly follows from Lemma 5 with the account of (21). �
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Proposition 15. Let r ∈ (0, 1]. Assume that there exists a positive infinitely increasing function d(t) such that

L(t)
d(t)

=⇒ Zr, 1

as t→ ∞. In addition, assume that lext(F) > −∞ and the d.f. PF(x) ≡ F
(
lext(F)− x−1) satisfies condition

(42) with γ = 1. Then there exist functions a(t) and b(t) such that (45) holds as t → ∞. Moreover, the
functions a(t) and b(t) can be defined by (43).

Proof. This statement directly follows from Lemma 5 with the account of (26). �
It is very simple to give examples of processes satisfying the conditions described in Propositions

11–14. Let L(t) ≡ Ut and d(t) ≡ t, t > 0, where U is a positive r.v. Then choosing an appropriately
distributed U we can provide the validity of the corresponding condition for the convergence of
L(t)/d(t). Moreover, the parameter t may not have the meaning of physical time. For example, it may
be some location parameter of L(t), so that the statements of this section concern the case of large
mean intensity of the Cox process.

4. Multivariate Case

4.1. Conventional Approach Higher-Order EP Scale Mixture Representation

Let r ∈ N. In this section, we will consider random elements taking values in the r-dimensional
Euclidean space Rr. The notation x will mean the vector-column x = (x1, . . . , xr)>. The vector with all
zero coordinates will be denoted 0.

Let Σ be a symmetric positive definite (r× r)-matrix. The normal distribution in Rr with zero
vector of expectations and covariance matrix Σ will be denoted Nr, Σ. This distribution is defined by
its density

ϕ(x) =
exp{− 1

2 x>Σ−1x}
(2π)r/2|Σ|1/2 , x ∈ Rr.

The characteristic function fXr, Σ(t) of a random vector Xr, Σ such that L(Xr, Σ) = Nr, Σ has the form

fXr, Σ(u) ≡ E exp{iu>Xr, Σ} = exp
{
− 1

2 u>Σu
}

, u ∈ Rr. (46)

Let α > 0, Σ be a symmetric positive definite (r× r)-matrix. Following the conventional approach
(see, e.g., [4]), we define the r-variate elliptically contoured EP distribution with parameters α and Σ as an
absolutely continuous probability distribution corresponding to the probability density

pr, α, Σ(x) =
αΓ( r

2 )

21+r/2πr/2|Σ|1/2Γ( r
α )
· exp

{
−
(
x>Σ−1x

)α/2}, x ∈ Rr. (47)

The random vector whose density is given by (47) will be denoted Qr, α, Σ. It is easy to see that

Qr, 2, Σ
d
= Xr, Σ.

Having obtained the formula for the density of Qr, α, Σ, we are in a position to prove the
multivariate generalization of Proposition 1 for α ∈ (0, 2].

First, notice that, if 0 < α 6 β 6 2, then in accordance with Corollary 4,

∫ ∞

0

gα/β, 1(x)

xr/β
dx =

βΓ( r
α )

αΓ( r
β )

.

Therefore, the function

ur, β, α/β(x) =
αΓ( r

β )

βΓ( r
α )
·

gα/β, 1(x)

xr/β
· I(0, ∞)(x)
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is a probability density. Comparing this function with the function uα, α′(x) introduced in Proposition
1, we see that

ur, β, α/β(x) ≡ uβ/r, α/β(x). (48)

Recall that by Uβ/r, α/β we denote an r.v. with density uβ/r, α/β(x). If α = β, then, by definition,
P(Uβ, 1 = 1) = 1.

From (19), it follows that if α ∈ (0, 2], α′ ∈ (0, 1] and r ∈ N, then

uα/r, α′(x) =
Γ( r

α )Γ(
1

αα′ )

Γ( r
αα′ )Γ(

1
α )
· x(1−r)/αuα, α′(x).

Proposition 16. Let 0 < α 6 β 6 2, Σ be a symmetric positive definite (r× r)-matrix. Then

Qr, α, Σ
d
= U−1/β

β/r, α/β ◦Qr, β, Σ.

Proof. Since Σ is positive definite, the inverse matrix Σ−1 is positive definite as well (see, e.g., [39],
Appendix, Corollary 3). Let Sr(α, Σ−1) be an r-variate random vector with the strictly stable elliptically
contoured stable distribution with characteristic exponent α and matrix parameter Σ−1 (see, e.g., [40]).
As is known, the characteristic function of Sr(α, Σ−1) has the form

gr, α, Σ−1(t) = E exp{it>Sr(α, Σ−1)} = exp{−(t>Σ−1t)α/2},

see, e.g., [41]. As it was shown in that paper, if 0 < α 6 β 6 2, then

Sr(α, Σ−1)
d
= S1/β

α/β, 1 ◦ Sr(β, Σ−1). (49)

Rewrite (49) in terms of characteristic functions with arbitrary 0 < α 6 β 6 2:

exp{−(t>Σ−1t)α/2} =
∫ ∞

0
exp

{
−
(
t>(zΣ−1)t

)β/2}gα/β, 1(z)dz,

whence by elementary transformations, re-denoting t = x, we obtain

pr, α, Σ(x) =
αΓ( r

2 )

21+r/2πr/2|Σ|1/2Γ( r
α )
· exp

{
−
(
x>Σ−1x

)α/2}
=

=
∫ ∞

0

zr/β

(2π)r/2|Σ|1/2 exp
{
− z
(
x>Σ−1x

)β/2} · αΓ( r
β )

βΓ( r
α )

gα/β, 1(z)

zr/β
dz =

=
∫ ∞

0
zr/β pr, β, Σ(z1/βx)ur, β, α/β(z)dz. (50)

But, in accordance with (47) and (48), the function on the right-hand side of (50) is the density of
the product U−1/β

β/r, α/β ◦Qr, β, Σ. �

Corollary 9. Let α ∈ (0, 2], Σ be a symmetric positive definite (r× r)-matrix. Then

Qr, α, Σ =
√

U−1
2/r, α/2 ◦Xr, Σ (51)

In [15], it was shown that if α > 2, then the EP distribution cannot be represented as a normal
scale mixture.

By the r-variate elliptically contoured Laplace distribution with parameter Σ, we will mean
L(Λr, Σ), where

Λr, Σ =
√

U−1
2/r, 1/2 ◦Xr, Σ

d
= Qr, 1, Σ
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(cf. [15]).

Corollary 10. Let 0 < α 6 1, Σ be a symmetric positive definite (r× r)-matrix. Then

Qr, α, Σ
d
= U−1

1/r, α ◦Λr, Σ.

Proposition 17. Let Σ be a symmetric positive definite (r× r)-matrix, A be an (r× r)-matrix of rank r, Qr, α, Σ
be an r-variate random vector with elliptically contoured EP distribution with parameters α and Σ. Then the
random vector AQr, α, Σ has the r-variate elliptically contoured EP distribution with parameters α and AΣA> :
L(AQr, α, Σ) = L(Qr, α, AΣA>).

PROOF. From the definition of multivariate elliptically contoured EP distribution, by virtue of
the well-known property of linear transformations of random vectors with the multivariate normal
distribution (see, e.g., [39], Theorem 2.4.4), we have

AQr, α, Σ
d
= A

(√
U−1

2/r, α/2 ◦Xr, Σ
) d
=
√

U−1
2/r, α/2 ◦ (AXr, Σ)

d
=
√

U−1
2/r, α/2 ◦Xr, AΣA>

d
= Qr, α, AΣA> . �

In [4], it was shown that if A is a (p× r)-matrix with p < r, then the distribution of AQr, α, Σ is
elliptically contoured, but, in general, not EP. The idea of the proof of Proposition 17 can clarify why
this is so. Indeed, if p < r and 0 < α < 2, then

AQr, α, Σ
d
=
√

U−1
2/r, α/2 ◦Xp, AΣA> ,

and if p 6= r, then, by virtue of Corollary 9 and identifiability of scale mixtures of multivariate normal
distributions, the product on the right-hand side is not an EP-distributed p-variate random vector.
This fact illustrates the result of Y. Kano [42]: to ensure that marginal distributions of a multivariate
elliptically contoured distribution belong to the same type, the mixing distribution in the stochastic
representation similar to (51) must not depend on the dimensionality, whereas in (51) this condition
(called ‘consistency’ in [42]) is violated.

Corollary 11. Let r > 2. Assume that a random vector Z has an r-variate elliptically contoured EP distribution
with parameters α and Σ. If α ∈ (0, 2), then the distribution of each linear combination of its coordinates is a
normal scale mixture, but not EP.

By this property multivariate EP distributions differ from multivariate stable (in particular, normal)
laws, for which each projection of a random vector with a stable law also follows a stable distribution
with the same characteristic exponent (see, e.g., [43]).

4.2. Alternative Multivariate Uniform Mixture Representation for the EP Distribution

The multivariate EP distributions are a special class of elliptically contoured distributions (see,
e.g., [44–47]). Therefore, it is possible to use the properties of elliptically contoured laws to obtain the
following multivariate uniform mixture representation for the EP distributions similar to Lemma 5.

Proposition 18. Let α > 0, Σ be a symmetric positive definite (r× r)-matrix, A be an (r× r)-matrix such
that A>A = Σ, Yr be a random vector with the uniform distribution on the unit sphere in Rr. Then,

Qr, α, Σ
d
=
(
2Gr/α, 1

)1/α ◦
(

A>Yr
) d
= 21/αGr/α, α, 1 ◦

(
A>Yr

)
. (52)

Proof. See Proposition 4.1 in [4]. �
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Since Qr, 2, Σ
d
= Xr, Σ, from Proposition 18 with α = 2, we obtain the following representation of

the r-variate normal distribution as a scale mixture of the uniform distribution on the unit sphere in Rr

transformed into the dispersion ellipsoid corresponding to the covariance matrix.

Corollary 12. Let Σ be a symmetric positive definite (r× r)-matrix, A be an (r× r)-matrix such that A>A =

Σ, Yr be a random vector with the uniform distribution on the unit sphere in Rr. Then,

Xr, Σ
d
=
√

2Gr/2, 1 ◦
(

A>Yr
) d
= Gr/2, 2, 1/

√
2 ◦
(

A>Yr
)
. (53)

4.3. Multivariate Projective Exponential Power Distributions

Let r ∈ N. In order to obtain a multivariate analog of a univariate EP distribution that meets
Kano’s consistency condition, for which each projection has a univariate EP distribution, we will
formally transfer the property of a univariate EP distribution to be a normal scale mixture to the
multivariate case and call the distribution of an r-variate random vector

Q∗r, α, Σ =
√

1
2 U−1

2,α/2 ◦Xr,Σ

the multivariate projective exponential power (PEP) distribution, where α ∈ (0, 2] and Σ is a positive definite
(r× r)-matrix. Since scale mixtures of the multivariate normal distribution are elliptically contoured
(see [44,46,47]), the PEP distributions so defined are elliptically contoured.

Consider an analog of Proposition 16 for multivariate PEP distributions.

Proposition 19. Let 0 < α 6 β 6 2, Σ be a symmetric positive definite (r× r)-matrix. Then,

Q∗r, α, Σ
d
= U−1/β

β, α/β ◦Q∗r, β, Σ.

Proof. From Proposition 5, it follows that

U2, α/2
d
= U2, β/2 ◦U2/β

β, α/β.

Therefore,

Q∗r, α, Σ
d
=
√

1
2 U−1

2, α/2 ◦Xr, Σ
d
= U1/β

β, α/β ◦
√

1
2 U−1

2, β/2 ◦Xr, Σ
d
= U1/β

β, α/β ◦Q∗r, β, Σ.

�
Taking into account the relation U1, 1/2

d
= 1

4 W−1
1 , by the multivariate projective Laplace distribution

with matrix parameter Σ, we will mean L(Λ∗r, Σ), where

Λ∗r, Σ
d
= Q∗r, 1, Σ

d
=
√

2W1 ◦Xr, Σ.

From Proposition 19, with β = 1 we obtain the following statement.

Corollary 13. Let 0 < α 6 1, Σ be a symmetric positive definite (r× r)-matrix. Then

Q∗r, α, Σ
d
= U−1

1, α ◦Λ∗r, Σ.

The following statements present the features of projective EP distributions that distinguish them
from ‘conventional’ EP distributions considered in the preceding section.
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Proposition 20. Let p ∈ N, p 6 r, Σ be a symmetric positive definite (r× r)-matrix, A be a (p× r)-matrix of
rank p, Q∗r, α, Σ be an r-variate random vector with PEP distribution with parameters α and Σ. Then the random

vector AQ∗r, α, Σ has the p-variate PEP distribution with parameters α and AΣA> : AQ∗r, α, Σ
d
= Q∗p, α, AΣA> .

Proof. From the definition of the multivariate PEP distribution, by virtue of the well-known property
of the linear transformations of the random vectors with the multivariate normal distribution
(see, e.g., [39], Theorem 2.4.4), we have

AQ∗r, α, Σ
d
= A

(√ 1
2 U−1

2, α/2 ◦Xr, Σ
) d
=
√

1
2 U−1

2, α/2 ◦ (AXr, Σ)
d
=
√

1
2 U−1

2, α/2 ◦Xp, AΣA>
d
= Q∗p, α, AΣA> .

�

Proposition 21. A random vector has an r-variate PEP distribution if and only if each linear combination of
its coordinates has a univariate symmetric EP distribution.

Proof. The ‘only if’ part. Let u ∈ Rr be an arbitrary vector, u 6= 0. Assume that a random vector Z has

an r-variate PEP distribution with some α ∈ (0, 2] and positive definite matrix Σ; that is, Z d
= Q∗r, α, Σ.

We have
u>Z d

= u>Q∗r, α, Σ
d
= u>

(√ 1
2 U−1

2, α/2 ◦Xr, Σ
) d
=
√

1
2 U−1

2, α/2 ◦ (u
>Xr, Σ)

d
=

d
=
√

u>Σu ·
√

1
2 U−1

2, α/2 ◦ X d
=
√

u>Σu ·Qα, (54)

that is, up to a scale factor
√

u>Σu, the distribution of the linear combination u>Z of the coordinates of
Z (the projection of Z onto the direction u) is univariate EP with parameter α.

The ‘if’ part. Let Z be an r-variate random vector with EZ = 0 and covariance matrix C, u be an
arbitrary vector from Rr. Consider the linear combination u>Z of the coordinates of Z. We obviously
have Eu>Z = 0 and D(u>Z) = u>Cu. According to the assumption, this combination, up to a scale

parameter σ > 0, has a univariate EP distribution with some parameter α: u>Z d
= σQα. With the

account of Corollary 1 and Proposition 3 (see (16)), this means that

u>Cu = D(u>Z) = σ2DQα = σ2D
(√ 1

2 U−1
2, α/2 ◦ X

)
= 1

2 σ2E
(
U−1

2,α/2 ◦ X2) = 1
2 σ2EU−1

2,α/2 =
σ2Γ( 3

α )

Γ( 1
α )

,

hence, we obtain
σ2 = γ(α) · u>Cu, (55)

where

γ(α) =
Γ( 1

α )

Γ( 3
α )

. (56)

Now consider the characteristic function h(t) of the r.v. u>Z. By virtue of the assumption, with the
account of Corollary 1 and (55), we have

h(t) = Eeitu>Z = EeitσQα = E exp
{

itσ
(√ 1

2 U−1
2, α/2 ◦ X

)}
=
∫ ∞

0
E exp

{
itσX

√
y/2

}
dP(U−1

2, α/2 < y) =

=
∫ ∞

0
e−t2σ2y/2dP(U−1

2, α/2 < y) =
∫ ∞

0
exp{− 1

2 γ(α)t2y(u>Cu)}dP(U−1
2, α/2 < y), t ∈ R, (57)

with γ(α) given by (56). Relation (57) holds for any u ∈ Rr. Letting in (57) t = 1 and taking (46) into
account, we notice that (57) turns into the characteristic function hZ(u) of the random vector Z:

hZ(u) = Eeiu>Z =
∫ ∞

0
exp{− 1

2 γ(α)(u>Cu)y}dP(U−1
2, α/2 < y) =
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=
∫ ∞

0
E exp

{
iu>
(√

y ·Xr, γ(α)C
)}

dP(U−1
2, α/2 < y) = E exp

{
iu>
(√ 1

2 U−1
2, α/2 ◦Xr, 2γ(α)C

)}
=

= E exp{iu>Q∗r, α, 2γ(α)C}, u ∈ Rr.

That is, the random vector Z has the r-variate PEP distribution with parameters α and 2γ(α)C. �
Proposition 21 explains the term projective EP distribution.

Proposition 22. If α ∈ (0, 1]
⋃{2}, then PEP distributions are infinitely divisible. If 1 < α < 2, then PEP

distributions are not infinitely divisible.

Proof. First, consider the case α ∈ (0, 1]
⋃{2}. In the proof of Corollary 3 we established that L(U−1

2, α/2)

is infinitely divisible for α ∈ (0, 1]. Hence, for these values of α the distribution of Q∗r, α, Σ is also infinitely
divisible being a scale mixture of the r-variate normal distribution in which the mixing distribution is
infinitely divisible (this fact can be proved in the same way as in the univariate case [27]). The case

α = 2 is trivial since Q∗r, 2, Σ
d
= 1√

2
Xr, Σ.

Now consider an r-variate random vector Q∗r, α, Σ with 1 < α < 2 and some positive definite
(r× r)-matrix Σ. Assume that L(Q∗r, α, Σ) is infinitely divisible. Then, in accordance with Theorem 3.2
of [48] for any u ∈ Rr the r.v. u>Q∗r, α, Σ is infinitely divisible as well. In the proof of the ‘only if’ part of
Proposition 21, we found out that

u>Q∗r, α, Σ
d
= u>Σu ·Qα,

that is, the univariate distribution L(Qα) also must be infinitely divisible. However, it was shown
in [14], with values of α ∈ (1, 2) the univariate EP distributions are not infinitely divisible. This
contradiction completes the proof. �

Now consider the representation of r-variate PEP distributions as scale mixtures of the uniform
distribution on the unit sphere in Rr transformed in accordance with the corresponding matrix
parameter Σ.

Proposition 23. Let α ∈ (0, 2], Σ be a symmetric positive definite (r× r)-matrix, A be an (r× r)-matrix such
that A>A = Σ, Yr be a random vector with the uniform distribution on the unit sphere in Rr. Then,

Q∗r, α, Σ
d
=
√

U−1
2, α/2 ◦ Gr/2, 1 ◦

(
A>Yr

) d
=
√

U−1
2, α/2 ◦ Gr/2, 2, 1 ◦

(
A>Yr

)
.

Proof. This statement follows from the definition of an r-variate PEP distribution and Corollary 12. �
In practice, depending on a particular problem, a researcher should choose what is more beneficial:

either to deal with a statistical model based on the convenient multivariate density of a conventional
EP distribution at the expense of the loss of EP property for marginals and projections, or to deal
with the model having convenient EP marginal and projective densities at the expense of the loss of
conventional multivariate EP property of PEP distributions.

4.4. A Criterion of Convergence of the Distributions of Random Sums to Multivariate EP and PEP
Distributions

Recall that the symbol =⇒ denotes convergence in distribution. The Borel σ-algebra of subsets of
Rr will be denoted Br.

Consider a sequence of independent identically distributed random vectors X1, X2, . . . taking
values in Rr. For a natural n > 1, let

Sn = X1 + . . . + Xn.
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Let N1, N2, . . . be a sequence of nonnegative integer r.v.s defined on the same probability space so
that for each n > 1 the r.v. Nn is independent of the sequence X1, X2, . . . For definiteness, hereinafter
we will assume that ∑0

j=1 = 0.

Lemma 6. Assume that the random vectors S1, S2, . . . satisfy the condition

L
(
b−1/2

n Sn
)
=⇒ Nr, Σ (58)

as n → ∞, where {bn}n>1 is an infinitely increasing sequence of positive numbers and Σ is some positive
definite matrix. In other words, let

b−1/2
n Sn =⇒ Xr, Σ (n→ ∞).

Let {dn}n>1 be an infinitely increasing sequence of positive numbers. Then a distribution F on Br such that

L(d−1/2
n SNn) =⇒ F (n→ ∞), (59)

exists if and only if there exists a d.f. V(x) satisfying the conditions

(i) V(x) = 0 for x < 0;
(ii) for any A ∈ Br

F(A) =
∫ ∞

0
Nr, uΣ(A)dV(u);

(iii) P(bNn < dnx) =⇒ V(x), n→ ∞.

Proof. This statement is a particular case of a more general theorem proved in [49]. �

Proposition 24. Assume that the random vectors X1, X2, . . . satisfy condition (58) with some infinitely
increasing sequence {bn}n>1 of positive numbers and some positive definite matrix Σ. Let {dn}n>1 be an
infinitely increasing sequence of positive numbers. Then

d−1
n SNn =⇒ Qr, α, Σ (n→ ∞)

if and only if
d−1

n bNn =⇒ U2/r, α/2 (n→ ∞).

Proof. First of all, note that in the case under consideration, as F(A) in Lemma 6 we can take F(A) =

P(Qr, α, Σ ∈ A), A ∈ Br. Furthermore, by virtue of Corollary 9, we have

F(A) = P(Qr, α, Σ ∈ A) = P
(
U−1/2

2/r,α/2 ◦Xr, Σ ∈ A
)
=
∫ ∞

0
Nr, uΣ(A)dP

(
U2/r, α/2 < u

)
, A ∈ Br.

Therefore, Proposition 24 is a direct consequence of Lemma 6 with V(x) = P
(
U−1

2/r, α/2 < x
)
. �

In the same way as Proposition 22 was proved, by the corresponding replacement of U2/r, α/2
by 1

2 U2, α/2 with the reference to Corollary 9 replaced by that to the definition of a multivariate PEP
distribution, we can obtain conditions for the convergence of the distributions of multivariate random
sums to PEP distributions.

Proposition 25. Assume that the random vectors X1, X2, . . . satisfy condition (58) with some infinitely
increasing sequence {bn}n>1 of positive numbers and some positive definite matrix Σ. Let {dn}n>1 be an
infinitely increasing sequence of positive numbers. Then,

d−1
n SNn =⇒ Q∗r, α, Σ (n→ ∞)
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if and only if
d−1

n bNn =⇒ 1
2 U2, α/2 (n→ ∞).

4.5. A Criterion of Convergence of the Distributions of Regular Statistics Constructed from Samples with
Random Sizes to Multivariate EP Distributions

Let {Xn}n>1 be independent not necessarily identically distributed random vectors with values
in Rr, r ∈ N. For n ∈ N, let Tn = Tn(X1, . . . , Xn) be a statistic, i.e., a measurable function of X1, . . . , Xn

with values in Rm, m ∈ N. For each n ≥ 1, we define a random vector TNn by setting

TNn(ω) ≡ TNn(ω)

(
X1(ω), . . . , XNn(ω)(ω)

)
, ω ∈ Ω.

Let θ ∈ Rm. Assume that the statistics Tn are asymptotically normal in the sense that

√
n(Tn − θ) =⇒ Xm, Σ (60)

as n → ∞, where Xm, Σ is a random vector with the m-variate normal distribution with an (m×m)

covariance matrix Σ. Recall that we use a special notation Nm, Σ for L(Xm, Σ). Examples of statistics
satisfying (60) are well known: sample quantiles, maximum likelihood estimators of a multivariate
parameter, etc.

Let N1, N2, . . . be a sequence of nonnegative integer r.v.s defined on the same probability space
so that for each n > 1 the r.v. Nn is independent of the sequence X1, X2, . . . In this section, we will be
interested in the conditions providing the convergence of the distributions of the m-variate random
vectors Z =

√
n(TNn − θ) to m-variate elliptically contoured EP distributions L(Qm, α, Σ).

In limit theorems of probability theory and mathematical statistics, it is conventional to use
centering and normalization of r.v.s and vectors in order to obtain non-trivial asymptotic distributions.
Moreover, to obtain reasonable approximation to the distribution of the basic statistics (in our case,
TNn ), the normalizing values should be non-random. Otherwise the approximate distribution becomes
a random process itself and, say, the problem of evaluation of its quantiles or critical values of statistical
tests becomes senseless. Therefore, in the definition of Z we consider the non-randomly normalized
statistic constructed from a sample with random size.

Lemma 7. Assume that Nn → ∞ in probability and the statistic Tn is asymptotically normal so that
condition (60) holds. Then a random vector Z such that

√
n(TNn − θ) =⇒ Z (n→ ∞)

exists if and only if there exists a d.f. V such that

(i) V(x) = 0 for x < 0;
(ii) for any A ∈ Br

P(Z ∈ A) =
∫ ∞

0
Nm, uΣ(A)dV(u);

(iii) P(nN−1
n < x) =⇒ V(x), n→ ∞.

Proof. This lemma is a particular case of a more general statement proved in [50] and strengthened
in [41] (see Theorem 8 there). �

Proposition 26. Assume that Nn → ∞ in probability and the statistic Tn is asymptotically normal so that
condition (60) holds. Then,

Z =
√

n(TNn − θ) =⇒ Qm, α, Σ
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as n→ ∞ with some α ∈ (0, 2] and the same (m×m) matrix Σ as in (60), if and only if

n−1Nn =⇒ U−1
2/m, α/2 (n→ ∞).

Proof. This statement is a direct consequence of Lemma 7 with the account of Corollary 9. �
In the same way that Proposition 26 was proved, by the corresponding replacement of U2/r, α/2

by 1
2 U2, α/2 with the reference to Corollary 9 replaced by that to the definition of a multivariate PEP

distribution, we can obtain conditions for the convergence of the distributions of regular (in the sense
of (60)) multivariate statistics constructed from samples with random sizes to PEP distributions.

Proposition 27. Assume that Nn → ∞ in probability and the statistic Tn is asymptotically normal so that
condition (60) holds. Then,

Z =
√

n(TNn − θ) =⇒ Q∗m, α, Σ

as n→ ∞ with some α ∈ (0, 2] and the same (m×m) matrix Σ as in (60), if and only if

n−1Nn =⇒ 1
2 U−1

2, α/2 (n→ ∞).
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