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Abstract: In this paper, we investigate waiting time problems for a finite collection of patterns in a
sequence of independent multi-state trials. By constructing a finite GI/M/1-type Markov chain with a
disaster and then using the matrix analytic method, we can obtain the probability generating function
of the waiting time. From this, we can obtain the stopping probabilities and the mean waiting time,
but it also enables us to compute the waiting time distribution by a numerical inversion.
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1. Introduction

Waiting time problems for runs and patterns in a random sequence of trials are considered
important, as they are of theoretical interest and have practical applications in various areas of statistics
and applied probability such as reliability, sampling inspection, quality control, DNA/RNA sequence
analysis, and hypothesis testing ([1]). For comprehensive surveys and applications of related waiting
time problems, refer to the books of Balakrishnan and Koutras [2] and Fu and Lou [3].

Let {Xt, t ≥ 1} be a sequence of random variables taking values in a finite set A. A finite sequence
of elements of A is called a pattern. We consider a finite collection C = {C1, C2, . . . , CK} of patterns,
possibly of different lengths. For i = 1, . . . , K, let τCi be the waiting time until the first occurrence
of pattern Ci as a run in the series X1, X2, . . .. Let W be the waiting time until one of the K patterns
appears, i.e.,

W = min{τC1 , . . . , τCK}.

Many researchers have studied waiting time problems for general and specific choices of C in a random
sequence of trials. When {Xt, t ≥ 1} is a sequence of independent and identically distributed (i.i.d.)
Bernoulli trials, Fu and Koutras [4] developed a finite Markov chain embedding method, which was
first employed by Fu [5], to study the exact distributions for the numbers of specified runs and patterns.
Fu [6] extended the finite Markov chain embedding method to study the exact distributions for the
numbers of runs and patterns in a sequence of i.i.d. multi-state trials. In addition, he obtained the
waiting time distribution of a specified pattern.

In this paper, we are mainly interested in computing the waiting time distribution, as well as the
stopping probabilities P(W = τCj), j = 1, . . . , K. Li [7], Gerber and Li [8], Guibas and Odlyzko [9],
Blom and Thorburn [10] and Antzoulakos [11] considered the case when {Xt, t ≥ 1} is a sequence of
i.i.d. multi-state trials. Li [7] and Gerber and Li [8] used the martingale approach to obtain the mean
waiting time E[W] and the stopping probabilities P(W = τCi ), i = 1, . . . , K for a finite collection C of
patterns. Guibas and Odlyzko [9] used the combinatorial method to obtain the probability generating
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function of the waiting time. Blom and Thorburn [10] also used the combinatorial method to obtain the
mean waiting time E[W] and the stopping probabilities P(W = τCi ), i = 1, . . . , K for a finite collection
C of patterns with the same length. Antzoulakos [11] used the finite Markov chain embedding method
to study waiting time problems for a single pattern as well as a finite collection C of patterns.

Han and Hirano [12], Fu and Chang [13], Glaz et al. [14], Pozdnyakov [15], Gava and Salotti [16],
Zhao et al. [17] and Kerimov and Öner [18] considered the case when {Xt, t ≥ 1} is a discrete
time homogenous Markov chain with a finite state space, i.e., {Xt, t ≥ 1} is a sequence of Markov
dependent multi-state trials. Han and Hirano [12] studied waiting time problems for two different
patterns. Fu and Chang [13] studied waiting time problems for a finite collection of patterns by using
the finite Markov chain embedding method. Glaz et al. [14] obtained the mean waiting time E[W] and
the probability generating function of the waiting time for a finite collection of patterns in a two-state
Markov chain by using the method of gambling teams and martingale approach. Pozdnyakov [15]
investigated the same problems as in Glaz et al. [14] for multi-state Markovian trials. Gava and
Salotti [16] obtained the system of linear equations of stopping probabilities P(W = τCi ), i = 1, . . . , K,
by using the methods developed for gambling teams in [14,15]. Recently, Zhao et al. [17] found
a method, which is based on the method of [9], to calculate E[W] and P(W = τCi ), i = 1, . . . , K.
Even more recently, Kerimov and Öner [18] found oscillation properties of the expected stopping times
and stopping probabilities for patterns consisting of two consecutive states. For useful reviews of
different approaches to solve waiting time problems of patterns for both i.i.d. and Markov dependent
trials, refer to Fu and Lou [3].

Antzoulakos [11] and Fu and Chang [13] obtained the probability generating function of the
waiting time for a finite collection of patterns in a sequence of i.i.d. and Markov dependent multi-state
trials, respectively. They used a Markov chain with absorbing states corresponding to the patterns and
considered the waiting time as the first entrance time into the absorbing state. The Markov chain has
the transition probability matrix P of the form:

P =

[
PTT PTA
O I

]
, (1)

where PTT is the submatrix of P whose entries are transition probabilities from a transient state to a
transient state, PTA is the submatrix of P whose entries are transition probabilities from a transient
state to an absorbing state, O is the zero matrix and I is the identity matrix. By using the general
formula that represents the probability generating function of the first entrance time into the absorbing
state, they obtained the probability generating function of the waiting time. Their results are expressed
in terms of the submatrices PTT and PTA, as well as variants of them. Chang [19] also studied waiting
time problems for a finite collection of patterns. He investigated the distribution of the waiting time
until the rth occurrence of any pattern in the collection of patterns. He also used the expression (1) for
the analysis.

In this paper, we consider a sequence of i.i.d. multi-state trials. We also use a Markov chain with
transition probability matrix of the form (1). However, we heavily investigate the structure of the
submatrices PTT and PTA. This enables us to construct a finite GI/M/1-type Markov chain with a
disaster and consider the waiting time as the time until the occurrence of the disaster. Based on this and
the matrix analytic method, we obtain the probability generating function of the waiting time W on
{W = τCj}, Ψj(z) = E[zW

1{W=τCj
}], j = 1, . . . , K. From this, we can obtain the stopping probabilities

P(W = τCi ), i = 1, . . . , K as well as the conditional/unconditional mean waiting times, E[W|W = τCj ]

and E[W], but it also enables us to compute the waiting time distribution by a numerical inversion.
The benefit of our method is that it is useful and efficient even when the length of the pattern is large.
Our method can also be extended to Markov dependent multi-state trials.

The paper is organized as follows. In Section 2, we formulate our waiting time problems.
In Section 3, we construct a GI/M/1-type Markov chain with a disaster. From this we can obtain our
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results, which are given in Section 4. In Section 5, numerical examples are presented to illustrate our
results. Conclusions are given in Section 6.

2. Problem Formulation

Let {Xt, t ≥ 1} be a sequence of i.i.d. trials taking values in a finite set A. Assume that for
t = 1, 2, . . .,

P(Xt = x) = px, x ∈ A,

where ∑x∈A px = 1. For a finite collection C = {C1, C2, . . . , CK} of patterns, suppose that pattern Ci is
of the form

Ci = si
1 · · · si

li , i = 1, . . . , K,

where si
j ∈ A, j = 1, . . . , li, i.e., Ci is any pattern of length li. Here, li, i = 1, . . . , K are fixed positive

integers with l1 ≥ l2 ≥ · · · ≥ lK. Recall that W is the waiting time until one of the K patterns appears,
i.e.,

W = min{τC1 , . . . , τCK}.

We will call W the sooner waiting time.
Our main interest is to derive the probability generating function of the sooner waiting time W on

{W = τCj}, j = 1, . . . , K, i.e.,

Ψj(z) = E[zW
1{W=τCj

}], j = 1, . . . , K. (2)

From this, we can obtain the stopping probabilities, the conditional/unconditional probability mass
functions of W, and the conditional/unconditional means of W as follows:

• The stopping probabilities P(W = τCj), j = 1, . . . , K, are given by P(W = τCj) = Ψj(1).
• The conditional probability mass function of W, given W = τCj , i.e., P(W = n|W = τCj),

j = 1, . . . , K, can be computed from the conditional probability generating function of W given

W = τCj ,
Ψj(z)
Ψj(1)

, by a numerical inversion.

• The probability mass function of W, P(W = n), can be computed from ∑K
j=1 Ψj(z) by a

numerical inversion.
• The conditional mean of W, E[W|W = τCj ], j = 1, . . . , K, can be obtained from E[W|W = τCj ] =

W (1)
j

Ψj(1)
, where W (1)

j = d
dz Ψj(z)

∣∣∣
z=1

. In addition, the unconditional mean of W, E[W], can be

obtained from E[W] = ∑K
j=1W

(1)
j .

3. GI/M/1-Type Markov Chain with a Disaster

In this section, we construct a GI/M/1-type Markov chain with a disaster to obtain an expression
for (2). We define the following three terms:

• s1 · · · sj is a subpattern of pattern Ci if s1 · · · sj = si
ksi

k+1 · · · s
i
k+j for some k with 1 ≤ k ≤ li − j;

when j = 0, s1 · · · sj means the null pattern (i.e., the pattern with length 0).
• A subpattern s1 · · · sj of pattern Ci is proper if j < li (i.e., s1 · · · sj 6= Ci).
• A subpattern s1 · · · sj of pattern Ci is a leading subpattern of Ci if s1 · · · sj = si

1 · · · si
j for some j

with 0 ≤ j ≤ li.

Assume that for i 6= j, Ci is not a proper subpattern of Cj.
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We now introduce a two-dimensional process (Ñt, J̃t), t = 0, 1, 2, . . ., where Ñt and J̃t are defined
as follows:

(i) Ñ0 = 0, and for t = 1, 2, . . .,

• Ñt is the largest n ∈ {0, 1, . . . , min{l1 − 1, t}} such that (Xt−n+1, . . . , Xt) is a proper leading
subpattern of a pattern in C, if t < W.

• Ñt = ∆, where ∆ is an extra point, if t ≥W.

(ii) J̃0 = 1, and for t = 1, 2, . . .,

• J̃t is the smallest i ∈ {1, . . . , K} such that (Xt−Ñt+1, . . . , Xt) is a proper leading subpattern of

pattern Ci, if Ñt ∈ {1, . . . , l1 − 1}.
• J̃t = 1, if Ñt = 0.
• J̃t = j, if Ñt = ∆ and W = τCj .

To clarify the definitions of Ñt and J̃t, we provide the following example: Let {Xt, t ≥ 1} be
a sequence of i.i.d. trials taking values in a finite set A = {a, b, c}. Suppose C = {C1, C2, C3},
where C1 = aaabbb, C2 = aaba and C3 = abc. For example, if we consider the sequence of trials

bcaababbaaabbbbc · · · ,

then (Ñt, J̃t), t = 0, 1, 2, . . . are given in Table 1. As another example, if we consider the sequence
of trials

ababaccaacaabaa · · · ,

then (Ñt, J̃t), t = 0, 1, 2, . . . are given in Table 2. Note that {(Ñt, J̃t), t = 0, 1, . . .} is a discrete time
Markov chain.

Table 1. Sample paths of Ñt and J̃t corresponding to the sample path of Xt, bcaababbaaabbbbc · · · .

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·
Xt b c a a b b b a a a b b b b c · · ·
Ñt 0 0 0 1 2 3 0 0 1 2 3 4 5 ∆ ∆ ∆ · · ·
J̃t 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 · · ·

Table 2. Sample paths of Ñt and J̃t corresponding to the sample path of Xt, ababaccaacaabaa · · · .

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·
Xt a b a b a c c a a c a a b b a · · ·
Ñt 0 1 2 1 2 1 0 0 1 2 0 1 2 3 ∆ ∆ · · ·
J̃t 1 1 3 1 3 1 1 1 1 1 1 1 1 2 2 2 · · ·

Define m0 = 1 and for k = 1, 2, . . . , l1 − 1, let mk be the number of patterns in C whose lengths are
larger than k, i.e.,

mk = max{j ∈ {1, . . . , K} : k < lj}, k = 1, . . . , l1 − 1.

We also define m∆ = K. Note that Ñt ∈ {0, 1, . . . , l1 − 1, ∆}. If Ñt = k, then J̃t ∈ {1, 2, . . . , mk}.
Furthermore, the set of all possible values of J̃t when Ñt = k ∈ {0, 1, . . . , l1 − 1, ∆} is given by

Ik =


{1} if k = 0,
{i : 1 ≤ i ≤ mk, si

1 · · · si
k is not a leading subpattern of Cj for j < i} if 1 ≤ k ≤ l1 − 1,

{1, . . . , K} if k = ∆.



Mathematics 2020, 8, 1893 5 of 16

Therefore, the state space of the discrete time Markov chain {(Ñt, J̃t), t = 0, 1, . . .} is

E = {(k, i) : k = 0, 1, . . . , l1 − 1, ∆; i ∈ Ik}. (3)

For each state (k, i), the first component k is called level. The one-step transition probability matrix
P of {(Ñt, J̃t), t = 0, 1, . . .} is given, in lexicographic order with ∆ being the last element in the set of
levels, as follows:

P =

0
1
2
...

l1 − 2
l1 − 1

∆



P00 P01 O O · · · · · · O P0∆
P10 P11 P12 O · · · · · · O P1∆
P20 P21 P22 P23 O · · · O P2∆

...
...

...
. . . . . .

...
...

...
Pl1−2,0 Pl1−2,1 Pl1−2,2 · · · · · · · · · Pl1−2,l1−1 Pl1−2,∆
Pl1−1,0 Pl1−1,1 Pl1−1,2 · · · · · · · · · Pl1−1,l1−1 Pl1−1,∆

O O O · · · · · · · · · O I∆


, (4)

where the submatrices are described below. A matrix consisting of (i, j) components with i ∈ I and
j ∈ J will be called an I × J matrix.

• For k = 0, 1, . . . , l1 − 1, Pk0 is the Ik × I0 matrix whose (i, 1)-component is

(Pk0)i1 = ∑
x∈Ai

k0

px,

where Ai
k0 is the subset of A consisting of x such that si

k′ s
i
k′+1 · · · s

i
kx is not a leading subpattern of

a pattern in C for any k′ ∈ {1, . . . , k + 1}.
• For k = 0, 1, . . . , l1 − 1, Pk∆ is an Ik × I∆ matrix. The (i, j)-component of Pk∆ is

(Pk∆)ij = p
sj

lj

if si
1si

2 · · · si
k = sj

1sj
2 · · · s

j
lj−1. Otherwise, (Pk∆)ij = 0.

• For k = 0, 1, . . . , l1 − 1, and k′ = 1, . . . , min{k + 1, l1 − 1}, Pkk′ is an Ik × Ik′ matrix.
The (i, j)-component of Pkk′ is

(Pkk′)ij = p
sj

k′

if the following three conditions hold:

(i) si
k−k′+2si

k−k′+3 · · · s
i
ksj

k′ is a proper leading subpattern of pattern Cj;
(ii) sj

1 · · · s
j
k′ is not a proper leading subpattern of pattern Cj′ for j′ ∈ {1, . . . , j− 1};

(iii) si
nsi

n+1 · · · si
ksj

k′ is not a leading subpattern of a pattern in C for n ∈ {1, 2, . . . , k− k′ + 1}.

Otherwise, (Pkk′)ij = 0.
• O’s are zero matrices (possibly of different sizes).
• I∆ is the I∆ × I∆ identity matrix.

To make it easier to understand how the matrix P in (4) is constructed, we explain with an example.
For the previously described example with A = {a, b, c}, C1 = aaabbb, C2 = aaba and C3 = abc, we
have

I0 = {1}, I1 = {1}, I2 = {1, 3}, I3 = {1, 2}, I4 = {1}, I5 = {1}, I∆ = {1, 2, 3}.
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The matrix P is

P =



P00 P01 O O O O P0∆
P10 P11 P12 O O O P1∆
P20 P21 P22 P23 O O P1∆
P30 P31 P32 P33 P34 O P1∆
P40 P41 P42 P43 P44 P45 P1∆
P50 P51 P52 P53 P54 P55 P1∆

O O O O O O I∆


,

where

P00 = pb + pc, P01 = pa,
P10 = pc, P11 = 0, P12 = [pa pb],

P20 =

[
pc

pb

]
, P21 =

[
0
pa

]
, P22 =

[
0 0
0 0

]
, P23 =

[
pa pb
0 0

]
,

P30 =

[
pc

pb

]
, P31 =

[
0
0

]
, P32 =

[
0 0
0 0

]
, P33 =

[
pa 0
0 0

]
, P34 =

[
pb
0

]
,

P40 = 0, P41 = 0, P42 = [0 0], P43 = [0 0], P44 = 0, P45 = pb,
P50 = pc, P51 = pa, P52 = [0 0], P53 = [0 0], P54 = 0, P55 = 0,

P0∆ = [0 0 0], P1∆ = [0 0 0], P2∆ =

[
0 0 0
0 0 pc

]
, P3∆ =

[
0 0 0
0 pa pc

]
,

P4∆ = [0 pa pc], P5∆ = [pb 0 0], I∆ =

1 0 0
0 1 0
0 0 1

 .

That is, P is given by

P =



pb + pc pa 0 0 0 0 0 0 0 0 0
pc 0 pa pb 0 0 0 0 0 0 0
pc 0 0 0 pa pb 0 0 0 0 0
pb pa 0 0 0 0 0 0 0 0 pc

pc 0 0 0 pa 0 pb 0 0 0 0
pb 0 0 0 0 0 0 0 0 pa pc

0 0 0 0 0 0 0 pb 0 pa pc

pc pa 0 0 0 0 0 0 pb 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1



.

Let {(Nt, Jt), t = 0, 1, . . .} be a two-dimensional discrete time Markov chain with the same state
space E as that given in (3) and the same transition probability matrix P as that given in (4), but with
an arbitrary initial state. Note that {(Nt, Jt), t = 0, 1, . . .} is a finite GI/M/1-type Markov chain with a
disaster. This disaster occurs when Nt reaches ∆.

4. Probability Generating Function of the Waiting Time

In this section, we derive an expression for (2). The analysis is based on the matrix analytic method.
For more details, refer to Neuts [20,21] and Latouche and Ramaswami [22]. Let

τn = inf{t ≥ 1 : Nt = n}, n = 0, 1, . . . , l1 − 1,

τ∆ = inf{t ≥ 1 : Nt = ∆}.
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For n = 0, 1, . . . , l1 − 2, we define

(Gn(z))ij = E
[
zτn+11{τn+1<τ∆ ,Jτn+1=j} | (N0, J0) = (n, i)

]
,

which means the probability generating functions for the time of the first visit to state (n + 1, j),
starting from state (n, i) at time 0, before the first visit to level ∆. Let Gn(z) be the matrix of
the probability generating functions whose (i, j)-component is (Gn(z))ij. Conditioning on the first
transition, we have

Gn(z) = z
[
Pn,n+1 +

n

∑
k=0

PnkGk:n+1(z)
]
, 0 ≤ n ≤ l1 − 2, (5)

where the (i, j)-component of Gk:n+1(z) is

(Gk:n+1(z))ij = E
[
zτn+11{τn+1<τ∆ ,Jτn+1=j} | (N0, J0) = (k, i)

]
, 0 ≤ k ≤ n ≤ l1 − 2.

Since

Gn:n+1(z) = Gn(z), 0 ≤ n ≤ l1 − 2,

Gk:n+1(z) = Gk(z)Gk+1:n+1(z), 0 ≤ k < n ≤ l1 − 2,

we have

Gk:n+1(z) = Gk(z)Gk+1(z) · · ·Gn(z), 0 ≤ k ≤ n ≤ l1 − 2. (6)

Substituting (6) into (5), we obtain

Gn(z) = z
[

Pn,n+1 +
n

∑
k=0

PnkGk(z)Gk+1(z) · · ·Gn(z)
]
, 0 ≤ n ≤ l1 − 2. (7)

Equation (7) can be interpreted as follows: Starting from level n, the Markov chain may visit level
n + 1 (while avoiding level ∆) in two ways: it may move up to level n + 1 at the very next transition
(contributing the factor zPn,n+1), or it may move to level k (0 ≤ k ≤ n) at the first transition, move up
from level k to level k + 1, then from level k + 1 to level k + 2, and so on, until finally moving from
level n to level n + 1 (contributing the factor z ∑n

k=0 PnkGk(z)Gk+1(z) · · ·Gn(z)). From (7), we obtain

Gn(z) = z
[

In − z
n

∑
k=0

PnkGk(z)Gk+1(z) · · ·Gn−1(z)
]−1

Pn,n+1, 0 ≤ n ≤ l1 − 2, (8)

where In is the In × In identity matrix.
For n = 0, 1, . . . , l1 − 1, we define

(Hn(z))ij =

{
E
[
zτ∆1{τn+1>τ∆ ,Jτ∆=j} | (N0, J0) = (n, i)

]
if n = 0, 1, . . . , l1 − 2,

E
[
zτ∆1{Jτ∆=j} | (N0, J0) = (l1 − 1, i)

]
if n = l1 − 1,

which means that (Hn(z))ij (n = 0, 1, . . . , l1− 2) is the probability generating function for the time of the
first visit to state (∆, j), starting from state (n, i), before the first visit to level n+ 1, and that (Hl1−1(z))ij
is the probability generating function for the time of the first visit to state (∆, j), starting from state
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(l1 − 1, i). Let Hn(z) be the matrix of the probability generating functions whose (i, j)-component is
(Hn(z))ij. Conditioning on the first transition, we have

Hn(z) = z
[
Pn∆ +

n

∑
k=0

Pnk Hk:n+1(z)
]
, 0 ≤ n ≤ l1 − 1, (9)

where the (i, j)-component of Hk:n+1(z) (0 ≤ k ≤ n ≤ l1 − 1) is

(Hk:n+1(z))ij =

{
E
[
zτ∆1{τn+1>τ∆ ,Jτ∆=j} | (N0, J0) = (k, i)

]
if n = 0, 1, . . . , l1 − 2,

E
[
zτ∆1{Jτ∆=j} | (N0, J0) = (k, i)

]
if n = l1 − 1.

(10)

Since

Hn:n+1(z) = Hn(z), 0 ≤ n ≤ l1 − 1,

Hk:n+1(z) = Hk(z) + Gk(z)Hk+1(z), 0 ≤ k < n ≤ l1 − 1,

we have

Hk:n+1(z) =
n

∑
k′=k

Gk(z) · · ·Gk′−1(z)Hk′(z), 0 ≤ k ≤ n ≤ l1 − 1. (11)

Substituting (11) into (9), we obtain

Hn(z) = z
[

Pn∆ +
n

∑
k=0

Pnk

n

∑
k′=k

Gk(z)Gk+1(z) · · ·Gk′−1(z)Hk′(z)
]
, 0 ≤ k ≤ n ≤ l1 − 1,

which can be written as

Hn(z) =z
[

Pn∆ +
n−1

∑
k=0

Pnk

n−1

∑
k′=k

Gk(z)Gk+1(z) · · ·Gk′−1(z)Hk′(z)
]

+ z
n

∑
k=0

PnkGk(z)Gk+1(z) · · ·Gn−1(z)Hn(z), 0 ≤ k ≤ n ≤ l1 − 1.

From this equation, we obtain

Hn(z) =z
[

In − z
n

∑
k=0

PnkGk(z)Gk+1(z) · · ·Gn−1(z)
]−1

×
[

Pn∆ +
n−1

∑
k=0

Pnk

n−1

∑
k′=k

Gk(z)Gk+1(z) · · ·Gk′−1(z)Hk′(z)
]
, 0 ≤ n ≤ l1 − 1. (12)

Recall that Ψj(z) = E[zW
1{W=τCj

}], j = 1, . . . , K. Since

P(W = n, W = τCj) = P((τ∆, Jτ∆) = (n, j) | (N0, J0) = (0, 1)),

we have

Ψj(z) = E[zW
1{W=τCj

}] = E[zτ∆1{Jτ∆=j} | (N0, J0) = (0, 1)], j = 1, . . . , K,

which means, by (10),

Ψj(z) = (H0:l1(z))1j.
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Therefore, by (11),

(Ψ1(z), . . . , ΨK(z)) =
l1−1

∑
k=0

G0(z)G1(z) · · ·Gk−1(z)Hk(z).

In summary, we obtain the following theorem.

Theorem 1. The probability generating functions of the sooner waiting time W on {W = τCj}, Ψj(z) =

E[zW
1{W=τCj

}], j = 1, . . . , K, are given by

(Ψ1(z), . . . , ΨK(z)) =
l1−1

∑
k=0

G0(z)G1(z) · · ·Gk−1(z)Hk(z), (13)

where Gk(z), k = 0, 1, . . . , l1 − 2 and Hk(z), k = 0, 1, . . . , l1 − 1 are given by (8) and (12), respectively.

From Theorem 1, we can obtain the following results.

Corollary 1.

(i) The stopping probabilities P(W = τCj), j = 1, . . . , K, are given by

P(W = τCj) = Ψj(1).

(ii) The conditional probability generating functions of W, given W = τCj , j = 1, . . . , K, are given by

E[zW |W = τCj ] =
Ψj(z)
Ψj(1)

. (14)

(iii) The marginal probability generating function of W is given by

E[zW ] =
K

∑
j=1

Ψj(z). (15)

Remark. As mentioned in Section 2, the conditional probability mass function P(W = n|W = τCj),
j = 1, . . . , K can be computed from (14) by a numerical inversion. In addition, the probability mass
function P(W = n) can be computed from (15) by a numerical inversion. For the numerical inversion
of probability generating functions, refer to Abate and Whitt [23].

By Theorem 1, we can also obtain the conditional/unconditional means of the sooner waiting
time. To get this, we introduce

Gk = Gk(1), G(1)k =
d
dz

Gk(z)
∣∣∣
z=1

, k = 0, 1, . . . , l1 − 2,

Hk = Hk(1), H(1)
k =

d
dz

Hk(z)
∣∣∣
z=1

, k = 0, 1, . . . , l1 − 1.

Recall thatW (1)
j = d

dz Ψj(z)
∣∣∣
z=1

, j = 1, . . . , K. By differentiating (13) with respect to z and evaluating at

z = 1, we have

(W (1)
1 , . . . ,W (1)

K ) =
l1−1

∑
k=0

(
k−1

∑
i=0
G0G1 · · · Gi−1G

(1)
i Gi+1 · · · Gk−1Hk + G0G1 · · · Gk−1H

(1)
k

)
. (16)
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Therefore, to obtain an expression forW (1)
j , j = 1, . . . , K, we need to determine G(1)k , k = 0, 1, . . . , l1− 2,

andH(1)
k , k = 0, 1, . . . , l1 − 1. Equation (8) may be written as

[
In − z

n

∑
k=0

PnkGk(z)Gk+1(z) · · ·Gn−1(z)
]

Gn(z) = zPn,n+1, 0 ≤ n ≤ l1 − 2,

from which[
In −

n

∑
k=0

PnkGk · · · Gn−1

]
G(1)n −

[ n

∑
k=0

PnkGk · · · Gn−1 +
n−1

∑
k=0

Pnk

n−1

∑
i=k
Gk · · · G

(1)
i · · · Gn−1

]
Gn

= Pn,n+1, 0 ≤ n ≤ l1 − 2.

Therefore, G(1)n , n = 0, 1, . . . , l1 − 2 are obtained as follows:

G(1)n =
[

In −
n

∑
k=0

PnkGk · · · Gn−1

]−1[ n

∑
k=0

PnkGk · · · Gn−1 +
n−1

∑
k=0

Pnk

n−1

∑
i=k
Gk · · · G

(1)
i · · · Gn−1

]
Gn

+
[

In −
n

∑
k=0

PnkGk · · · Gn−1

]−1
Pn,n+1. (17)

Similarly, we can obtainH(1)
n , n = 0, 1, . . . , l1 − 1, by using equation (12). Equation (12) may be

written as [
In − z

n

∑
k=0

PnkGk(z)Gk+1(z) · · ·Gn−1(z)
]

Hn(z)

= z
[

Pn∆ +
n−1

∑
k=0

Pnk

n−1

∑
k′=k

Gk(z)Gk+1(z) · · ·Gk′−1(z)Hk′(z)
]
, 0 ≤ n ≤ l1 − 1,

from which[
In −

n

∑
k=0

PnkGk · · · Gn−1

]
H(1)

n −
[ n

∑
k=0

PnkGk · · · Gn−1 +
n−1

∑
k=0

Pnk

n−1

∑
i=k
Gk · · · G

(1)
i · · · Gn−1

]
Hn

=Pn∆ +
n−1

∑
k=0

Pnk

n−1

∑
k′=k
GkGk+1 · · · Gk′−1Hk′

+
n−1

∑
k=0

Pnk

n−1

∑
k′=k

( k′−1

∑
i=k
Gk · · · G

(1)
i · · · Gk′−1Hk′ + Gk · · · Gk′−1H

(1)
k′

)
, 0 ≤ n ≤ l1 − 1.

Therefore,H(1)
n , n = 0, 1, . . . , l1 − 1 are obtained as follows:

H(1)
n =

[
In −

n

∑
k=0

PnkGk · · · Gn−1

]−1[ n

∑
k=0

PnkGk · · · Gn−1 +
n−1

∑
k=0

Pnk

n−1

∑
i=k
Gk · · · G

(1)
i · · · Gn−1

]
Hn

+
[

In −
n

∑
k=0

PnkGk · · · Gn−1

]−1
{

Pn∆ +
n−1

∑
k=0

Pnk

n−1

∑
k′=k
GkGk+1 · · · Gk′−1Hk′

+
n−1

∑
k=0

Pnk

n−1

∑
k′=k

( k′−1

∑
i=k
Gk · · · G

(1)
i · · · Gk′−1Hk′ + Gk · · · Gk′−1H

(1)
k′

)}
, 0 ≤ n ≤ l1 − 1. (18)

Since W (1)
j = E[W1{W=τCj

}], j = 1, . . . , K, we can obtain the conditional mean waiting times

E[W|W = τCj ], j = 1, . . . , K from E[W|W = τCj ] =
W (1)

j
P(W=τCj

)
. We can also obtain the unconditional
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mean waiting time E[W] from E[W] = ∑K
j=1W

(1)
j . From these two formulas and (16), we obtain the

following theorem.

Theorem 2. The conditional and unconditional means of the sooner waiting time W are given by, respectively,

(E[W|W = τC1 ], . . . ,E[W|W = τCK ]) =
( W (1)

1
P(W = τC1)

, . . . ,
W (1)

K
P(W = τCK )

)
,

E[W] =
K

∑
j=1
W (1)

j ,

where

(W (1)
1 , . . . ,W (1)

K ) =
l1−1

∑
k=0

(
k−1

∑
i=0
G0G1 · · · Gi−1G

(1)
i Gi+1 · · · Gk−1Hk + G0G1 · · · Gk−1H

(1)
k

)
,

with G(1)k , k = 0, 1, . . . , l1 − 2 andH(1)
k , k = 0, 1, . . . , l1 − 1 given by (17) and (18), respectively.

5. Numerical Examples

In this section, we present numerical results for the computations of the stopping probabilities,
the probability mass functions (along with the tail probabilities) of the sooner waiting time, and the
conditional/unconditional means of the sooner waiting time. To illustrate our results, we provide two
examples.

Example 1. Let {Xn, n ≥ 1} be a sequence of i.i.d. trials taking values in a finite set A = {a, b, c}. Assume
that for n = 1, 2, . . .,

pa = P(Xn = a) =
1
3

, pb = P(Xn = b) =
1
3

, pc = P(Xn = c) =
1
3

.

Suppose that K = 10, i.e., the collection C consists of 10 patterns, C = {C1, . . . , C10}. We select the collection
of patterns {C1, . . . , C10} as shown in Table 3, where the lengths of the patterns, l1, . . . , l10, are chosen from the
order statistics of i.i.d. random variables with mean 5. The set of patterns given in Table 3 is an example of a
randomly selected pattern set such that one pattern is not a subpattern of another. The procedure of randomly
selecting a one pattern set is omitted here.

Table 3. The patterns used in Example 1.

C1 bbcabbccbacc
C2 cbcbccbbb
C3 cbbaacbcc
C4 abaccba
C5 bacabb
C6 cbcab
C7 acaab
C8 caaca
C9 aaca
C10 aaac

By Theorem 1, we can compute (Ψ1(z), . . . , ΨK(z)). Table 4 shows the stopping probabilities

P(W = τCj) = Ψj(1), j = 1, . . . , 10.
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In Figure 1, we plot the joint probabilities P(W ≥ n, W = τCj), j = 1, 4, 7, 10, with n varying. This can
be computed by the numerical inversion of its generating function:

∞

∑
n=1

P(W ≥ n, W = τCj)z
n =

z
1− z

(Ψj(1)−Ψj(z)).

0 20 40 60 80 100 120 140 160 180 200
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

C
1

C
4

C
7

C
10

Figure 1. Plots of the joint probabilities P(W ≥ n, W = τCj ) when j = 1, 4, 7, 10 for Example 1.

Table 4. The stopping probabilities P(W = τCj ), j = 1, . . . , 10 for Example 1.

j P(W = τCj)

1 6.3509× 10−5

2 1.7152× 10−3

3 1.7152× 10−3

4 1.4655× 10−2

5 4.6715× 10−2

6 1.3893× 10−1

7 9.3671× 10−2

8 1.2852× 10−1

9 1.5249× 10−1

10 4.2152× 10−1

In Table 5, we present the probability mass function of W

P(W = n) =
10

∑
j=1

P(W = n, W = τCj),

and the tail probability of W

P(W ≥ n) =
10

∑
j=1

P(W ≥ n, W = τCj),

with n varying. Here, P(W = n, W = τCj) can be computed by the numerical inversion of its
generating function:

∞

∑
n=1

P(W = n, W = τCj)z
n = Ψj(z).



Mathematics 2020, 8, 1893 13 of 16

By Theorem 2, we can compute the conditional mean of the sooner waiting time W, E[W|W = τCj ],
j = 1, . . . , K, and the unconditional mean of W, E[W]. Table 6 shows the conditional and unconditional
mean waiting times for Example 1.

Table 5. The probability mass function P(W = n) and tail probability P(W ≥ n) for Example 1.

n P(W = n) P(W ≥ n)

5 2.8807× 10−2 9.7531× 10−1

10 2.6300× 10−2 8.3422× 10−1

15 2.2424× 10−2 7.1069× 10−1

20 1.9103× 10−2 6.0542× 10−1

30 1.3863× 10−2 4.3936× 10−1

40 1.0060× 10−2 3.1884× 10−1

50 7.3009× 10−3 2.3138× 10−1

60 5.2983× 10−3 1.6792× 10−1

70 3.8450× 10−3 1.2186× 10−1

80 2.7903× 10−3 8.8432× 10−2

90 2.0249× 10−3 6.4175× 10−2

100 1.4695× 10−3 4.6572× 10−2

200 5.9533× 10−5 1.8867× 10−3

Table 6. The conditional mean E[W|W = τCj ], j = 1, . . . , 10 and unconditional mean E[W] for
Example 1.

(a) E[W |W = τCj ]

j E[W|W = τCj ]

1 41.7543
2 40.0476
3 40.0476
4 40.6783
5 41.0372
6 36.3888
7 35.0704
8 35.6263
9 29.7715

10 31.4236

(b) E[W ]

E[W] 33.3582

The next example will be for the Bernoulli trials.

Example 2. Let {Xn, n ≥ 1} be a sequence of i.i.d. Bernoulli trials, i.e., {Xn, n ≥ 1} takes values in a finite
set A = {0, 1}. Assume that for n = 1, 2, . . .,

p0 = P(Xn = 0) =
1
2

, p1 = P(Xn = 1) =
1
2

.

Suppose that the collection C consists of 5 patterns, C = {C1, . . . , C5}, where

C1 = 1111111111111111,

C2 = 0101010101010101,

C3 = 001001001001,

C4 = 00010001,

C5 = 0000.
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For Example 2, the joint probabilities P(W ≥ n, W = τCj), j = 1, . . . , 5 are shown in Figure 2.
Also, the stopping probabilities P(W = τCj), j = 1, . . . , 5, the probability mass function of W
(along with the tail probability) and the conditional/unconditional means of W are shown in
Tables 7–9, respectively.
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Figure 2. Plots of the joint probabilities P(W ≥ n, W = τCj ), j = 1, . . . , 5 for Example 2.

Table 7. The stopping probabilities P(W = τCj ), j = 1, . . . , 5 for Example 2.

j P(W = τCj)

1 2.1412× 10−4

2 2.9831× 10−4

3 4.7235× 10−3

4 5.5265× 10−2

5 9.3950× 10−1

Table 8. The probability mass function P(W = n) and tail probability P(W ≥ n) for Example 2.

n P(W = n) P(W ≥ n)

5 3.1250× 10−2 9.3750× 10−1

10 3.0273× 10−2 7.7734× 10−1

15 2.4963× 10−2 6.3660× 10−1

20 2.0452× 10−2 5.2110× 10−1

30 1.3705× 10−2 3.4916× 10−1

40 9.1827× 10−3 2.3396× 10−1

60 6.1528× 10−3 1.5676× 10−1

70 4.1227× 10−3 1.0504× 10−1

80 2.7624× 10−3 7.0380× 10−2

90 1.8509× 10−3 4.7158× 10−2

50 1.2402× 10−3 3.1598× 10−2

100 8.3100× 10−4 2.1172× 10−2

200 1.5158× 10−5 3.8620× 10−4
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Table 9. The conditional mean E[W|W = τCj ], j = 1, . . . , 5 and unconditional mean E[W] for Example 2.

(a) E[W |W = τCj ]

j E[W|W = τCj ]

1 38.6231
2 38.7707
3 36.8873
4 37.4396
5 26.7334

(b) E[W ]

E[W] 27.3792

6. Conclusions

We have derived the probability generating function of the sooner waiting time for a finite
collection of patterns in a sequence of i.i.d. multi-state trials. From this probability generating function
we have obtained the stopping probabilities and the mean waiting time, but it also has enabled us to
compute the waiting time distribution by a numerical inversion. As mentioned in the introduction,
our method can be extended to Markov dependent multi-state trials.

For further research, we will investigate the tail asymptotics for the sooner waiting time W.
From Figures 1 and 2, we can expect that the distribution of W has a geometric tail behavior. This is
true under certain aperiodic condition because W is the first passage time to a subset of the state space,
in a discrete time Markov chain with a finite state space. Under some assumptions about periodicity,
the distribution of W exhibits a geometric tail behavior, i.e.,

P(W ≥ n) ∼ cσn as n→ ∞

for some c > 0 and σ ∈ (0, 1). Here “∼" means that the limit of the ratio is 1. It would be of interest to
find explicit expressions for c and σ. We also have the following geometric tail behavior:

P(W ≥ n, W = τCi ) ∼ ciσ
n as n→ ∞

for some ci > 0 and σ ∈ (0, 1). Here σ is independent of i and is the same as that described above.
It would also be of interest to find explicit expressions for ci, i = 1, . . . , K.
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