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Abstract: A sound statistical model for recovery rates is required for various applications in
quantitative risk management, with the computation of capital requirements for loan portfolios as one
important example. We compare different models for predicting the recovery rate on borrower level
including linear and quantile regressions, decision trees, neural networks, and mixture regression
models. We fit and apply these models on the worldwide largest loss and recovery data set for
commercial loans provided by GCD, where we focus on small- and medium-sized entities in
the US. Additionally, we include macroeconomic information via a predictive Crisis Indicator or
Crisis Probability indicating whether economic downturn scenarios are expected within the time of
resolution. The horserace is won by the mixture regression model which regresses the densities as
well as the probabilities that an observation belongs to a certain component.

Keywords: decision tree; loss given default; mixture model; neural network; predictive crisis indicator

1. Introduction

Additional capital requirements and an increased awareness of the importance of credit risk
modeling are consequences of the financial crisis of 2007. Capital requirements, like the internal
ratings-based approach of Basel II, allow financial institutions to estimate their credit risk using
internal models. The main determinants of credit risk are the probability of default (PD), the exposure
at default (EAD), and the loss given default (LGD); the latter is linked to the recovery rate (RR) via
RR = 1− LGD. We focus on the modeling of the recovery rate and compare different methods to
estimate a firm-specific one.

According to §297 of [1], LGD has to be measured as “loss given default as a percentage of the
EAD”. However, there exist several methods to calculate the LGD (resp. RR), namely the market LGD,
the implied market LGD, and the workout LGD (see [2]). For loan data, the appropriate definition
is the workout RR, which are the revenues (R) that financial institutions can collect reduced by all
administration costs (A) during the resolution period in case of a default, divided by the outstanding
amount at default (EAD). In [3], the RR for a defaulted loan with exposure at default EAD is defined as:

RR =
R− A
EAD

=
∑ Collections−∑ Admin Fees
Outstanding Balance at Default

.

where A denotes the administration costs and R the recovered amount. With this definition, it is
actually possible that the RR can take values greater than one or smaller than zero. In [4], an example
for a RR smaller than zero principal advances is mentioned. On the contrary, in cases of penalty fees,
additional interest, and recovered principal advances, the RR can attain a value greater than one.
Both are frequently observed in our data.
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Our objective is to compare different methods to model the recovery rate, namely linear regression,
quantile regression, decision trees with linear/quantile regression, neural networks, and mixture
regression models. Thereby, we investigate how information on an economic crisis affects these models.

We base this study on the LGD&EAD platform provided by Global Credit Data (GCD) which
contains information about defaulted loans; see Section 4.1 for more details. Moreover, we aggregate
the information on loan level to borrower level and focus on small- and medium-sized entities (SME)
in the US. Inspired by the findings presented in [5], in which it was stated that the macroeconomic
behavior during the resolution time has an influence on the recovery rate, we include a predictive Crisis
Indicator, which predicts whether a crisis might occur during the time of resolution, in our models.

This paper is structured as follows: In Section 2, we survey the literature for modeling the RR.
Subsequently, we provide a theoretical background of the techniques used in this study in Section 3.
Thereafter, in Section 4, the structure of the database is presented. The results of the models are shown
in Section 5. Section 6 summarizes the results and we discuss possibilities for further research on
the RR.

2. Literature Review

In the literature, several models are suggested to estimate the RR. We give a short overview with
focus on regression models, decision trees, neural networks, and mixture models.

According to the authors of [6,7], classical linear regression models are the most popular and most
straightforward techniques to estimate the RR. However, the authors of [8,9] mention as a drawback
that in reality, RRs are bounded and not normally distributed. Nevertheless, the linear regression
model outperforms the Tobit model and the decision tree model for UK credit card accounts in [10].

Many authors have adapted regression models to the situation of RRs. The inverse Gaussian
(IG) regression transforms the RR by an inverse Gaussian distribution function from the interval
(0, 1) to the real line. The authors of [9] compare this to the inverse Gaussian regression with beta
transformation, which is also used by the authors of [7,11,12], where the assumption of beta distributed
LGDs is postulated and subsequently, the inverse Gaussian distribution is applied. Linear regression
aims at predicting the mean, whereas a quantile regression can analyze the influence of covariates on
the entire distribution. The authors of [13] emphasize that quantile regression might hence be better
suited for downturn scenarios. Moreover, the authors of [14] use SME data from the biggest Polish
banks to compare a linear regression, quantile regression, and the standard quantile regression forests
with the weighted quantile regression forests and conclude that the weighted quantile regression
forests outperform the other methods.

In order to model the concentration of RRs at the boundaries {0, 1}, the authors of [10] propose
a decision tree model which is also used by the authors of [7]. A logistic regression model decides
whether the RR takes the value 0 or 1. Subsequently, an ordinary least squares method is used inside
(0, 1). Similarly, the authors of [12] use a logistic regression to determine whether the RR takes the
boundary values and different parametric as well as non-parametric models to explain the RR inside
(0, 1), but the single application of the non-parametric models, especially neural networks and the
least squares support vector machines, outperforms the combinations.

Beside the authors of [12], several other researchers also studied non-parametric models:
In [6,9], neural networks outperform the fractional response regression resp. linear regression,
inverse Gaussian regression, inverse Gaussian regression with beta transformation, and the fractional
response regression. However, [9] mention as a drawback that neural networks are a “black box”
because there is no straightforward method to interpret the relationship between the independent and
dependent variables.

Another type of models, which are considered in different ways to predict the RR, are finite
mixture models. The authors of [13] use a normal mixture distribution with two components for LGDs
and find that it performs best with their quantile regression on the GCD subset of US SMEs. However,
the authors of [3] propose a two-stage model to apply a beta-mixture model for the RRs in (0, 1).
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This two-stage model outperforms the OLS, the OLS with lasso, and the beta regression. In addition,
the authors of [15] present zero-and-one inflated mixture models. A three-level multinomial model
first decides whether the LGD takes the value 0 or 1 or lies in (0, 1). Subsequently, finite mixture
distributions are applied to (0, 1), in which they test different component distributions.

In [16], the transformed RR (by the inverse normal distribution) is approximated as a mixture
of Gaussian distributions, where only the probability belonging to a certain component depends on
covariates. The authors of [17] extend this mixture model on the Moody’s Ultimate Recovery Database
by introducing a Markov switching model with two states representing crisis and non-crisis periods
to capture cyclical aspects. For each state, there is a mixture model with four components for the
transformed RR which enables the determination of the influence of covariates.

Similar to the decision trees, a mixed continuous–discrete model is presented in [18]. In her
further work, Calabrese [19] extends her model by introducing a mixture model. The LGD is modeled
as a mixture of the expansion and recession distribution where each distribution is represented by the
mixed model in [18]. The mixtures represent the credit cycle, i.e., bad or good times.

3. Modeling Methods

This section provides a theoretical background of the techniques used in this study. We focus
on decision trees, neural networks, and mixture regression models. We refer to [13,20,21] for more
information on regression methods, in particular for quantile regression models as well as for model
selection techniques.

3.1. Rule Based Models—Decision Trees

Since RRs are not normally distributed, a linear regression might not be adequate. As an
alternative, the RR can first be transformed and then, on the transformed data, a linear regression can
be applied. In the literature, e.g., in [11], a beta transformation is used. The transformed RR is:

Transformed RR = Φ−1(FBeta(RR, α, β)), (1)

where Φ−1 is the quantile function of the standard normal distribution and FBeta(x, α, β) is the
distribution function of the beta distribution with shape parameters α and β, which have to be
estimated. This transformation, however, can only be applied to RR ∈ (0, 1). As our data set
also contains observations with a RR smaller than or equal to zero or greater than or equal to one,
we use a rule-based model as displayed in Figure 1. The model is similar to a decision tree approach
(see, e.g., [10]), and we use the terminology decision trees in what follows.

Figure 1. Structure of the decision tree model.

Firstly, a logistic regression (or a neural network) determines the probability p that the RR is
greater than or equal to 1. Then, a second classification model, i.e., a logistic regression (resp. neural



Mathematics 2020, 8, 1856 4 of 18

network), estimates the probability q that the RR takes a value less than or equal to 0, given that it is
smaller than 1. We use a linear regression to predict the rates RR≥1 and RR≤0. Inside (0, 1), we apply
the beta transformation (1) to the RR. Subsequently, a linear regression (or a quantile regression)
estimates the rate RR(0,1). If the linear regression had been applied to the raw RR, there would
be predicted values outside (0, 1). Therefore, we first apply the beta transformation and, on the
transformed RR, we can use the linear regression. In contrast to the linear regression, the estimates of
the quantile regression would not exceed the open unit interval. Therefore, we apply this regression
type on the raw RR and compare the results. We mention that, according to our results, it is better
to apply the quantile regression on the raw RR ∈ (0, 1). Hence, in the following, the corresponding
results are presented. The expected RR is expressed as a weighted average, where the weights are p,
(1− p) · q, and (1− p) · (1− q). Hence, the expected RR is:

E[RR] = p · RR≥1 + (1− p) · q · RR≤0 + (1− p) · (1− q) · RR(0,1).

3.2. Neural Networks

In this section, we present the structure of feedforward neural networks following [22,23]. For a
comparison of statistical models and neural networks, please refer to [24].

In a neural network, whose structure is presented in Figure 2, neurons are structured in layers.
The neurons are connected by synapses, which are graphs between them and the neurons of the
subsequent layers. In order to keep the model simple, we (mostly) consider feedforward neural
networks with one hidden layer. The input layer contains all covariates, the so-called input variables
X1, . . . , Xp, which represent the separate neurons. Each numerical attribute has its own neuron. In case
of categorical variables, dummy coding as in a linear regression is applied. The output layer has K
neurons O1, . . . , OK. For regression problems with one response variable as well as for classification
problems with two categories, we have K = 1. For classification problems with C classes, there are
K = C output neurons, each representing one category. The hidden layer with neurons H1, . . . , HM
lies in between and cannot be observed directly. A bias can be added to the input and hidden layers as
an extra neuron BI resp. BH .

Figure 2. Structure of neural networks with one hidden layer.

The propagation function connects the output values of the previous layer Oj,previous layer, j ∈
previous layer such that the result can be used as input Ii,current layer for a neuron i ∈ current layer in
the current layer. We use the weighted sum:

Ii,current layer = ∑
j∈previous layer

wi,jOj,previous layer.
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The activation function σ transforms this value Ii,current layer to the output value of the neuron
Oi,current layer = σ(Ii,current layer). For this, we use the sigmoid function:

σ(x) = sigmoid(x) =
1

1 + exp(−x)
.

The propagation function is applied again to receive the input for the output layer. Then, for the
output neuron Ok, k = 1, . . . , K, in the output layer, we apply a final transformation by the output
function gk instead of the activation function. In case of regression problems, we use as gk the identity
function, whereas we apply the softmax function gk(Ik) =

exp(Ik)

∑K
l=1 exp(Il)

in case of classification problems.

The weights have to be estimated in the training process. Therefore, we use the backpropagation
algorithm in case of neural networks for classification problems as “backpropagation is the most
widely used algorithm for supervised learning with multilayered feed-forward networks” according
to the authors of [25]. In case of regression problems, we use the extension RPROP+ algorithm of the
authors of [25] and refer to their original paper for more information.

3.3. Mixture Models

In a linear regression model, we assume that the dependent variable relates to the covariates by a
fixed parameter β over all observations. This assumption is often too restrictive, calling the need for
models in which the regression coefficient can change over different clusters among the observations.
One family of models are finite mixture models, which will be presented following [26–29].

In general, a finite mixture regression model with K components has the form:

h(y|x, ψ) =
K

∑
k=1

πk f (y|x, θk), (2)

where πk, k = 1, . . . , K are the weights with πk ≥ 0, ∑K
k=1 πk = 1 and ψ = (π1, . . . , πK, θ′1, . . . , θ′K) is

the vector of all unknown parameters. θk denotes the component specific parameter vector for the
density function f . If f is a univariate normal density with component specific mean β′kx and variance
σ2

k , we get a mixture of standard linear regression models with θk = (β′k, σ2
k )
′.

The weights πk, k = 1, . . . , K in Equation (2) are usually independent of the covariates.
One extension is the concomitant variable model by the authors of [30], which assumes that the weights
depend on some variables, the so-called concomitant variables denoted by c. Then, the mixture model
can be written as:

h(y|x, ψ) =
K

∑
k=1

πk(c, α) f (y|x, θk), (3)

where α denotes the parameter vector of the concomitant variable model and ψ contains all parameters
including α. The remaining arguments are defined as in Equation (2) and the weights have to satisfy the
conditions πk(c, α) > 0 and ∑K

k=1 πk(c, α) = 1, k = 1, . . . , K. Similar to the authors of [30], we assume
a multinomial logit model for the weights πk, which can be written as:

πk(c, α) =
exp(c′αk)

∑K
u=1 exp(c′αu)

, (4)

for all k = 1, . . . , K and with α = (α′k)
′
k=1,...,K and α1 ≡ 0.

For parameter estimation, we write the log-likelihood function of a sample of n observations
(x1, y1), . . . , (xn, yn) as:

log L =
n

∑
i=1

log h(yi|xi, ψ) =
n

∑
i=1

log
( K

∑
k=1

πk(c, α) f (yi|xi, θk)

)
.
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Since the membership to the components is unknown, this likelihood function cannot be computed
directly. For maximum likelihood estimation of mixture models with concomitant variables, the authors
of [27] outline an iterative expectation–maximation (EM) algorithm introduced by the authors of [31]
and implement it in the R-package flexmix.

4. Data

4.1. The Global Credit Data (GCD) Database

In line with the authors of [13], for our empirical analysis, we use a data set of US-based small-
and medium-sized entities (SME) from Global Credit Data (GCD). GCD is a Dutch-based, not-for-profit
registered association whose owners are more than 50 member banks across the world. The objective
of GCD is to be a credit risk data pooling initiative to support the member banks by their internal
credit risk models inter alia for the advanced internal ratings-based approach of Basel II. We use the
LGD&EAD platform, which is the largest loss and recovery data set for commercial loans worldwide
and contains data relating to credit defaults from 1998 up until the end of 2016. This time period
encompasses more than one full economic cycle as required by §472 in [1]. Table A1 in the Appendix A
gives an overview of all variables used.

We adjust the data following [32]. Firstly, the exposure at default has to be strictly greater
than zero, as the focus of this study lies on real losses. Second, we only consider loans where
EAD + Principal Advance + Financial Claim ≥ ¤5000, such that very small exposures are excluded.
Third, the default date lies in the interval [January 2002, December 2015]. We exclude cases before
the year 2002 due to modified banking regulations. As the cases after 2015 might still be unresolved,
we exclude them as well. Fourth, to exclude all facilities that are not fully resolved or exhibit
unreasonable cash flows, the following rule is applied according to [32]: If the total sum of all reported
cash flows (including charge-offs and waivers) divided by the outstanding amount at default is smaller
than 90% or greater than 105%, the facility is not considered. Fifth, only cases with resolved default
status are of interest. Finally, the RR lies in the interval [−0.5, 1.5]. All observations with smaller or
greater RR are excluded to avoid outliers.

Furthermore, we split the data into three groups: training, validation, and test set. The training
set (in regression problems, the so-called in-sample set) contains 80% of the data according to [29]
and is used to estimate the models. In order to get an impression of how well a model can create new
predictions, the trained models are applied on the test set, which is also called the out-of-sample set.
These data are not used in the estimation of the model; therefore, these results are reliable and can be
compared. Some models need hyperparameters—for example, the number of hidden neurons in a
neural network. Since the training data are already used and the test data should remain independent
of the modeling process, we use a third data set, the validation set, to fit the hyperparameters. The test
set and the validation set both contain 10% of the data.

The histogram of the RR is presented in Figure 3 and shows a high concentration at full recovery.
Furthermore, there are two additional peaks near 0 and 0.5. In the literature, the RR has frequently
been modeled using a bimodal structure—for example, in [6,9,16,33]. Similar to our data, the authors
of [3] use a trimodal distribution.
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Figure 3. Histogram of the recovery rate in our data (small- and medium-sized entities (SME),
US-based).

4.2. Predictive Crisis Indicator

Some studies—for example, [18,32]—find that the recovery rate tends to be lower during economic
downturns. The authors of [5] observe that the macroeconomic behavior during the resolution time
has an influence on the recovery. Therefore, we use a predictive Crisis Indicator, which indicates
whether a crisis might occur in the next 18 months (the average resolution time).

To model the predictive Crisis Indicator, we first calculate a daily Crisis Indicator using a modified
version of the algorithm of [34], where we use two-year highs instead of half-year highs. The algorithm
of [34] can be applied to any stock index, but for the focus on recovery rates of SMEs in the US,
we chose the S&P500. With the algorithm from [34], a daily crisis indicator is determined. To get a
monthly aggregated crisis indicator, we apply the following decision rule: If at least two days within a
month are indicated as crisis, the month in total is considered as crisis.

In the next step, a predictive Crisis Indicator needs to be built; therefore, we follow an approach
tested by [35]. For every month m, we consider the period of the next 18 months [m+ 1, . . . , m+ 1+ 18].
If there is at least one month in crisis, the predictive Crisis Indicator for m is set to 1 (indicating a crisis).

Up to this point, the calculations are made on historical data and the predictive Crisis Indicator
can only be obtained once the data for the next 18 months are available. Since the goal of this study
is to predict the RR at the date of default, the required information is not yet available. Therefore,
the predictive Crisis Indicator has to be modeled. For this, we set up a logistic regression model with
macroeconomic data and Table 1 shows the included attributes and their impact.

Table 1. Estimated logistic regression model for the Crisis Indicator.

Variable Positive (+) Descriptionor Negative (−) Impact

(Intercept) +
Implied Volatility + Implied Volatility

(TEDRATE)2 + squared TED Spread
TCU − Capacity Utilization Rate for Total Industry

FEDFUNDS + Effective Federal Funds Rate
FEDFUNDS: (TEDRATE)2 − Interaction between FEDFUNDS & squared (TEDRATE)

T10Y3MM + Spread between 10-Year treasury Constant Maturity and 3-Month Treasury Constant Maturity
(OECD_6NME)2 + squared Composite Leading Indicator given by the OECD

log(UNRATE) − Civilian Unemployment Rate
OECD_6NME − Composite Leading Indicator given by the OECD

In this paper, the Crisis Indicator is used in different ways:

(nC) We do not include the crisis information at all.
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(CP) The predicted Crisis Probability calculated from the logistic regression model is included as
a covariate.

(CI) The Crisis Indicator is included as a covariate.
(sC) We split the data into crisis and non-crisis data sets and train the models on each subset.

5. Empirical Results

The main focus of this study lies on mixture regression models. Therefore, we first briefly present
the linear and quantile regressions followed by the decision trees as well as the neural networks.
Subsequently, we discuss the mixture regression model in detail. Thereafter, we compare all models
and conclude with practical consequences.

In order to rank the models, we use the mean squared error (MSE) measure of fit defined as:

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2,

where yi, i = 1, . . . , n are the observed RRs and ŷi are the estimated RRs. This measure is also used,
e.g., in [3,11,18].

5.1. Regression Models

First, we consider the results of the regression models. We apply stepwise selection for model
selection in the different regression problems based onthe Bayesian information criterion (BIC) of [36],
as it penalizes model complexity on a larger scale compared to the Akaike information criterion
(AIC) of [37]. In the following, we will use this model selection criterion in every regression problem.
We concentrate on the linear regression model including the Crisis Indicator as well as the models
trained on the crisis and non-crisis subsets, since the results of these models performed best (see
Section 5.5). Regarding the included covariates within the linear models, which are presented in
Table 2, we recognize that in case of crisis, the RR is only determined by the information whether
a guarantee or collateral is given and the size of EAD. Moreover, in the crisis case, the Collateral
Indicator has an impact on the RR, whereas the primary industry code as well as the Utilization Rate
only have an impact in the non-crisis case. However, the linear regression model with the Crisis
Indicator includes all these attributes and, additionally, the variable nature of default.

Table 2. Included attributes in the linear regression models (LR) on the crisis/non-crisis subset resp.
the entire subset including the Crisis Indicator and in the quantile regression model (QR) including the
Crisis Indicator.

Variable LR on LR on LR incl. QR incl.
Crisis Subset Non-Crisis Subset Crisis Indicator Crisis Indicator

Crisis Indicator x x
Country of Business x

Leveraged Finance Indicator x
Operating Company Indicator x

Primary Industry Code x x x
Nature of Default x x

Collateral Rank of Security x
Guarantor Rating Moody’s x

Guarantee Indicator x x x x
Collateral Indicator x x x

log(EAD) x x x x
Utilization Rate x x x

In the case of the quantile regression model, we regress the median in order to compare the
results of the quantile regression to the results of the linear regression. The quantile regression
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including the Crisis Indicator outperforms the remaining models considering MSE (see Table 6).
Therefore, we have a look at the included variables of this model and recognize that the model
selection results in more attributes for the quantile regression as in the cases of the linear regression
models. In particular, the variables Country of Business, Leveraged Finance Indicator, Operating
Company Indicator, Collateral Rank of Security, and Guarantor Rating Moody’s are only included in
the quantile regression model, whereas the remaining covariates are part of both models.

5.2. Decision Tree

We use a decision tree approach in order to apply the beta transformation on the RR. Similar to
the regression models in Section 5.1, we use stepwise selection with BIC for model selection.

Besides the logistic regression, a neural network can be applied for the categorization problems.
Therefore, we use the function nnet of the eponymous R-package. As input, all available attributes are
used. The network is trained by the backpropagation algorithm and only has one hidden layer for
simplicity. Furthermore, the optimal number of hidden neurons is tested. Therefore, the network is
trained on the training data with different numbers of hidden neurons from 1 to 10. The prediction
error of the validation set is the selection criteria and results for both classification problems, whether
the RR is greater than or equal to 1 and whether the RR is smaller than or equal to 0, in one hidden
neuron.In general, a neural network with one hidden neuron and the sigmoid function as activation
function equals a logistic regression model. Since the estimation method is different (backpropagation
algorithm in case of a neural network and maximum likelihood estimation in case of a logistic
regression), the parameters of the two models can be different.

We first report the trees with the quantile regression for the median applied on the raw RR in the
open unit interval because they outperform those on the beta-transformed RR. One reason for this
might be that the RR in our data set is trimodal and the beta distribution might not fit well.

Table 3 displays which covariates are included in the different regression problems. We focus in
the unit interval on the linear regression model without crisis information and the quantile regression
including the Crisis Probability, as the results of the decision trees including these models outperform
the other decision trees. Similar to the regression problems above, the quantile regression model
including the Crisis Probability contains more variables than the linear regression model. Furthermore,
the Crisis Indicator affects only the logistic regression to decide whether the RR attains a value smaller
than or equal to zero.

Table 3. Included attributes in the regression models (linear regressions (LR), quantile regressions (QR),
and logistic regressions (Log. Reg.) of the decision trees.

Variable LR without RR ∈ (0, 1) QR incl. RR ∈ (0, 1) LR for LR for Log. Reg. Log. Reg.
Crisis info for RR ∈ (0, 1) Crisis Probability for RR ∈ (0, 1) RR ≥ 1 RR ≤ 0 RR ≥ 1 RR≤ 0

Crisis Indicator x
Crisis Probability x

Country of Business x x x
Public Private Indicator x x x

Leveraged Finance Indicator x x
Operating Company Indicator x x

Primary Industry Code x
Nature of Default x x x x

Lender Issued Amount x
Collateral Rank of Security x x
Guarantor Rating Moody’s x

Guarantee Indicator x x x
Collateral Indicator x x x

Entity Sales x
log(Number of Loans) x

log(EAD) x x x
Utilization Rate x x x x

5.3. Neural Network

Another possibility to model the RR are neural networks whose results are shown in the following.
We begin with the description of the predetermined model parameters and present the results in Table 6.
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In order to train neural networks for regression problems, we use the function neuralnet of the
R-package neuralnet, which applies the RPROP+ algorithm. Therefore, we set the multiplication
factors for the upper and lower learning rate to η− = 0.5 and η+ = 1.2, the parameter threshold to 0.01,
and the maximum number of iterations to 1 × 107. We use the sigmoid activation function, the identity
as output function, and the sum of squared errors as error function.

For reasons of simplicity, all neural networks contain one hidden layer and the optimal number
of hidden neurons is determined by minimizing the MSE on the validation set. We also computed
neural networks with two hidden layers; however, these networks performed not significantly better
(differences only in the third or fourth digit of MSE) than the networks with one hidden layer. Therefore,
we decided to focus on networks with one hidden layer. For a pre-selection and in order to reduce the
number of input neurons, we include the input variables log-transformed EAD, Guarantee Indicator,
Collateral Indicator, and Primary Industry Code, similar to [13], as well as Utilization Rate and Number
of Loans and the Crisis Indicator.) For the categorical covariates, dummy variables are created just like
for the regression problems. According to [38], we scale the metric data to the unit interval [0, 1] as it is
not normally distributed.

5.4. Mixture Regression Models

In this subsection, we present the results of the mixture regression models from Section 3.3.
At first, we apply the model selection to identify relevant covariates. Subsequently, the results of the
mixture models with and without concomitant variables are shown.

5.4.1. Model Parameters

Our motivation to investigate mixture regression models stems from the observation of multiple
modes (see Figure 3). To determine the number of mixture components, we fit simple mixture
regression models with constant parameters for K = 1, . . . , 6 components to the in-sample data
and select the best model based on the BIC. The resulting model consists of five mixed normal
densities, but three of them have their expectation in a narrow interval of length 0.043 around one.
Therefore, we decided to choose a more parsimonious mixture regression model with three components.
This decision is also supported by the trimodality of RR in our data set.

We use the package flexmix in R to fit our mixture regression models. For a pre-selection and
in order to reduce the overall number of covariates, we use the input variables from [13], the authors
of which base their study on loan data of SMEs in the US provided by GCD. We use our crisis
information instead of macroeconomic data and focus our analysis on entity level, hence we can
not use all of the attributes from [13]. In conclusion, the resulting variables are log-transformed
EAD, Guarantee Indicator, Collateral Indicator, Primary Industry Code, and the Crisis Indicator resp.
Probability. Subsequent to this pre-selection, all possible combinations of variables are formed and it
is tested whether the EM-algorithm converges. We compare the mixture regression models with the
BIC and the best model contains the covariates Collateral Indicator, log-transformed EAD, and Crisis
Probability. For simplicity reasons, this combination of variables is also used as concomitant variables
in the following. We notice that it is better to use the Crisis Probability than the Crisis Indicator in
this method.

The package flexmix provides information about the standard error as well as z- and p-value
for every coefficient in every component. In case of a negative entry in the diagonal of the
variance-covariance matrix, the standard error can not be computed. This is partially the case for the
coefficient of the log-transformed attribute EAD.

Therefore, we exclude this attribute for the regression problems, but it is still part of the
multinomial model. In order to distinguish the different models, we refer to the model including the
EAD as covariate by the name “MwEAD” and denote the model without the EAD as “Mw/oEAD”.
If, additionally to the components, the probabilities of belonging to the components are regressed,
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we denote the models “CMwEAD” and “CMw/oEAD”, since the attributes included in the
multinomial models are called concomitant variables.

5.4.2. Model Description

Table 4 displays the results of the estimated models. Firstly, we consider model MwEAD. The first
component of MwEAD is mainly determined by the intercept near one, since the remaining coefficients
are vanishing. Furthermore, the intercept at 0.5 as well as the attribute Collateral Indicator have
the most impact on the second cluster. In contrast to the other clusters, the characteristic Yes of
the Collateral Indicator has a negative impact on the third cluster. Moreover, the influence of the
characteristic No of the Collateral Indicator as well as the Crisis Probability is negative. In addition,
the EAD has a slightly positive impact. The third component has the highest fluctuations (represented
in a sigma of 0.308).

Table 4. Summary of the estimated mixture regression models MwEAD (inclusion of the attribute
EAD), Mw/oEAD (exclusion of the attribute EAD), and the estimated concomitant variable models
CMwEAD (inclusion of the attribute EAD) and CMw/oEAD (exclusion of the attribute EAD).

Comp. 1
MwEAD Mw/oEAD CMwEAD CMw/oEAD

(Intercept) 0.9967 0.9920 0.9796 0.8051
Collateral Indicator: No −0.0045 −0.0044 −0.0111 0.0151
Collateral Indicator: Yes 0.0030 0.0014 −0.0057 −0.0285

log(EAD) −0.0003 - −0.0004 -
Crisis Probability −0.0008 −0.0012 −0.0055 0.0006

Sigma 0.0052 0.0077 0.0287 0.1818

Comp. 2
MwEAD Mw/oEAD CMwEAD CMw/oEAD

(Intercept) 0.5158 −0.0143 0.9978 0.9921
Collateral Indicator: No −0.0087 0.0280 −0.0057 −0.0045
Collateral Indicator: Yes 0.4687 0.0362 0.0015 0.0014

log(EAD) −0.0007 - -0.0003 -
Crisis Probability −0.0089 0.0206 −0.0007 −0.0008

Sigma 0.0195 0.0366 0.0053 0.0074

Comp. 3
MwEAD Mw/oEAD CMwEAD CMw/oEAD

(Intercept) −0.3386 0.6348 −0.3593 0.3214
Collateral Indicator: No −0.2457 −0.1046 −0.1549 −0.0410
Collateral Indicator: Yes −0.2637 0.0465 −0.2147 −0.2223

log(EAD) 0.0814 - 0.0763 -
Crisis Probability −0.0070 -0.0505 0.0172 0.0720

Sigma 0.3077 0.2702 0.2858 0.1744

Having a look at Mw/oEAD, we notice that the first component is mainly influenced by the
intercept near one and the attributes have little impact. In comparison to the control group Unknown,
the categories Yes and No of the Collateral Indicator have a positive impact on the second component.
As the parameter of Yes of the Collateral Indicator is higher than the coefficient for No, we would
expect higher values for entities having collateral. It is counterintuitive that this component increases
its value if the Crisis Probability increases. The highest values of the third component are expected in
the case of collateral, whereas the lowest values will be attained when there is no collateral. In addition,
the value of this cluster will be higher if the Crisis Probability is small. The attributes have the highest
impact on the third cluster due to their higher absolute values. Sigma with a value of 0.270 underlines
this finding, as it is higher than the sigma of the first and second cluster.



Mathematics 2020, 8, 1856 12 of 18

The first as well as the second component of the mixture regression model CMwEAD are
mainly determined by the intercept near one, as the coefficients of the covariates are near zero
and influence them little. Sigma of the third component is the highest, indicating higher fluctuations.
The characteristics of the Collateral Indicator influence the third component negative due to their
negative parameters. Moreover, the log-transformed EAD has a positive coefficient, which indicates
that the value of the third cluster correlates to the EAD. In addition, a higher Crisis Probability results
in a higher value for this component which is counterintuitive.

In model CMwEAD, we regress the probabilities that an observation belongs to a certain
component. In this study, a multinomial logit model is assumed for the weights πk, k = 1, . . . , K
as depicted in Equation (4). One assumption of this model is α1 ≡ 0. Therefore, only the parameters of
the second and third component are given in Table 5.

Table 5. Summary of the estimated concomitant variable models CMwEAD (inclusion of the attribute
EAD) and CMw/oEAD (exclusion of the attribute EAD).

Comp. 2
CMwEAD CMw/oEAD

(Intercept) 1.5822 3.6216
Collateral Indicator: No 1.1220 0.8513
Collateral Indicator: Yes −0.1528 −0.0661

log(EAD) −0.0345 −0.2217
Crisis Probability −0.4787 −0.5281

Comp. 3
CMwEAD CMw/oEAD

(Intercept) 2.2059 7.0839
Collateral Indicator: No 1.4026 2.0530
Collateral Indicator: Yes −0.1795 0.2222

log(EAD) −0.1054 −0.6220
Crisis Probability 0.2783 0.3027

The probability of belonging to the second component increases if no collateral is available and
decreases if collateral is given. Moreover, a borrower with lower EAD (resp. a lower Crisis Probability)
is expected to have a higher probability of belonging to the second cluster. Furthermore, the probability
that an entity belongs to the third cluster is expected to be lower in the case of collateral and higher in
the case of no collateral. The log-transformed EAD has again a negative influence, whereas the Crisis
Probability has a positive one.

In model CMw/oEAD, we would expect that the value of the first component is higher in case of
no collateral than in case of collateral. In addition, a higher Crisis Probability will lead to higher values
of the first component. This cluster has the highest variation which is displayed in the high value of
sigma of 0.182. The covariates have little impact on the second component, which is mainly determined
by its intercept near one. Moreover, the value of the third cluster is lower for an observation with a
collateral than for one without any collateral. Furthermore, the third component is expected to attain a
higher value for a higher Crisis Probability.

The probability that an observation belongs to the second cluster increases if it has no collateral.
However, having a collateral decreases the probability. In addition, the higher the log-transformed
EAD or the higher the Crisis Probability, the lower the probability that an observation belongs to the
second cluster. Furthermore, the probability that an observation belongs to the third cluster reaches
a maximum if there is no collateral. Moreover, we would expect a lower probability that an entity
belongs to the third cluster if the EAD is high or the Crisis Probability is low.
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5.5. Comparison of All Models Based on MSE

Table 6 shows the in-sample as well as the out-of-sample results for all models including the linear
regression model with different assumptions (nC), (CI), (CP), (sC) on the crisis information. For the
linear regression, MSE prefers in-sample the model including the Crisis Indicator and out-of-sample
to separate the data into crisis and non-crisis subsets. Since the models on the split data give more
insights in the determinants of the RR in crisis and non-crisis case, this approach might be preferred,
as the goodness-of-fit of the models is similar.

Table 6. In-sample and out-of-sample MSE for the estimated linear regression (LR), quantile regression
(QR) models, decision trees (DT) with linear or quantile regression in the unit interval (LR/QR), and
logistic regression or neural network for the classification problems (LogReg or NN), neural networks
(NN), and mixture regression models (MwEAD, Mw/oEAD, CMwEAD, CMw/oEAD) for the four
different cases nC (no crisis information), CI (inclusion of Crisis Indicator), CP (inclusion of Crisis
Probability), sC (split data into crisis and non-crisis data set).

In-Sample Out-Of-Sample

(nC) (CI) (CP) (sC) (nC) (CI) (CP) (sC)

LR 0.1095 0.1085 0.1086 0.1087 0.1095 0.1089 0.1089 0.1082

QR 0.1382 0.1310 0.1312 0.1377 0.1418 0.1352 0.1353 0.1404

DT LR LogReg 0.1432 0.1435 0.1434 0.1457 0.1458 0.1465 0.1464 0.1475
DT LR NN 0.1395 0.1407 0.1407 0.1431 0.1417 0.1432 0.1432 0.1441

DT QR LogReg 0.1546 0.1504 0.1504 0.1590 0.1575 0.1542 0.1540 0.1624
DT QR NN 0.1513 0.1476 0.1476 0.1569 0.1541 0.1513 0.1511 0.1596

NN 0.0471 0.0467 0.0454 0.0995 0.1032 0.1011 0.0981 0.1010

MwEAD 0.0375 0.0379
Mw/oEAD 0.0257 0.0268
CMwEAD 0.0323 0.0326

CMw/oEAD 0.0101 0.0107

Having a look at the quantile regression, the model including the Crisis Indicator outperforms the
remaining models considering MSE. Moreover, the linear regression models outperform the quantile
regressions. This fact might be explained by the different optimization problems. The estimation
method of the linear regression minimizes the least squares error, whereas the quantile regression for
the median minimizes the mean absolute error. However, the quantile regression models give more
insights into the structure of the distribution, since different quantiles can be modeled. We refer to [13]
who calculate further quantile regressions for several quantiles.

Comparing the decision trees by MSE, the models with the linear regression in (0, 1) outperform
those with the quantile regression. Moreover, it is preferable to not include any information about a
crisis for the decision tree with the linear regression in the unit interval, whereas the decision tree with
quantile regression including the Crisis Probability outperforms the other decision trees with quantile
regression. Additionally, the trees with the neural networks for classification result in lower MSEs
than the models with the logistic regressions. This finding might be explained by the slightly lower
prediction error of the neural network for the classification whether the RR attains values smaller than
or equal to 0. However, the differences in the MSE are marginal and since the logistic regression gives
some more insight in the determinants of the RR, it might be preferable to use them. We compare the
results of the decision tree approach with the regressions on the entire data set and recognize that the
models on the entire data result in lower MSEs than the decision trees.

Regarding the results of the neural networks, we notice that the network including the Crisis
Probability outperforms the other neural networks in-sample as well as out-of-sample. Furthermore,
we recognize that the MSE is in-sample small, whereas the results are out-of-sample similar to the MSE
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of the logistic regression models. One reason for the difference in the MSE between the in-sample and
out-of-sample subset might be overfitting.

Finally, we consider the results of the mixture regression models. The models excluding EAD
as covariate are superior to the mixture regression models including the covariate EAD. In addition,
the models which regress the densities as well as the probabilities outperform the mixture models with
fixed probabilities. In conclusion, model CMw/oEAD is the best model.

In-sample as well as out-of-sample, the mixture regression models outperform the regressions
as well as the neural networks. One reason for this might be that the mixture regression model can
display the different modes better than the other models.

A quantitative comparison of our results with other studies is difficult for several reasons (different
databases, considered time periods or variables). Nevertheless, let us briefly scrutinize the findings
of related studies. Similar to the authors of [13], we focus our analysis on recovery data of small-
and medium-sized entities in the US, provided by Global Credit Data. In addition, we also include
the variables log-transformed EAD, Guarantee Indicator, Collateral Indicator and Primary Industry
Code. Moreover, we consider further attributes, e.g., the Utilization Rate. Different from [7,13],
we aggregate macroeconomic information within a Crisis Indicator resp. Crisis Probability indicating
whether economic downturn scenarios are expected within the time of resolution. Our finding is in line
with the literature. In [3], the beta-mixture model outperforms linear regression models. In addition,
the mixture model in [16] leads to better results out-of-sample as regression models or a non-parametric
regression tree. Moreover, the neural networks outperform the regression models in our analysis,
similar to the findings in [6,9].

5.6. Practical Consequences from the Best Models

In the following, we compare the three best models: The mixture regression model CMw/oEAD,
the neural network including the Crisis Probability and the linear regression model with separate
subsets for crisis and non-crisis.

We investigate the difference di between the predicted RRs R̂i and the observed RRs Robs.
i :

di = R̂i − Robs.
i ,

for i = 1, . . . , n where n is the number of observations. From the risk-managers point of view, a situation
in which the RR is conservatively underestimated is favorable compared to a situation in which the RR
is overestimated.

Therefore, we are interested in the number of observations where the difference between the
predicted RR and the observed RR exceeds a certain threshold θ ∈ {0.1, . . . , 0.9} proportional to the
overall number of observations:

#{di > θ}
n

.

The results are presented in Table 7 for the in-sample and in Table 8 for the out-of-sample data.

Table 7. In-sample results for the difference between the estimated and observed RR.

#{di>0.1}
n

#{di>0.2}
n

#{di>0.3}
n

#{di>0.4}
n

#{di>0.5}
n

#{di>0.6}
n

#{di>0.7}
n

#{di>0.8}
n

#{di>0.9}
n

LR 0.2975 0.2503 0.2117 0.1740 0.1310 0.0833 0.0316 0.0108 0.0013
NN 0.2859 0.2447 0.1960 0.1467 0.0937 0.0575 0.0267 0.0095 0.0015

CMw/oEAD 0.1379 0.0386 0.0085 0.0009 0.0001 0.0000 0.0000 0.0000 0.0000
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Table 8. Out-of-sample results for the difference between the estimated and observed RR.

#{di>0.1}
n

#{di>0.2}
n

#{di>0.3}
n

#{di>0.4}
n

#{di>0.5}
n

#{di>0.6}
n

#{di>0.7}
n

#{di>0.8}
n

#{di>0.9}
n

LR 0.2999 0.2613 0.2263 0.1858 0.1288 0.0929 0.0359 0.0110 0.0000
NN 0.3008 0.2613 0.2061 0.1527 0.0938 0.0607 0.0304 0.0092 0.0009

CMw/oEAD 0.1398 0.0414 0.0101 0.0009 0.0000 0.0000 0.0000 0.0000 0.0000

In-sample, the mixture regression model CMw/oEAD overestimates the true RR by more than
θ = 0.1 in 14% of all cases, whereas the linear regression model as well as the neural network
overestimates the RR even in 29% of all observations. Having a look at θ = 0.2, we recognize that
the mixture regression model CMw/oEAD only overestimates the observed RR in 3.9% of all cases.
The results of the linear regression as well as the neural network are worse, since 25% of all cases
predict a RR which exceeds the true RR by more than θ = 0.2. In addition, there is no observation
where the predicted RR of the mixture regression model exceeds the true RR by more than θ = 0.6.
For example, if we estimate a RR of 1, the true value is bigger than 0.4. Thus, for a case where a full
recovery is predicted, we know that, at most, 40% of the exposure at default will be recovered. In case
of the linear regression model as well as the neural network, there are cases where the predicted
RR overestimates the true RR by more than θ = 0.9. We refer to the same example as above. If the
estimated RR is 1, the true RR can be smaller than 0.1, which is almost a total loss even though the
model predicts a full recovery. Moreover, we notice that the behavior of the linear regression model
and the neural network is similar.

The out-of-sample results are similar to the in-sample results. The behavior of the linear regression
model equals the behavior of the neural networks. Moreover, regarding the maximum difference,
the out-of-sample results for the mixture regression model CMw/oEAD are even slightly better than
in-sample, since there is no prediction which overestimates the true RR by the value θ = 0.5. Similar to
the in-sample results, the mixture regression model overestimates the true RR by more than θ = 0.1 in
14% of all cases, whereas the linear regression model as well as the neural network exceed the observed
RR in 30% of all observations. In addition, the true RR is overestimated by more than θ = 0.2 in only
4.1% of all observations in case of the mixture regression model and in 26% of all observations in case
of the linear regression model as well as the neural network. Since the maximum difference is smaller
in case of the mixture regression model and the predicted RR exceeds the observed RR by 0.1 resp. 0.2
in only 14% resp. 4.1% of all cases instead of 30% resp. 26% of all cases, we conclude that the mixture
regression model CMw/oEAD outperforms the neural network as well as the linear regression model.

6. Summary and Conclusions

We compared different models to predict the RR, namely regression methods, decision trees,
neural networks, and mixture regression models. Additionally, we investigated how information on
an economic crisis can be embedded into the models.

For our analysis, we considered a data set of US-based SMEs obtained from GCD. We use the
definition of the workout RR. Empirical RRs exhibit a multimodal structure with three modes at 0,
0.5, and 1. Since earlier studies in the literature point out that an economic crisis during the time to
resolution has an impact on the RR, we use a predictive Crisis Indicator (resp. Crisis Probability).

The best models are in-sample as well as out-of-sample the mixture regression models, especially
the concomitant variable model which regresses the density as well as the probability that an
observation belongs to a certain cluster. We find (by model selection with the BIC) that including the
Crisis Probability is preferable compared to including the Crisis Indicator. The neural network
outperforms in-sample the linear regression model, but the results are similar out-of-sample.
The quantile regression models lead to higher MSEs than the linear regression models. Decision
trees performed worst in our study.

Concluding, let us propose some areas for future research in predicting and modeling the RR.
In the present study, the RR can take values greater than one as well as smaller than zero and we
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conclude that the mixture regression models outperform the other models. Since most of the studies
consider observations with RR in the unit interval, the question arises whether the mixture regression
models also outperform the other methods in such a restricted data set. Finally, copulas become a
popular tool in machine learning and quantile regression (see [39,40], respectively). In particular,
a combination of neural networks and regular vine copulas proposed by [41] seems to be promising
for modeling recovery rates.
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Appendix A. Attributes in This Study

Table A1 gives an overview over all variables from GCD that were used.

Table A1. Attributes of the data.

Attributes Type Reference Borrower Aggregation
Category (B)/Loan (L) Level? for Loan Level

Country of Business categorical Unknown B
Public Private Indicator categorical Unknown B
Primary Industry Code categorical Unknown B

Leveraged Finance Indicator categorical No B
Operating Company Indicator categorical Unknown B

Incomplete Portfolio categorical No B
Number of Loans metric B
Nature of Default categorical Unknown B

Lender Issued Amount categorical No B
Entity Sales metric B

EAD metric B
Crisis Indicator resp. Crisis Probability categorical No B

Collateral Indicator categorical Unknown L at least one collateral
Guarantee Indicator categorical No L at least one guarantee

Default Amount metric L Sum
Utilization Rate metric L Median

Guarantor Rating Moody’s categorical Unknown L worst rating
Rank of Collateral categorical Unknown L worst rank
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