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Abstract: We propose a mathematical model for the spread of Japanese encephalitis with emphasis on
the environmental effects on the aquatic phase of mosquitoes. The model is shown to be biologically
well-posed and to have a biologically and ecologically meaningful disease-free equilibrium point.
Local stability is analyzed in terms of the basic reproduction number and numerical simulations
presented and discussed.
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1. Introduction

Japanese encephalitis (JE) is a mosquito-borne disease transmitted to humans through the bite of
an infected mosquito, particularly a Culex tritaeniorhynchus mosquito. The mosquitoes breed where
there is abundant water in rural agricultural areas, such as rice paddies, and become infected by feeding
on vertebrate hosts (primarily pigs and wading birds) infected with the Japanese encephalitis virus.
The virus is maintained in a cycle between those vertebrate animals and mosquitoes. Humans are
dead-end hosts since they usually do not develop high enough concentrations of JE virus in their
bloodstreams to infect feeding mosquitoes [1].

Human infection occasionally causes brain inflammation with symptoms such as headache,
vomiting, fever, confusion, and epileptic seizure. There is an estimate of about 68,000 clinical cases of
occurrences with nearly 17,000 deaths every year in Asian countries [2].

The first case of Japanese encephalitis viral disease was documented in 1871 in Japan, but the
virus itself was first isolated in 1935 and has subsequently been found across most of Asia. There is
uncertainty on the origin of the name of that virus; however, phylogenetic comparisons with other
flaviviruses suggest that it evolved from an African ancestral virus, perhaps as recently as a few
centuries ago (see [3] and references therein). Note that, despite its name, Japanese encephalitis is now
relatively rare in Japan as a result of a mass immunization program.

Mathematical modeling in the field of biosciences is a subject of strong current research
(see, e.g., [4–6]). One of the first mathematical models for the spread of JE was proposed and analyzed in
2009 in [7]. Later, in 2012, a study of the impact of media on the spreading and control of JE was carried
out [8], while in 2016, several measures to control JE, such as vaccination, medicine, and insecticide,
were investigated through optimal control and Pontryagin’s maximum principle. The state of the
art of mathematical modeling and analysis of JE seems to be found in recent papers [9,10] from 2018.
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In [9], a mathematical model of transmission of JE, described by a system of eight ordinary differential
equations, is proposed and studied. The main results are the basic reproduction number and a
stability analysis around the interior equilibrium. The authors of [10] use mathematical modeling and
likelihood-based inference techniques to try to explain the disappearance of JE human cases between
2006 and 2010 and its resurgence in 2011. Here, we propose a mathematical model for the spread
of JE, incorporating environmental effects on the aquatic phase of mosquitoes as the primary source
of reproduction.

The manuscript is organized as follows. In Section 2, we introduce the mathematical model.
Then, in Section 3, the theoretical analysis of the model is investigated: the well-posedness of the
model is proved (see Theorem 1), and the meaningful disease-free equilibrium and its local stability,
in terms of the basic reproduction number, are analyzed in detail (see Theorem 2). Section 4 is then
devoted to numerical simulations. We end with Section 5 of conclusions, where we also point out
some possible directions of future research.

2. Model Formulation

In our mathematical model, we shall consider environmental factors within three different
host populations: humans, mosquitoes, and vertebrate animals (pigs or wading birds) as the
reservoir host. In fact, unhygienic environmental conditions may enhance the presence and growth of
vectors (mosquitoes) populations, leading to fast spread of the disease. This is due to the discharge of
various kinds of household and other wastes into the environment in residential areas of population,
thus providing a very conducive environment for the growth of vectors [11,12]. Since that effect could
not be modeled as epidemiological compartments, we use the same scheme as in [13,14] to handle that
effect on the JE disease, namely [7]

dE(t)
dt

= Q0 + θN(t)− θ0E(t), (1)

where E is the cumulative density of environmental discharges conducive to the growth rate of
mosquitoes and animals. The cumulative density of environmental discharges due to human activities
is given by θ. There is also a constant influx given by Q0, and θ0 is the depletion rate coefficient of
the environmental discharges. In our model, N(t) stands for the total human population, which is
considered a varying function of time t.

As for the reservoir animal populations, we consider their dynamics, strongly related to
infected animals. Thus, the reservoir population constitutes a “pool of infection” that is a primarily
source of infections and can be modeled by a single state variable, as in the framework of viruses,
having free living pathogens in the environment (see, e.g., [15–17] and references therein for diseases
like cholera, typhoid, or yellow fever). Therefore, we consider a single state variable, denoted by Ir,
to model this reservoir pool of infection:

dIr(t)
dt

= Bβmr
Im(t)
Nm(t)

Ir(t)− (µ1r + µ2r Ir(t)) Ir(t)− dr Ir(t) + δ0 Ir(t)E(t), (2)

where Bβmr
Im

Nm
Ir(t) represents the force of infection due to interaction with mosquitoes through biting;

B is the average daily biting; βmr is the transmission coefficient from infected mosquitoes; Im
Nm

is the
fraction of infected mosquitoes; µ1r is the natural death rate of animals; µ2r is the density dependent
death rate; dr is the death rate due to the disease; and δ0 is the per capita growth rate due to
environmental discharges. Note that we are not interested in how the disease spreads to other
animals. Our main goal is to study the transmission of infections from mosquitoes to humans as well
as the related environmental effects.

The following assumptions are made in order to build the compartmental classes for mosquitoes
and human populations:



Mathematics 2020, 8, 1880 3 of 14

• we do not consider immigration of infected humans;
• the human population is not constant (we consider a disease-induced death rate, due to fatality,

of 25%);
• we assume that the coefficient of transmission of the virus is constant and does not vary

with seasons, which is reasonable due to the short course of the disease;
• mosquitoes are assumed to be born susceptible.

Three epidemiological compartments are considered for the mosquito population—precisely,
the aquatic phase, denoted by Am, and including eggs, larva, and pupae stages;
the susceptible mosquitoes, Sm; and the infected mosquitoes, Im. There is also no resistant
phase due to the short lifetime of mosquitoes:

dAm(t)
dt

= ψ(1− Am(t)
K

)(Sm(t) + Im(t))− (µA + ηA) Am(t) + δE(t)Am(t),

dSm(t)
dt

= ηA Am(t)− Bβrm Ir(t)Sm(t)− µmSm(t),

dIm

dt
= Bβrm Ir(t)Sm(t)− µm Im(t),

(3)

where parameter βrm represents the transmission probability from infected animals Ir (per bite), B is
the average daily biting, ψ stands for the number of eggs at each deposit per capita (per day), µA is
the natural mortality rate of larvae (per day), ηA is the maturation rate from larvae to adult (per day),
and δ is the per capita growth rate in the level of aquatic phase due to conducive environmental
discharge. Here, 1

µm
denotes the average lifespan of adult mosquitoes (in days), and K is the maximal

capacity of larvae. We denote by Nm the total adult mosquito populations at each instant of time t,
being defined by Nm(t) = Sm(t) + Im(t) and with its dynamics satisfying the differential equation

dNm(t)
dt

= ηA Am(t)− µmNm.

The total human population, given by function N(t), is subdivided into two mutually
exclusive compartments, according to the disease status, namely susceptible individuals,
S, and infected individuals, I. We do not consider a recovery state since there is no adequate treatment
for the JE disease and no person-to-person infection exists:

dN(t)
dt

= Λh − µhN(t)− dh I(t),

dS(t)
dt

= Λh −
(

Bβmh
Im(t)
Nm(t)

)
S(t)− µhS(t) + νh I(t),

dI(t)
dt

=
(

Bβmh
Im(t)
Nm(t)

)
S(t)− µh I(t)− νh I(t)− dh I(t),

(4)

where parameter Λh denotes the recruitment rate of humans, βmh represents the transmission
probability from mosquitoes to humans, µh is the natural death rate of humans, dh is the
disease-induced death rate, and νh is the rate by which infected individuals are recovered and become
susceptible again. The fatality rate is estimated at 25% of the number of infected.

In summary, our complete mathematical model for the JE disease is described by the following
system of seven nonlinear ordinary differential equations:
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dE(t)
dt

= Q0 + θN(t)− θ0E(t),

dIr(t)
dt

= Bβmr
Im(t)
Nm(t)

Ir(t)− (µ1r + µ2r Ir(t))Ir(t)− dr Ir(t) + δ0 Ir(t)E(t),

dAm(t)
dt

= ψ(1− Am(t)
K

)Nm(t)− (µA + ηA)Am(t) + δE(t)Am(t),

dNm(t)
dt

= ηA Am(t)− µmNm(t),

dIm(t)
dt

= Bβrm Ir(t)(Nm(t)− Im(t))− µm Im(t),

dN(t)
dt

= Λh − µhN(t)− dh I(t),

dI(t)
dt

=
(

Bβmh
Im(t)
Nm(t)

)(
N(t)− I(t)

)
− µh I(t)− νh I(t)− dh I(t),

(5)

where N(t) = S(t) + I(t) and Nm(t) = Sm(t) + Im(t).

3. Mathematical Analysis of the JE Model

We begin by proving the positivity and boundedness of solutions, which justifies the biological
well-posedness of the proposed model.

Theorem 1 (positivity and boundedness of solutions). If the initial conditions
(E(0), Ir(0), Am(0), Nm(0), Im(0), N(0), I(0)) are non-negative, then the solutions
(E(t), Ir(t), Am(t), Nm(t), Im(t), N(t), I(t)) of System (5) are non-negative for all t > 0 and the
positive orthant R7

+ is positively invariant with respect to the flow of System (5). Furthermore, for initial
conditions such that

N(0) 6
Λh
µh

and E(0) 6 E∗,

one has
N(t) 6

Λh
µh

, E(t) 6 E∗, Ir(t) 6 L, ∀t > 0,

where

E∗ =
Q0 + θ Λh

µh

θ0
and L =

Bβmr − µ1r − dr + δ0E∗

µ2r
.

Proof. First of all, note that the right hand side of System (5) is continuous with continuous derivatives;
thus, local solutions exist and are unique. Next, assuming that E(0) > 0, and by continuity of the
right hand side of the first equation of System (5), we have that E(t) remains non-negative on a
small interval in the right hand side of t0 = 0. Therefore, there exists tm = sup{t > 0 : E(t) > 0}.
Obviously, by definition, tm > 0. To show that E(t) > 0 for all t > 0, we only need to prove that
E(tm) > 0. Considering the first equation of System (5), that is,

dE(t)
dt

= Q0 + θN(t)− θ0E(t),

it follows that
d
dt
{E(t) exp(θ0t)} =

(
Q0 + θN(t)

)
exp(θ0t).

Hence, integrating this last equation with respect to t, from t0 = 0 to tm, we have

E(tm) exp(θ0tm)− E(0) =
∫ tm

0

(
Q0 + θN(t)

)
exp(θ0t)dt,
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which yields

E(tm) =
1

exp(θ0tm)

[
E(0) +

∫ tm

0

(
Q0 + θN(t)

)
exp(θ0t)dt

]
.

As a consequence, E(tm) > 0 and we conclude that E(t) > 0 for all t > 0. Similarly, we can prove
that Ir(t), Am(t), Nm(t), Im(t), N(t), and I(t) are all non-negatives for all t > 0. Moreover, because of
the fact that I(t) > 0 for all t > 0, it results from the sixth equation of System (5) that

dN(t)
dt

6 Λh − µhN(t).

Thus, applying Gronwall’s inequality, we obtain

N(t) 6 N(0) exp(−µht) +
Λh
µh

(1− exp(−µht)) .

Hence, N(t) 6 Λh
µh

, if N(0) 6 Λh
µh

for all t > 0. Furthermore, from the first equation of

System (5) combined with N(t) 6 Λh
µh

, and applying Gronwall’s inequality again, we get E(t) 6 E∗,
whenever E(0) 6 E∗. From the second equation of System (5), combined with E(t) 6 E∗, we have that

dIr

dt
6 (A− µ2r Ir) Ir, with A = Bβmr − µ1r − dr + δ0E∗.

Note that
dIr

dt
6 (A− µ2r Ir) Ir implies

1
I2
r

dIr

dt
6 −µ2r +

A
Ir

and, by setting z(t) = − 1
Ir

, we get

dz(t)
dt

6 −µ2r − Az(t).

Then, we follow Gronwall’s inequality to obtain that

z(t) 6 z(0) exp(−At)− µ2r

A
(1− exp(−At)) ,

meaning that

Ir(t) 6
AIr(0)

A exp(−At) + µ2r Ir(0) (1− exp(−At))
.

Finally, lim sup Ir(t) = A
µ2r

, and it follows that Ir(t) 6 A
µ2r

for all t > 0. This concludes
the proof.

The model System (5) admits two disease-free equilibrium points (DFE), obtained by setting the
right hand side of (5) to zero. The first DFE, E1, given by

E1 = (E∗, I∗r , A∗m, N∗m, I∗m, N∗, I∗) =
(

θΛh + Q0µh
θ0µh

, 0, 0, 0, 0,
Λh
µh

, 0
)

,

corresponds to the DFE in the absence of mosquitoes population as well as absence of the aquatic phase;
thus, from a biological point of view, this equilibrium is not interesting. There is a second DFE,
E2, which is the biologically and ecologically meaningful steady state

E2 = (E∗, I∗r , A∗m, N∗m, I∗m, N∗, I∗) =
(

θΛh + Q0µh
θ0µh

, 0, $,
ηA
µm

$, 0,
Λh
µh

, 0
)

, (6)

where
$ =

K
ψθ0µhηA

(δQ0µhµm + δθΛhµm + ψηAµhθ0 − ηAθ0µhµm − θ0µhµmµA),
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which can be rewritten as

$ =
K

ψθ0µhηA
(δµm(θΛh + Q0µh) + ψηAµhθ0 − ηAθ0µhµm − θ0µhµmµA)

=
K
ψ

(
δµm

ηA
E∗ + ψ− µm −

µmµA
ηA

)
.

Therefore,

N∗m =
ηA
µm

$ =
K
ψ

(
δE∗ +

ηAψ

µm
− ηA − µA

)
. (7)

The equilibrium E2 considers interaction with mosquito populations and, with that, the aquatic
phase as the initial source of mosquito reproduction.

We compute the basic reproduction number using the next generator matrix method as described
in [18]. In doing so, we consider the following set of vectors:

F =


δ0 IrE + Bβmr

Im
Nm

Ir

Bβrm Ir(Nm − Im)

Bβmh Im(N − I)
N


and

V =


(µ1r + µ2r Ir)Ir + dr Ir

µm Im

(µh + νh + dh)I

 .

Then, we compute the Jacobian matrix associated to F and V at the DFE, E2, that is,

JF =

 δ0E∗ 0 0
BβrmN∗m 0 0

0 Bβmh 0

 , JV =

 dr + µ1r 0 0
0 µm 0
0 0 µh + νh + dh

 .

The basic reproduction number R0 is obtained as the spectral radius of the matrix JF × (JV )−1 at
the disease-free equilibrium E2, being given by

R0 =
δ0E∗

dr + µ1r
=

(
δ0

θΛh + Q0µh
θ0µh

)
× 1

dr + µ1r
. (8)

The local stability of the disease-free equilibrium (DFE) can be studied through an eigenvalue
problem of the linearized system associated with System (5) at the DFE E2. The DFE point is locally
asymptotically stable if all the eigenvalues of the matrix representing the linearized system associated
to System (5) at the DFE E2 have negative real parts [19]. The aforementioned matrix is given by

M =



−θ0 0 0 0 0 0 0
0 M22 0 0 0 0 0

δA∗m 0 M33 ψ
(

1− A∗m
K

)
0 0 0

0 0 ηA −µm 0 0 0
0 BβrmN∗m 0 0 −µm 0 0
0 0 0 0 0 −µh −dh
0 0 0 0 Bβmh 0 −µh − νh − dh


,
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where M22 = δ0E∗ − dr − µ1r and M33 = −ψN∗m
K − µA − ηA + δE∗ = − ηAψ

µm
, using Equation (7).

The eigenvalues of this matrix are

λ1 = −θ0, λ2 = δ0E∗ − dr − µ1r = (dr + µ1r)(R0 − 1),

λ3 = −µm, λ4 = −µh, λ5 = −µh − νh − dh

and the other two remaining eigenvalues are of the following square matrix:

J =

[
− ηAψ

µm
ψ
(

1− A∗m
K

)
ηA −µm

]
.

Since the trace of this matrix, Tr J = −ηAψ

µm
− µm, is negative, and its determinant

det J = ηAψ− ηAψ
(

1− A∗m
K

)
=

A∗m
K

positive, it follows that these two eigenvalues are both negative. In conclusion, we have just proved
the following result.

Theorem 2 (local stability of the biologically and ecologically meaningful disease free equilibrium).
The disease-free equilibrium E2 with aquatic phase and in the presence of non-infected mosquitoes is locally
asymptotically stable if R0 < 1 and unstable if R0 > 1, where R0 is given by Equation (8).

4. Numerical Simulations

In this section, we illustrate stability and convergence of the solutions of the differential System (5)
to the disease-free equilibrium (Equation (6)) for different values of initial conditions considered
in Table 1 (see Figures 1–3 for the corresponding infected populations in Model (5)). We perform
numerical simulations to solve the model system (Model (5)) using the Python programming language,
precisely the freely available routine integrate.odeint of library SciPy. The following values of the
parameters, borrowed from [7,9], are considered:

Q0 = 50, θ = 0.0002, θ0 = 0.0001, βmr = 0.0001, µ1r = 0.1, dr = 1/15,

δ0 = 0.000001, Λh = 150, µh = 1/65, dh = 1/45, νh = 0.45, βmh = 0.0003,

ψ = 0.6, K = 1000, δ = 0.0001, µm = 0.3, βrm = 0.00021.
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Figure 1. The solution of Model (5) tends toward the disease-free equilibrium. In this figure, we show
the evolution of the infected animals population for different initial conditions.
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Figure 2. The solution of Model (5) tends toward the disease-free equilibrium. In this figure, we show
the evolution of the infected mosquitoes population for different initial conditions.
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Figure 3. The solution of Model (5) tends toward the disease-free equilibrium. In this figure, we show
the evolution of the infected humans population for different initial conditions.

Table 1. Initial conditions considered.

E(0) Ir(0) Am(0) Nm(0) Im(0) N(0) I(0)

X1(0) 40,000 500 12,000 10,000 9000 7000 1000

X2(0) 45,000 700 15,000 12,000 11,000 10,000 12,000

X3(0) 35,000 300 10,000 7000 6000 5000 800

Moreover, the remaining parameters were estimated as follows:

µ2r = 0.001, ηA = 0.5, µA = 0.25, B = 1.

The value of the DFE, E2 is computed as below:

E2 = (E∗, I∗r , A∗m, N∗m, I∗m, N∗, I∗) = (122.959, 0, 262.296, 437.160, 0, 9750, 0) .

The matrices JF and JV are obtained as follows
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JF =

 0.000123 0 0
0.0918 0 0

0 0.0003 0

 , JV =

 0.167 0 0
0 0.3 0
0 0 0.488

 ,

which leads to the value of R0 = 0.000738.
Furthermore, we have that the matrix M is equal to

M =



−0.0001 0 0 0 0 0 0
0 −0.167 0 0 0 0 0

0.0262 0 −1 0.443 0 0 0
0 0 0.5 −0.3 0 0 0
0 0.0918 0 0 −0.3 0 0
0 0 0 0 0 −0.0154 −0.0222
0 0 0 0 0.0003 0 −0.487


,

and its eigenvalues are

−1.236, −0.0636, −0.0001, −0.0154, −0.488, −0.3, −0.167

all negatives in accordance with Theorem 2, since R0 < 1.
The initial conditions were considered as in Table 1 and the evolution of the three infected

populations are strictly decreasing curves with all of them converging to the disease-free equilibrium
(Figures 1–3) for these specific parameter values.

Our numerical simulations show that the evolution of the three infected populations are strictly
decreasing curves, and all of them converge to the disease-free equilibrium (Figures 1–3). This means
that our Japanese Encephalitis model (Model (5)) describes a situation of an epidemic disease through
an interesting environmental effect on the source of reproduction of mosquitoes, namely the aquatic
phase of mosquitoes, which includes eggs, larva, and pupa stages. Furthermore, in Figures 4 and 5,
the variation of the evolution of the infected animals population and infected mosquitoes population
is shown, respectively, with respect to different values in the level of environmental discharge due to
constant influx (Q0). It is found that with the decrease in the level of environmental discharge due to
constant influx (Q0), the infected animals population and infected mosquitoes population decrease
and approach the disease-free equilibrium state.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (weeks)

0

100

200

300

400

500

Re
se
rv
oi
r p

op
ul
at
io
n

Q0=50
Q0=12000
Q0=5000

Figure 4. Variation of animals population with respect to Q0.
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Figure 5. Variation of infected mosquitoes population with respect to Q0.

We observe in Figures 6 and 7 that the decrease of the per capita growth rate δ0 of animals due to
environmental discharges results in the decrease of the infected animals population as well as for the
infected mosquitoes population.
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Figure 6. Variation of animals population with respect to δ0.
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Figure 7. Variation of infected mosquitoes population with respect to δ0.
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The role of conducive environmental discharge δ on the infected mosquitoes population is shown
in Figure 8. We found that when the value of δ is smaller than 0.0001, there is then a strict decrease
in the number of infected mosquitoes population. However, when δ becomes larger, the infected
mosquitoes population increases up to a certain optimum value and then decreases to the disease-free
equilibrium state.
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Figure 8. Variation of infected mosquitoes population with respect to δ.

5. Conclusions

In [7], a Japanese Encephalitis model is studied. Its results show persistence of disease in the
population—that is, an endemic situation. In contrast, our obtained results highlight the importance
of considering environmental effects on the aquatic phase of mosquitoes as the primary source of
reproduction of mosquitoes. This is not considered in [7], where the environmental effect is acting on
the mature susceptible mosquitoes populations. Here, we have shown that the basic reproduction
number is a linear dependent function with respect to the equilibrium state of the cumulative density
of environmental discharges, conducive to the growth rate of mosquitoes and animals. All our
computational experiments were carried out using the free and open-source scientific computing
Python library SciPy. To make our results reproducible, we provide the main computer code in
Appendix A. As future work, it would be interesting to validate the model with real data and
take into account possible control measures, e.g., vaccination of the population and vector or
environmental controls.
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Appendix A. Python Code for Figures 1–3

"""" Numerical simulations for Japanese Encephalitis disease~"""

# import modules for solving
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import scipy
import scipy.integrate
import numpy as~np

# import module for plotting
import pylab as~pl

# System with substitutions
#E=X[0], I_r = X[1]; A_m=X[2]; N_m=X[3]; I_m=[4]; N=X[5]; I=X[6].
def JEmodel(X, t, Q0, theta, theta0, betamr, mu1r, mu2r, dr, delta0, psi, K, muA, nuA,
delta, mum, B, betarm, Lambdah, muh, nuh, dh, betamh ):
z1= Q0 + theta*X[5] - theta0*X[0]
z2=betamr*X[1]*X[4]/X[3] - (mu1r +mu2r*X[1] + dr)*X[1] + delta0*X[1]*X[0]
z3= psi*(1- X[2]/K)*X[3] - (muA + nuA)*X[2] + delta*X[0]*X[2]
z4= nuA*X[2]-mum*X[3]
z5= B*betarm*X[1]*(X[3]-X[4])-mum*X[4]
z6= Lambdah - muh*X[5]-dh*X[6]
z7= (B*betamh*X[4]/X[3])*(X[5]-X[6])-nuh*X[6] - muh*X[6] - dh*X[6]
return (z1, z2, z3, z4, z5, z6, z7)

if __name__== "__main__":

X0= [40000, 500, 12000, 10000, 9000, 7000, 1000];
X1= [45000, 700, 15000, 12000, 11000, 10000, 1200];
X2= [35000, 300, 10000, 7000, 6000, 5000, 800];
t = np.arange(0, 20, 0.1)

Q0= 50
theta=0.01
theta0=0.0001
betamr= 0.0001
mu1r=0.1
dr=1/15.0
delta0=0.000001
psi=0.6
K=1000
muA=0.25
nuA=0.5
delta=0.0001
mum=0.3
B=1; mu2r= 0.001
betarm=0.00021
Lambdah=150
muh=1.0/65
dh=1.0/45
nuh=0.45
betamh=0.0003
r=scipy.integrate.odeint(JEmodel, X0, t, args=(Q0, theta, theta0, betamr, mu1r, mu2r,
dr, delta0, psi, K, muA, nuA, delta, mum, B, betarm, Lambdah, muh, dh, nuh, betamh))

r1=scipy.integrate.odeint(JEmodel, X1, t, args=(Q0, theta, theta0, betamr, mu1r, mu2r,
dr, delta0, psi, K, muA, nuA, delta, mum, B, betarm, Lambdah, muh, dh, nuh, betamh))

r2=scipy.integrate.odeint(JEmodel, X2, t, args=(Q0, theta, theta0, betamr, mu1r, mu2r,
dr, delta0, psi, K, muA, nuA, delta, mum, B, betarm, Lambdah, muh, dh, nuh, betamh))
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pl.plot(t,r[:,1], t,r1[:,1], t,r2[:,1])
pl.legend([’$X_1(0)$’, ’$X_2(0)$’, ’$X_3(0)$’],loc=’upper right’)
pl.xlabel(’Time (weeks)’)
pl.ylabel(’Reservoir population’)
#pl.title(’Japaneese model’)
pl.savefig(’reservoir.eps’)
pl.show();

pl.plot(t,r[:,4], t,r1[:,4],t,r2[:,4])
pl.xlabel(’Time (weeks)’)
pl.ylabel(’Infected mosquitoes’)
pl.legend([’$X_1(0)$’, ’$X_2(0)$’, ’$X_3(0)$’],loc=’upper right’)
pl.savefig(’mosquitoes.eps’)
pl.show();

pl.plot(t,r[:,6], t,r1[:,6],t,r2[:,6])
pl.xlabel(’Time (weeks)’)
pl.ylabel(’Infected humans’)
pl.legend([’$X_1(0)$’, ’$X_2(0)$’, ’$X_3(0)$’],loc=’upper right’)
pl.savefig(’infected_human.eps’)
pl.show()
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