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Abstract: A group authenticated key exchange (GAKE) protocol allows a set of parties belonging to a
certain designated group to agree upon a common secret key through an insecure communication network.
In the last few years, many new cryptographic tools have been specifically designed to thwart attacks from
adversaries which may have access to (different kinds of) quantum computation resources. However,
few constructions for group key exchange have been put forward. Here, we propose a four-round GAKE
which can be proven secure under widely accepted assumptions in the Quantum Random Oracle Model.
Specifically, we integrate several primitives from the so-called Kyber suite of post-quantum tools in a
(slightly modified) compiler from Abdalla et al. (TCC 2007). More precisely, taking as a starting point
an IND-CPA encryption scheme from the Kyber portfolio, we derive, using results from Hövelmanns
et al. (PKC 2020), a two-party key exchange protocol and an IND-CCA encryption scheme and prove
them fit as building blocks for our compiled construction. The resulting GAKE protocol is secure under
the Module-LWE assumption, and furthermore achieves authentication without the use of (expensive)
post-quantum signatures.

Keywords: post-quantum cryptography; group authenticated key exchange; Module-LWE; Kyber

1. Introduction

The search for cryptographic primitives that will remain secure once quantum computing is a
reality has been on going for over twenty years. Noticeably, in the last few years this search has
gained greater attention from academia and industry, especially since the US National Institute of
Standards and Technology (NIST) launched a competition towards standardizing quantum-resistant
(also called post-quantum) public-key cryptographic algorithms in 2017. While this competition is
focused on constructions for public key encryption, two party key establishment and digital signatures,
research towards different post-quantum primitives has also been aroused as a side effect.

Group key establishment protocols (GKE) are fundamental cryptographic constructions. Indeed,
for many real life applications of information technologies, the crucial starting point is establishing a
“secure session”, i.e., setting confidential communication channels among users. GKE protocols allow a
group of n ≥ 2 users, interacting through an insecure communication network, to establish a common
known high entropy secret that can be used to secure their subsequent communication. Typically, once this
secret has been agreed upon, tools from symmetric cryptography can be used to attain confidentiality,
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and thus the communication network is understood as secure for confidential transmissions within the
group of honest users. Using a GKE in this setting clearly outperforms the use of two party solutions,
as establishing different session keys for every pair of participants (e.g., using a two party key exchange)
would force each participant to store a large number of keys. Moreover, every message intended for the
whole group should be encrypted multiple times (n− 1) with different keys, while GKE can be used in
a broadcast fashion (as messages are processed the same way for each group member). There might,
however, be no way of assessing origin and integrity of messages. In this case, when authenticated
channels are not available, protocols pursuing this goal—GAKE protocols—get way more involved and
often need to rely on an external public key infrastructure to be able to authenticate legitimate group
members, frequently adding a significant cost to the constructions.

Related work. Several group key exchange protocols which can be considered to resist quantum
attacks have been proposed so far. Fujioka et al. [1] presented two one-round authenticated protocols,
whose security is based on a certain algebraic-geometric problem related to the problem of finding a
so-called isogeny mapping between two supersingular elliptic curves with the same number of points.

Other protocols use lattice problems as a base. For instance, Apon et al. [2] constructed a three-round
unauthenticated protocol proven secure under the so-called ring learning with errors (RLWE) assumption.
This scheme may be transformed into an authenticated one by using the Katz and Yung compiler [3].
However, the resulting protocol has one additional round of communication and each message that is
sent must be signed, adding a significant computation and communication overhead if a post-quantum
signature scheme is employed. Using the same problem as a base, Choi et al. [4] built on [3] and proposed
three group protocols: the first is unauthenticated, the second adds authentication, and the third is,
in addition, dynamic. The second one, STAG, is a three-round authenticated protocol in which each user
computes two signatures.

Finally, we have compilers which produce a quantum-resistant group authenticated key exchange
(GAKE) from simpler post-quantum primitives. Persichetti et al. [5] presented a three-round protocol
constructed from a key encapsulation mechanism (KEM) and a signature scheme; each user needs to
compute only one signature. González Vasco et al. [6] introduced a two-round password GAKE protocol
derived from a KEM and a message authentication code (MAC). However, in this construction, security
holds in the so-called future-quantum scenario, where the adversary is assumed to have access to quantum
computation only after the protocol execution is completed.

Our contribution. In this work, we take the so-called Kyber family [7] of post-quantum cryptographic
tools and use it as a base for a GAKE design. More precisely, our construction is a compiled system
using Abdalla et al.’s [8] as design frame. From the results of Hövelmanns et al. [9], we assess that
both a suitable commitment scheme and a secure two-party AKE can be obtained from the encryption
scheme Kyber.CPA′ (this result was hinted, yet not explicitly proven by Hövelmanns et al. [9]). As far as
we are aware, our instantiation is the first group authenticated key exchange protocol which provides
post-quantum security guarantees based solely on the so-called Module-LWE assumption, doing without
(often unaffordably expensive) post-quantum signatures.

Our GAKE: overview. The workflow of our construction is depicted in Figure 1. Our construction relies
on Abdalla et al.’s compiler [8] that requires a two-party AKE and a commitment scheme and we need
both building blocks to fulfill post-quantum security. To achieve post-quantum security, we apply the
Kyber family and its derived tools (see green rectangle in Figure 1).

Kyber [7] is a KEM based on lattices whose security relies on Module-LWE assumption (Definition
1), claimed to be post-quantum secure. Our GAKE inherits the Module-LWE assumption. The two-party
AKE and the commitment scheme are derived from the initial IND-CPA PKE in [7] named Kyber.CPA′.



Mathematics 2020, 8, 1853 3 of 23

The two-party AKE (named Kyber.2AKE) is the result of applying the transformation FOAKE [9] to
Kyber.CPA′. Finally, a commitment scheme can be achieved from any IND-CCA PKE, as pointed out
in [8]. In our construction, we turn Kyber.CPA′ into a KEM applying the FO 6⊥m transformation [9] obtaining
Kyber 6⊥, which is transformed into an IND-CCA PKE (Kyber.PKE) as a result of [10].

Kyber.CPA’

Kyber.PKEKyber 6⊥

Kyber.2AKE

Commitment
scheme

Kyber family and derived tools

Derived from [9]

Derived from [10]

Modified from Kyber family

Kyber family

Legend

Abdalla et al.’s compiler

Our construction

Figure 1. Workflow of our construction.

Comparison with other schemes. We present two tables that summarize some features of other GAKE
schemes with quantum-resistance and compare them with our proposal.

Table 1 summarizes some parameters related to the performance of the schemes. The number of
communication rounds is one of the most important parameters when dealing with GAKE protocols.
In addition, for each scheme, we point out whether the use of post-quantum signatures is avoided,
which is a nice feature, as this kind of signatures are usually expensive in terms of both computation and
size. Note that the scheme in [2] does not use post-quantum signatures but is unauthenticated. Finally,
we include the total number of messages sent throughout an execution involving n parties, pointing out
whether messages are broadcasted or just sent point-to-point (PtP) (i.e., from one party to another).

Table 1. Some efficiency parameters for GKE/GAKE protocols claimed to be quantum-resistant.

Protocol # Rounds Avoids
PQ-Sign.

# Broadcast
Messages

# PtP
Messages

n-UM [1] 1 Yes n 0
BC n-DH [1] 1 Yes n 0

Apon et al. [2] 3 Yes (but is unauth.) 2n + 1 0
STAG [4] 3 No 2n + 1 0

Pers. et al. [5] 3 No n 2n
Gonz. et al. [6] 2 Yes n n2 − n

This work 4 Yes 2n 2n
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Table 2 is focused on security issues. In the first column, we include the type of assumption
(isogeny/lattice) the security of the scheme is based on. In the second column, we state in which of
the idealized models the security claim and corresponding proof hold: either in the Random Oracle Model
(ROM) or the Quantum Random Oracle Model (QROM). The latter is stronger than the former because,
as discussed in Section 2, it assumes a more powerful adversary. Next, it is specified if quantum resistant
features hold in a future quantum (FutQ) or post-quantum (PostQ) scenario. The latter, where it is assumed
that the adversary has access to quantum computation during protocol executions, is preferable to the
former, where key secrecy is only guaranteed against adversaries that cannot make quantum computations
during protocol executions but have access to this option at some point in the future. Finally, we indicate
if the key exchange is authenticated. Note that the compilers [5,6] have a special treatment, as the
assumption type and the model depend on the underlying post-quantum tools used to implement them.

Table 2. Security of GKE/GAKE protocols claimed to be quantum-resistant.

Protocol Assumption Type Model FutQ/PostQ Authent.

n-UM [1] Isogeny QROM PostQ Yes
BC n-DH [1] Isogeny ROM PostQ Yes

Apon et al. [2] Lattice ROM PostQ No
STAG [4] Lattice ROM PostQ Yes

Pers. et al. [5] Compiler No RO added PostQ Yes
Gonz. et al. [6] Compiler No RO added FutQ Yes

This work Lattice QROM PostQ Yes

Seeing the two comparison tables, it seems clear that the only scheme outperforming our construction
is n-UM [1], which is based on the isogeny paradigm. However, it is fair to say that lattice-based
constructions such as ours seem somewhat more promising in this field, considering the recent outcome of
the Third Round of the NIST competition for standardizing post-quantum tools. While several lattice-based
constructions made it to this last round, no isogeny-based scheme is in the final (and only one proposal,
SIKE [11], is considered as alternative for replacing finalists that may be discarded in the last phase).

Paper Roadmap. We start with a brief outline of the preliminaries in Section 2, where we introduce
Abdalla et al.’s compiler from [8] and comment on the basics of post-quantum security. Further, we explain
in Section 3 how to derive building blocks for our construction (AKE and a commitment scheme) from
the Kyber family. In particular, we use the results from [9] to prove that we can obtain both a suitable
commitment scheme and a secure two-party AKE from the encryption scheme Kyber.CPA′. Our compiled
construction is then described and proven secure in Section 4, where we also make explicit the security
model used. We conclude this contribution with a brief conclusion.

2. Preliminaries

2.1. Abdalla et al.’s Compiler

Here, we describe a compiler constructed by Abdalla et al. in [8], which enables the derivation of a
group authenticated key establishment protocol GAKE from an arbitrary two-party key establishment 2AKE.
The compiler does not rely on further authentication techniques than those used in 2AKE, nor on further
idealization assumptions. Moreover, if 2AKE requires r rounds of communication, then GAKE requires
r + 2 rounds.

Let P be the set of users that can participate in the protocol GAKE. This set P is assumed to be of
polynomial size. The set G = {U0, U1, . . . , Un−1} ⊂ P denotes the set of n > 2 participants that wish to
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establish a common session key. Each protocol participant Ui ∈ G, i = 0, . . . , n− 1, may be involved in
distinct, possibly parallel, executions of GAKE.

Since 2AKE is an authenticated key establishment protocol, it is assumed that long-term secrets
required for 2AKE have been established during a trusted authentication phase. One of the following three
cases is assumed:

• Each user Ui ∈ G owns a pair (pki, ski) consisting of a public key pki and a secret key ski, and all
needed public keys may be distributed to all protocol participants during the initialization phase.

• Each pair of users Ui, Uj ∈ G, i 6= j, shares a high entropy symmetric key, or the complete set of
participants G shares one common secret (different instances of a user may hold different long-term
secrets).

• Each pair of users Ui, Uj ∈ G, i 6= j, shares a low entropy password. In this case, we assume a publicly
available dictionary D ⊆ {0, 1}∗, from which passwords are chosen uniformly at random.

The compiler uses the following cryptographic tools:

1. A non-interactive non-malleable commitment scheme C that is perfectly binding and achieves
non-malleability for multiple commitments.

2. A collision-resistant pseudorandom function family F = {F`}`∈N with F` = {F`
η}η∈{0,1}L to be

indexed by a set {0, 1}L of polynomial size, and two publicly known values v0 and v1 such that no
ppt adversary can find two different indices λ 6= µ ∈ {0, 1}L such that F`

λ(vj) = F`
µ(vj), j = 0, 1.

3. A hash function H selected from a family of universal hash functions that maps the concatenation
of bitstrings from {0, 1}k n and the set of participants G onto {0, 1}L, where n is the number of
participants in G and k ∈ N.

With these ingredients, the compiler proceeds as depicted in Figure 2. Our proposed GAKE protocol
uses a simplified version of the aforementioned compiler and builds on a post-quantum 2AKE. We describe
it in detail in Section 4.

2.2. Security in a Post-Quantum Setting

When proving a certain cryptographic construction secure, it is necessary to depict a precise security
model making explicit claims and assumptions that can be formally proven and verified. This is, however,
not always the case in the post-quantum scenario, as quantum adversaries are often modeled in a very
different fashion. Most often, constructions are substantiated on computational assumptions that explicitly
state that an adversary is assumed not to be able to efficiently complete a certain computational task
(e.g., decoding a word with respect to a certain partially known code or solving certain approximation
problems in lattices). However, the way this quantum adversary is assumed to interact with other
system-related idealizations (e.g., the oracles modeling information leakage or misuse) is often disregarded,
while it may play a central role in a security proof. A paradigmatic example of this situation is the case of
hash functions, typically modeled as so-called random oracles.

Random oracles are classically used in cryptography to model idealized hash functions, which are
deterministic algorithms that select, for each new query, an output chosen uniformly at random from a
certain given range. It is assumed that all users and processes from a certain system are given access to
the same random oracles, which means that, for security proofs, if the real cryptographic environment
is simulated for an adversary, all random oracle queries must be consistently answered with values that
are indistinguishable from random (uniform). In the quantum setting, queries to a random oracle can be
done in superposition, which complicates significantly the translations of many classical proofs into this
new scenario.
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Round 1 ∼ r: For each i = 0, . . . , n− 1, execute 2AKE with Ui and U[i+1], where [k] = k mod n (i.e.,

all indices are to be taken in a cycle). Thus, each Ui ∈ G holds two pairwise keys
−→
K i and

←−
K i

shared with U[i+1] and U[i−1], respectively. Note that, for i = 0, . . . , n− 1,
−→
K i =

←−
K [i+1].

Round r + 1:

• Computation: Each Ui computes Xi =
−→
K i ⊕

←−
K i, and chooses a random ri to compute a

commitment Ci = C(i, Xi, ri).

• Broadcast: Each Ui broadcasts M1
i = (Ui, Ci).

Round r + 2:

• Broadcast: Each Ui broadcasts M2
i = (Ui, Xi, ri).

• Verification: Each Ui checks that X0 ⊕ X1 ⊕ · · · ⊕ Xn−1 = 0 and the correctness of the
commitments. If any one of these checks fails, then Ui terminates the protocol execution
without computing a session key.

• Computation: Each Ui computes the n− 1 values

←−
K [i−j] =

←−
K [i−j+1] ⊕ X[i−j], j = 1, 2, . . . , n− 1.

Then, Ui defines a master key

K =
(←−

K 0,
←−
K 1, · · · ,

←−
K n−1, G

)
,

and sets the session key ski = F`
H(K)(v1) and the session identifier sidi = F`

H(K)(v0), where
` ∈ N is the security parameter.

Figure 2. Abdalla et al.’s compiler.

Following Hövelmanns et al. [9], in this work, we consider quantum adversaries that are given
quantum access to the (offline) quantum random oracle involved in our design. More precisely, we need
to make use of two basic properties of this so-called quantum-accessible random oracles:

• Collision-freeness. In [12], it is proven that the best quantum algorithm for finding a collision for a
random function H : {0, 1}n 7→ {0, 1}n (i.e., a pair of distinct x, x′ ∈ {0, 1}n such that H(x) = H(x′))
is Õ(2 n

5 ). (Notation Õ “wipes out” logarithmic factors in O, namely, f (n) ∈ Õ(h(n)) ⇐⇒ ∃k ∈
N s.t. f (n) ∈ O(h(n)logk(h(n)))). The analogous classical bound is O(2 n

2 ). While being suboptimal
in number of queries, this algorithm is the most efficient in terms of time complexity with small
quantum memory. Thus, in the sequel, we may assume that (even for a quantum adversary) finding a
collision pair for a quantum-accessible random oracle can only be done with negligible probability
(this is used in Section 4.3.1).

• Pseudorandomness. Following again Hövelmanns et al. [9], we use the argument of Zhandry (see [13])
stating that no quantum algorithm, making at most q quantum queries to a quantum random oracle
Ĥ implementing a random function H : {0, 1}m 7→ {0, 1}n, can distinguish between Ĥ and a
random polynomial of degree 2q defined over the field F2n . As a result, if the input to a quantum
random oracle contains enough entropy, then the probability of distinguishing its output from a value
chosen uniformly at random is negligible. In other words, when the input is unknown and chosen
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uniformly at random, the fact that the random oracle can be queried in superposition is of no help
in distinguishing the oracle’s output from a randomly chosen element. This is used in the quantum
random oracle proof from Section 4.3.

We strongly suggest the interested reader consult [14] for a comprehensive introduction to the
quantum random oracle model.

3. Post-Quantum Primitives: 2AKE and Commitment Scheme

In this section, we describe the post-quantum tools used in the construction of our GAKE, namely a
two-party authenticated key exchange (AKE) and a commitment scheme. The relations between these
tools are summarized in Figure 3.

In the first subsection, we describe Kyber’s public key encryption (PKE) scheme and state its security
properties that are of importance to the construction of the primitives mentioned above.

In the second subsection, we detail how the 2AKE is obtained from a generic construction proposed
in [9], of two-message AKE provably secure in the quantum random oracle model (QROM) from PKE
schemes that possess both Disjoint Simulatability (DS) (Definition 2) and IND-CPA security. In particular,
we use a slight modification (called Kyber.CPA′) of the CPA-secure PKE scheme introduced in [7] as
part of Kyber’s package submitted to NIST’s post-quantum standardization effort. We describe the
FOAKE transformation which turns a secure PKE into a secure AKE. This subsection ends by proving that
Kyber.CPA′ is DS secure and, therefore, it is possible to construct an AKE secure in the QROM by applying
the FOAKE to it.

The third subsection is devoted to the construction of the post-quantum commitment scheme
mentioned in Section 2. It must be a non-interactive non-malleable commitment scheme that is perfectly
binding and achieves non-malleability for multiple commitments. As pointed out in [8], this can be directly
constructed from a public key encryption scheme which achieves the well-known IND-CCA security
notion. To this end, we use another transformation described in [9], specifically FO 6⊥m , which turns an
IND-CPA and DS PKE into an IND-CCA KEM. Then, we recall that it is straightforward to obtain an
IND-CCA PKE from an IND-CCA KEM. Putting everything together, we obtain the desired commitment
scheme from Kyber.CPA′, the same primitive we use to construct the two-party AKE.

IND-CPA PKE

Kyber.CPA′
Algorithms 1–3

IND-CCA KEM

Kyber 6⊥
Algorithms 1, 4, 5

2AKE

Kyber.2AKE
Figure 4

IND-CCA PKE

Kyber.PKE

FO 6⊥m [9]

FOAKE [9] [10]

Figure 3. Kyber and derived tools.
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3.1. Kyber’s IND-CPA PKE

In this subsection, we describe the CPA-secure PKE scheme Kyber.CPA introduced in [7] as part of
the Cryptographic Suite for Algebraic Lattices (CRYSTALS), a package of cryptographic primitives submitted
to NIST’s post-quantum standardization effort. In fact, what we really describe and work with is a slightly
modified version, also proposed in [7], called Kyber.CPA′.

First, we introduce some definitions needed to understand how the PKE has been constructed and
summarize in Table 3 the notation used in the sequel. Then, we describe the key generation, encryption,
and decryption algorithms used in Kyber.CPA′, as well as its CPA-security under the Module-LWE
hardness assumption (Definition 1).

Denote by R the ring Z[X]/(Xn + 1) and by Rq the ring Zq[X]/(Xn + 1), where n = 2n′−1 such that
Xn + 1 is the 2n′ th cyclotomic polynomial. As in [7], we fix the values for n, n′ and q to 256, 9 and 7681.

For some positive integer η, define the centered binomial distribution Bη as follows ([7]):

Sample {(ai, bi)}
η
i=1 ← ({0, 1}2)η

and output
η

∑
i=1

(ai − bi).

Table 3. Notation used for Kyber.CPA′.

Notation Representation

Bold lower-case Vectors with coefficients in R or Rq. All vector will
be column vectors by default.

Regular font letter Elements in R or Rq.

Bold upper-case Matrices.

s← S If S is a set, s is chosen uniformly at random from S.
If S is a distribution, s is chosen according to such
distribution S.

y ∼ S := Sam(x) where
Sam is an eXtendable Output
Function (XOF)

Value y that is distributed according to distribution
S (or uniformly over a set S). This is a deterministic
procedure.

v← βη , v← βk
η v ∈ R is generated from a distribution where

each of its coefficients are generated from Bη . A
k-dimensional vector of polynomials v ∈ Rk can be
generated according to the distribution βk

η .

d·c d·c is the rounding function i.e., dxc =
⌊

x +
1
2

⌋
where x ∈ Q and b·c is the floor function.

r′ = r mod± α For an even (respectively, odd) integer α, r′ =
r mod± α is the unique element r′ in the range
− α

2 < r ≤ α
2 (respectively, − α−1

2 < r ≤ α+1
2 ) such

that r′ = r mod α.

The security assumption underlying Kyber.CPA′ is based on the hardness of the Module-LWE
problem, which generalizes the Learning with Errors (LWE) problem. Learning with errors (LWE) is
the computational problem of inferring a linear n-ary function f over a finite ring from given (slightly
incorrect) samples yi = f (xi). Recall that Ring Learning with Errors (RLWE) is the variant of LWE
specialized to polynomial rings over finite fields. Informally, Module-LWE can be seen as the result of
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replacing single ring elements in the RLWE problem with module elements over the same ring (thus,
RLWE can be seen as Module-LWE with module rank 1).

Definition 1 (Module-LWE assumption [7]). The Module-LWE problem consists in distinguishing uniform
samples (ai, bi)← Rk

q × Rq from samples (ai, aT
i s + ei) ∈ Rk

q × Rq where ai ← Rk
q is uniform, s← βk

η common
to all samples, and ei ← βn is fresh for every sample. The advantage of an adversary A is defined as

Advmlwe
m,k,η(A) =

∣∣∣∣∣∣∣∣∣Pr

b′ = 1 :

A← Rm×k
q ;

(s, e)← βk
η × βm

η ;
b = As + e;
b′ = A(A, b)

− Pr

b′ = 1 :
A← Rm×k

q ;
b← Rm

q ;
b′ ← A(A, b)


∣∣∣∣∣∣∣∣∣ .

The Module-LWE assumption states that the above advantage is negligible for any given adversary A.

The authors of [7] defined a function Compressq(x, d) that takes an element x ∈ Zq and outputs
an integer in {0, 1, . . . , 2d − 1}, where d < dlog2(q)e. Furthermore, a function Decompressq is defined
such that

x′ = Decompressq(Compressq(x, d), d)

is an element close to x. More specifically,

|x′ − x mod±q| ≤
⌈ q

2d+1

⌋
.

The functions satisfying these requirements are defined in [7] as:

Compressq(x, d) = d(2d/q) · xc mod 2d,
Decompressq(x, d) = d(q/2d) · xc.

Kyber’s PKE scheme Kyber.CPA′ = (KeyGen, Enc, Dec) is parameterized by the positive integers k, du,
and dv. The value of these parameters vary for different security levels. Moreover, M = {0, 1}n is
the message space and ciphertexts are of the form (u, v) ∈ {0, 1}n k du × {0, 1}n dv . The definition of the
key generation, encryption, and decryption of Kyber.CPA′ is given in Algorithms 1–3 as defined in [7].
Unlike Kyber.CPA′, the unmodified PKE scheme Kyber.CPA compresses t on Line 4 of Algorithm 1 and,
therefore, must decompress t in Algorithm 2.

Kyber.CPA′ was shown to be IND-CPA secure under the Module-LWE hardness assumption in [7].
This result is stated in the following theorem.

Theorem 1 ([7]). For any adversary A against the CPA security of Kyber.CPA′, let define the advantage

Adv
cpa
Kyber.CPA′(A) =

∣∣∣∣∣∣∣∣∣Pr

b = b′ :

(pk, sk)← KeyGen();
(m0, m1, s)← A(pk);
b← {0, 1}; c∗ ← Enc(pk, mb);
b′ ← A(s, c∗)

− 1
2

∣∣∣∣∣∣∣∣∣ .

Then, there exists an adversary B such that

Adv
cpa
Kyber.CPA′(A) ≤ 2Advmlwe

k+1,k,η(B).
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Finally, it is worth pointing out that neither Kyber.CPA nor Kyber.CPA′ provides perfect correctness.
This is discussed in [7], where a value for δ, the probability of decryption error, is obtained for Kyber.CPA.
This is easily adapted to Kyber.CPA′; the details can be found in Appendix A.

Algorithm 1: Kyber.CPA′.KeyGen()

1 ρ, σ←− {0, 1}n

2 A ∼ Rk×k
q := Sam(ρ)

3 (s, e) ∼ βk
η × βk

η := Sam(σ)

4 t := As + e
5 return (pk := (t, ρ), sk := s)

Algorithm 2: Kyber.CPA′.Enc(pk = (t, ρ), m ∈ M))

1 r ←− {0, 1}n

2 A ∼ Rk×k
q := Sam(ρ)

3 (r, e1, e2) ∼ βk
η × βk

η × βη

4 u := Compressq(A
Tr + e1, du)

5 v := Compressq(t
Tr + e2 + d q

2c ·m, dv)

6 return c := (u, v)

Algorithm 3: Kyber.CPA′.Dec(sk = s, c = (u, v))

1 u := Decompressq(u, du)

2 v := Decompressq(v, dv)

3 return Compressq(v− sTu, 1)

3.2. The FOAKE Transformation: From PKE to AKE

FOAKE is a generic construction proposed in [9], which transforms an IND-CPA secure PKE scheme
into an AKE protocol, provably secure in the QROM. The construction admits that the PKE scheme has
non-perfect correctness, which makes it suitable for the Kyber.CPA′ scheme we have previously introduced.
Another nice feature is that it avoids the use of (usually expensive) quantum-secure signature schemes.
FOAKE can be seen as an extension of the Fujisaki–Okamoto transform (which turns IND-CPA encryption
schemes into IND-CCA ones) for the AKE setting.

The resulting AKE after applying the FOAKE transformation is quite efficient in terms of
communication. In [9], it is called a two-message protocol, meaning that it is a two-round AKE protocol
where one party sends a message in the first round while the other party answers with another message in
the second round. As an interesting additional contribution, the authors of [9] defined a security model
and two security notions for two-message AKEs: key indistinguishability agains active attacks (IND-AA)
and the weaker notion of indistinguishability against active attacks without state reveal in the test session
(IND-StAA). We are interested in the second one, as the security of the AKE obtained by using the FOAKE

transformation is proved in [9] under this slightly weaker model. Nevertheless, this is enough for our
purposes because, as discussed in Section 5 of [15] (the extended version of [9]), IND-StAA implies security
in the sense required in the compiler from [8].

A high level description of the IND-StAA model, as formulated in [9], is the following. It states that
the session key remains indistinguishable from a random one even if:
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1. The attacker knows either the long-term secret key or the secret state information (but not both) of
both parties involved in the test session, as long as it did not modify the message received by the test
session.

2. If the attacker modified the message received by the test session, as long as it obtained neither the
long-term secret key of the test session’s peer nor the test session’s state.

The authors of the FOAKE transformation proved its IND-StAA security in the QROM as long as the
PKE is IND-CPA, and it is possible to efficiently fake ciphertexts that are indistinguishable from proper
encryptions, while the probability that the sampling algorithm hits a proper encryption is small. This last
notion is called Disjoint Simulatability (DS) of ciphertexts, and is defined in [9] as follows.

Definition 2 (DS). Let PKE = (KG, Enc, Dec) be a PKE scheme with message spaceM and ciphertext space C,
coming with an additional ppt algorithm Enc. For quantum adversaries A, we define the advantage against PKE’s
disjoint simulatability as

AdvDSPKE,Enc(A) =

∣∣∣∣∣∣∣Pr

 pk← KG,
m←M,
c← Enc(pk, m)

: 1← A(pk, c)

− Pr

[
pk← KG,
c← Enc

: 1← A(pk, c)

]∣∣∣∣∣∣∣ .

When there is no chance of confusion, we drop Enc from the advantage’s subscript for convenience. We call PKE
εdis-disjoint if for all pk ∈ supp(KG),

Pr[c← Enc : c ∈ Enc(pk, M; R)] ≤ εdis,

whereR = R(pk) is a finite randomness space defined by pk.

The authors of the FOAKE transformation suggested that many lattice-based schemes fulfill DS in a
natural way as follows: fake encryptions could be sampled uniformly random. DS would follow from the
LWE assumption, and since LWE samples are relatively sparse, uniform sampling should be disjoint.

The following theorem establishes that the DS security of Kyber.CPA′ equipped with an additional
algorithm Enc reduces to its Module-LWE security.

Theorem 2 (DS security of Kyber.CPA′). Let η, k, du, and dv be positive integer parameters for Kyber.CPA′.
If Kyber.CPA′ is equipped with a ppt algorithm Enc which samples a uniform ciphertext when given a public key,
then, for any adversary A, there exists an adversary B such that

AdvDSKyber.CPA′(A) ≤ 2Advmlwe
k+1,k,η(B).

Furthermore, Kyber.CPA′ is εdis-disjoint with

εdis =
1

2n (du k+dv−2)
.

Proof. Let A be an adversary attacking the DS security of Kyber.CPA′. We obtain a bound for
AdvDSKyber.CPA′(A) following the sequence of games in the proof of Theorem 2 in [7].

First, the value t := As + e which is used in KeyGen is substituted by a uniform random value.
It follows from the Module-LWE security of Kyber.CPA′ that the value t and the uniform random value are
indistinguishable from each other. Next, the values ATr + e1 and tTr + e2 + d q

2c ·m used in the generation
of the challenge ciphertext are simultaneously substituted with uniform random values. Again, it follows
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from the Module-LWE security of Kyber.CPA′ that ATr + e1 and tTr + e2 + d q
2c ·m are indistinguishable

from the random values. As in [7], we deduce that there exists an adversary B with the same running time
as that of A such that AdvDSKyber.CPA′(A) ≤ 2Advmlwe

k+1,k,η(B).
To prove the εdis-disjointness of Kyber.CPA′ with εdis = 2n (2−du k−dv), we recall thatM = {0, 1}n,

C = {0, 1}n k du × {0, 1}n dv , andR = {0, 1}n are the message, ciphertext and random spaces, respectively.
Since |Enc(pk, M; R)| ≤ |M| |R| = 22 n, we obtain

Pr[c← Enc : c ∈ Enc(pk, M; R)] ≤ max
(pk, sk)∈KeyGen(R)

|Enc(pk, M; R)|
|C|

≤ 22 n

2n (du k+dv)

=
1

2n (du k+dv−2)
,

which is the desired result.

Now that Theorems 1 and 2 guarantee that Kyber.CPA′ satisfies the hypotheses of Theorem 3 in [9],
we can use it to produce a two-party AKE which fulfills IND-StAA security in the QROM. The resulting
scheme, which we denote by Kyber.2AKE, is depicted in Figure 4. Here, G and H are random oracles
and H′R, H′L1, H′L2, and H′L3 are internal random oracles that cannot be accessed directly and could be
implemented with a pseudorandom function. Note that this is not the same two-party AKE proposed
in [7]. For reference, we include the precise statement of Theorem 3 [9] in Appendix B.

3.3. The Commitment Scheme

In this section, we describe how to obtain an IND-CCA PKE from an IND-CPA PKE. This process can
be achieved in two steps:

1. Apply the FO 6⊥m transformation [9] that converts an IND-CPA PKE into a IND-CCA KEM.
2. Apply the transformation proposed in [10] to achieve an IND-CCA PKE from an IND-CCA KEM.

To achieve an IND-CCA secure KEM from Kyber.CPA′, we apply the FO 6⊥m transformation. This is
analogous to the FOAKE transformation that transforms a PKE scheme that is both IND-CPA and DS
secure into a CCA-secure KEM. As shown in [9], unlike similar transformations, FO 6⊥m is robust against
correctness errors and its security reduction is tighter than the one that results from applying other known
transformations. In cases where the PKE is not already DS, this requirement can be waived with negligible
loss of efficiency. In the case of Kyber.CPA′, there is no loss of efficiency since it is IND-CPA secure and,
as shown in Theorem 2, it is DS secure as well. The Algorithms 1, 4, and 5 show the KEM Kyber 6⊥ =
(Kyber.CPA′.KeyGen, Encaps, Decaps) that results from applying the transformation FO 6⊥m to Kyber.CPA′.
Here, G and H are random oracles and Hr is an internal random oracle that cannot be accessed directly and
could be implemented with a pseudorandom function. For reference, we include the precise statement of
Theorem 2 [9] in Appendix C.
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Pi Pj

Static auth. keys

(pki , ski)← Kyber.CPA′.KeyGen()

Static auth. keys

(pk j, sk j)← Kyber.CPA′.KeyGen()

mj ←M
cj := Kyber.CPA′.Enc(pkj, mj;G(mj))

(s̃k, p̃k)← Kyber.CPA′.KeyGen()

M := ( p̃k, cj)

st := (s̃k, mj, M)

M

( p̃k, cj) := M

mi, m̃←M
ci := Kyber.CPA′.Enc(pki, mi;G(mi))

c̃ := Kyber.CPA′.Enc( p̃k, m̃;G(m̃))

M′ := (ci, c̃)

m′j := Kyber.CPA′.Dec(skj, cj)

if m′j = ⊥

or cj 6= Kyber.CPA′.Enc(pkj, m′j;G(m
′
j))

k′ := H′R(mi, cj, m̃, i, j, M, M′)

else

k′ := H(mi, m′j, m̃, i, j, M, M′)

M′

(ci, c̃) := M′

m′i := Kyber.CPA′.Dec(ski, ci)

m̃′i := Kyber.CPA′.Dec(s̃k, c̃)

if m′i = ⊥
or ci 6= Kyber.CPA′.Enc(pki, m′i ;G(m

′
i))

if m̃′ = ⊥
k := H′L1(ci, mj, c̃, i, j, M, M′)

else

k := H′L2(ci, mj, m̃′, i, j, M, M′)

else if m̃′ = ⊥
k := H′L3(m

′
i , mj, c̃, i, j, M, M′)

else

k := H(m′i , mj, m̃′, i, j, M, M′)

Figure 4. Kyber.2AKE.
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Algorithm 4: Kyber 6⊥.Encaps(pk)

1 m $←−M
2 c := Kyber.CPA′.Enc(pk, m;G(m))

3 k := H(m)
4 return (k, c)

Algorithm 5: Kyber 6⊥.Decaps(sk, c)

1 m′ := Kyber.CPA′.Dec(sk, c)
2 if m′ = ⊥ or Kyber.CPA′.Enc(pk, m′;G(m′)) 6= c then
3 return k := Hr(c)

4 else
5 return k := H(m′)

Finally, an IND-CCA PKE is obtained after applying the transformation introduced in [10] to Kyber 6⊥

with a secure one-time symmetric key encapsulation (SKE or DEM). We call this scheme Kyber.PKE.
The security of this transformation follows from Theorem 5 in [10]. As pointed out in [8], a commitment
scheme with the required security properties can be obtained in a straightforward way from the
IND-CCA PKE.

4. Our Post-Quantum Group Key Exchange

In this section, we present our compiled construction of GAKE. Informally, let us recall the setting we
are considering. Our participants are honest entities which can be modeled as probabilistic polynomial
time Turing machines (thus, have no access to quantum computing resources). These participants can only
exchange messages through an insecure network, which is fully under adversarial control (adversaries
may insert, delay, suppress or forward messages at will). Moreover, the adversarial computing capabilities
are superior to those of participants, as we assume adversaries can preform quantum polynomial time
computations and have quantum access to any hash function (modeled as a random oracle) involved.
With this in mind, the goal pursued by our protocol is to guarantee that, whenever a participant has
computed a session key through the network, this key is indistinguishable from a random value for those
outside the intended group of participants involved in that concrete execution. Note that (as is standard
in GKE proposals) we cannot expect to prove that the protocol will always terminate when executed by
honest parties, we rather pursue formal assurance that, whenever the protocol indeed produces an output
key for a participant, this key is secure for subsequent use.

Now, to make the text fully self-contained, we start by describing the main notations and formalism
used in the sequel.

4.1. Security Model

Our security model is inherited from Abdalla et al. [8], which in turn builds upon the seminal
work of Bellare et al. [16]. However, ours is a less generic scenario; while in [8] all the proofs are in the
common reference string model, our proofs are in the (quantum) random oracle model. More precisely,
we assume that all public keys and parameters needed for implementing Kyber.2AKE and Kyber.PKE
are publicly known (and certified), as well as the description of all involved hash functions, which are
idealized as random oracles. Further, we will assume that the long term keys needed for authentication in
Kyber.2AKE are generated and distributed to all potential protocol participants in a trusted initialization
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phase. As customary, we use variables to detail the information stored by users with respect to each
protocol execution, and oracles to model adversarial action.

4.1.1. Protocol Instances

Each protocol participant Ui ∈ U (i ∈ N) may execute a polynomial number of protocol instances
in parallel. A single instance Πsi

i can be interpreted as a process executed by protocol participant Ui.
Throughout, the notation Πsi

i is used to refer to instance si of protocol participant Ui ∈ U . To each instance,
we assign seven variables:

used
si
i indicates whether this instance is or has been used for a protocol run. The used

si
i flag can only

be set through a protocol message received by the instance due to a call to the Execute- or to the
Send-oracle (see below).

state
si
i keeps the state information needed during the protocol execution as well as the long term keys

needed for authentication.
term

si
i shows if the execution has terminated.

sid
si
i denotes a public session identifier that can serve as identifier for the session key sk

si
i . Note that,

even though we do not construct session identifiers as session transcripts, the adversary is
allowed to learn all session identifiers.

pid
si
i stores the set of identities of those users that Πsi

i aims at establishing a key with—including Ui
himself.

acc
si
i indicates if the protocol instance was successful, i. e., the user accepted the session key.

sk
si
i stores the session key once it is accepted by Πsi

i . Before acceptance, it stores a distinguished NULL

value.

We do not make explicit the initialization and evolution of all variables mentioned above,
yet omissions are straightforward to understand from the context.

4.1.2. Communication Network

We assume arbitrary point-to-point connections among users to be available. The network is
non-private and fully asynchronous: The adversary may delay, eavesdrop, insert, and delete messages
at will.

4.1.3. Adversarial Capabilities

Following Hövelmanns et al. [15], we consider adversaries that can preform (quantum) polynomial
time computations, and have classical access to all (online) oracles listed below. Furthermore, as explained
in Section 2.2, our adversaries are given quantum access to any (offline) random oracles involved.

The capabilities of an adversary A are made explicit through access to oracles allowing A to
communicate with protocol instances run by the users:

Send(Ui, si, M) This sends message M to the instance Πsi
i and returns the reply generated by this instance.

If A queries this oracle with an unused instance Πsi
i and M ⊆ P a set of identities of principals,

the used
si
i -flag is set, pidsi

i initialized with pid
si
i := {Ui} ∪ M, and the initial protocol message of Πsi

i
is returned.
Execute({Πsu1

u1 , . . . , Π
suµ
uµ }) This executes a complete protocol run among the specified unused instances of

the respective users. The adversary obtains a transcript of all messages sent over the network. A query to
the Executeoracle is supposed to reflect a passive eavesdropping.
Reveal(Ui, si) This yields the value stored in sk

si
i .
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Test(Ui, si) Let b be a bit chosen uniformly at random. Provided that the session key is defined (i. e., accsi
i =

true and sk
si
i 6= NULL) and instance Πsi

i is fresh (see the definition of freshness below), A can execute
this oracle query at any time when being activated. Then, the session key sk

si
i is returned if b = 0

and a uniformly chosen random session key is returned if b = 1. In this model, an arbitrary number of
Testqueries is allowed for the adversaryA, but, once the Test oracle has returned a value for an instance Πsi

i ,
it will return the same value for all instances partnered with Πsi

i (see the definition of partnering below).
Corrupt(Ui) This returns all long-term secrets of user Ui—in our case, the private keys used for
authentication in Kyber.2AKE.

4.1.4. Correctness, Integrity and Secrecy

To define our correctness and security goals, we introduce partnering to express which instances are
associated in a common protocol session.

Partnering. We refer to instances Πsi
i and Π

sj
j as being partnered if pidsi

i = pid
sj
j , sidsi

i = sid
sj
j , sksi

i = sk
sj
j and

acc
si
i = acc

sj
j = true.

An instance Πsi
i is assumed to accept the session key constructed at the end of the corresponding

protocol run if no deviation from the protocol specification has occurred. Moreover, without adversarial
interference, all users involved in a certain session should come up with the same session key.

Definition 3. We call a group key establishment protocol P correct, if in the presence of a passive adversaryA—i. e.,
A must neither use the Send nor the Corruptoracle—the following holds: for all i, j with both sid

si
i = sid

sj
j and

acc
si
i = acc

sj
j = true, we have sksi

i = sk
sj
j 6= NULL and pid

si
i = pid

sj
j .

Some sort of correctness should also be guaranteed even if adversaries actively participate in a
concrete executions: the notion of integrity, introduced in [17], captures this idea.

Definition 4. We say that a correct group key establishment protocol fulfills integrity if, with overwhelming
probability, all instances of honest principals that have accepted with the same session identifier sid

sj
j hold identical

session keys sk
sj
j and associated this key with the same principals pid

sj
j .

Next, for detailing the security definition, we have to specify under which conditions a Test-query
may be executed.

Definition 5. A Test-query should only be allowed to those instances holding a key that is not for trivial reasons
known to the adversary. To this aim, an instance Πsi

i is called fresh if none of the following holds:

• For some Uj ∈ pid
si
i , a query Corrupt(Uj) was executed before a query of the form Send(Uk, sk, M) has taken

place, for some message (or set of identities) M and some Uk ∈ pid
si
i .

• The adversary earlier queried Reveal(Uj, sj) with Πsi
i and Π

sj
j being partnered.

The idea of this definition is that revealing a session key from an instance Πsi
i trivially yields the session key of all

instances partnered with Πsi
i , and hence this kind of “attack” will be excluded in the security definition.

For a secure group key establishment protocol, we have to impose a corresponding bound on the
adversary’s advantage: The advantage AdvA(`) of a ppt adversary A in attacking protocol P is a function
in the security parameter `, defined as

AdvA := |2 · Succ− 1|.
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Here, Succ is the probability that the adversary queries Test only on fresh instances and guesses correctly
the bit b used by the Test oracle (without violating the freshness of those instances queried with Test) :

Definition 6. We say that an authenticated group key establishment protocol P is secure if for every ppt adversary
A the following inequality holds for some negligible function negl:

AdvA(`) ≤ negl(`), (1)

4.2. Our Construction

We aim at a full description of a GAKE protocol that can be proven secure against quantum adversaries,
building on a post-quantum 2AKE and using the compiler described in Section 2.1. Our proposal is depicted
in Figure 5. Note that in our compiled design we take as starting point a slightly modified version of the
compiler from [8], in two ways:

• We simplify the session key and session identifier computation using two hash functions to extract
them from the shared master key K. Indeed, as the 2AKE we use as building block is proven secure in
the (quantum) random oracle model, it no longer makes sense to use the (somewhat complicated) key
extraction procedure defined in [8] to dodge idealized hash functions. Thus, we forgo Tools 1 and 2
mentioned in Section 2.1 and use two hash functions Ĥ and F̂ instead. Thus, at the final Computation
phase, each user Ui will set the session key as ski = Ĥ(K) and the corresponding session identifier as
sidi = F̂(K), where K is the master key shared by everyone involved in the execution.

• Further, we make an additional requirement on the compiled 2AKE, needed for the security proof.
Indeed, as pointed out by Nam in [18], an extra condition on the two party protocol used as a base
must be imposed in Theorem 1 of [8]. Indeed, the underlying 2AKE should fulfill integrity in order to
thwart a simple replay attack (in the proof of Theorem 1 of [8], it is actually assumed that integrity is
fulfilled—see the argument related to Game 1). We thus slightly tune up the two-party 2AKE to make
sure integrity is achieved.

4.3. Security Arguments and Proofs

To prove that our compiled version is secure, we build upon the security of our underlying tools.
More precisely, we use the following results:

(i) Kyber.2AKE, as depicted in Figure 4, is secure in the sense of IND-StAA and can be modified to also
attain integrity as in Definition 4. Note that, as explained in Section 5 of [15], IND-StAA implies
security in the sense required in the original compiler from [8].

(ii) The encryption scheme Kyber.PKE yields a non-interactive commitment scheme that is both
non-malleable for multiple commitments and perfectly binding. This comes straightforward as
a result of this scheme being IND-CCA (see Section 3.3 and [15]).

4.3.1. A Variant of Kyber.2AKE Attaining Integrity

Informally, it is easy to modify in a standard way the construction Kyber.2AKE to attain integrity.
The main idea is to add a second random oracle F which, at the point of key derivation, will be applied
to the same input as H in order to derive a session identifier. Then, it is trivial to state that integrity of
this modified Kyber.2AKE construction is attained both in the ROM and in the QROM, due to the collision
resistance of the involved random oracles (see Section 2.2). Indeed, suppose that k = k′. Since H and F are
random oracles, their collision resistance guarantees that, with overwhelming probability, both participants
have the same partner identifiers and, therefore, use the same session key k. This argument is valid both in
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the classical and quantum-accessible random oracle model (see Section 2.2). In the sequel, we assume this
modification is in place and thus Kyber.2AKE attains integrity.

Round 1 ∼ 2: For each i = 0, . . . , n − 1, execute Kyber.2AKE with Ui and U[i+1], where [k] = k
mod n (i.e., all indices are to be taken in a cycle).
At completion, each Ui ∈ G holds two pairwise keys

−→
K i and

←−
K i shared with U[i+1] and U[i−1],

respectively. Note that, for i = 0, . . . , n− 1,
−→
K i =

←−
K [i+1].

Round 3:

• Computation: Each Ui computes Xi =
−→
K i ⊕

←−
K i, and chooses a random ri to derive a

commitment Ci = Kyber.PKE(i, Xi; ri),

• Broadcast: Each Ui broadcasts M1
i = (Ui, Ci).

Round 4:

• Broadcast: Each Ui broadcasts M2
i = (Ui, Xi, ri).

• Verification: Each Ui checks that X0 ⊕ X1 ⊕ · · · ⊕ Xn−1 = 0 and the correctness of the
commitments.
If any one of these checks fails, Ui terminates the protocol execution setting acci := FALSE,
otherwise it sets acci := TRUE and pidi := G.

• Computation: Each Ui computes the n− 1 values

←−
K [i−j] =

←−
K [i−j+1] ⊕ X[i−j], j = 1, 2, . . . , n− 1.

Then, Ui defines a master key

K =
(←−

K 0,
←−
K 1, . . . ,

←−
K n−1,G

)
,

and sets the session key and session identifier as

ski = Ĥ(K)

and
sidi := F̂(K)

where Ĥ : {0, 1}∗ −→ {0, 1}` and F̂ : {0, 1}∗ −→ {0, 1}` are hash functions and ` ∈ N is the
security parameter.

Figure 5. Proposed Post-Quantum group-key establishment.

4.3.2. Security of Our Proposed Group Protocol

Theorem 3. In the random oracle model, the protocol presented in Figure 5 is a correct and secure authenticated
group key establishment protocol fulfilling integrity, in the sense of Definitions 3, 6, and 4.

Proof. This proof is a (somewhat) straightforward adaptation of the security proof of Theorem 1 of [8],
which we use as a main tool in our construction.
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Correctness. In an honest execution of the protocol, it is easy to verify that all participants in the protocol
will terminate by accepting and computing the same session identifier and session key.

Integrity. Owing to the collision-resistance of the random oracle F̂ all oracles that accept with identical
session identifiers also hold with overwhelming probability the same master key K and pid (which can be
read from K) will therefore also derive the same session key Ĥ(K).

Key secrecy. The proof of key secrecy will proceed in a sequence of games, starting with the real attack
against the key secrecy of the group key exchange protocol and ending in a game in which the adversary’s
advantage is 0, and for which we can bound the difference in the adversary’s advantage between any two
consecutive games. Following standard notation, we denote by Adv(A, Gi) the advantage of the adversary
A in Game i. Furthermore, for clarity, we classify the Send queries into three categories, depending on the
stage of the protocol to which the query is associated, starting with Send-0 and ending with Send-2. Send-t
denotes the Send query associated with round t for t = 0, 1, 2.

The first three games from this proof are exactly the same as those in the proof of Theorem 1 of [8].
We only summarize the reduction and refer the interested reader to the original paper for a detailed
description.

Game 0. This first game corresponds to a real attack, in which all the parameters, such as the public
parameters in the common reference string and the long-term secrets associated with each user, are chosen
as in the actual scheme. By definition, Adv(A, G0) = Adv(A).
Game 1. In this game, for i = 1, . . . , n, we modify the simulation of the Send and Execute oracles so that,
whenever an instance Πsi

i is still considered fresh at the end of Round 2, the keys
←−
K i and

−→
K i that it shares

with instances Πsi−1
i−1 and Πsi+1

i+1 are replaced with random values from the appropriate set.

It is easy to see that the distance between this game and the previous one is bounded by the probability
that the adversary breaks the security of any of the underlying 2-AKE protocols. As a result, it holds∣∣Adv(A, G1)− Adv(A, G0)

∣∣ ≤ 2 · Adv2-AKE(`, 2 · qsend),

where qsend represents the number of different protocol instances in Send queries.

Game 2. In this game, we change the simulation of the Send oracle so that a fresh instance Πsi
i does not

accept in Round 4 whenever one commitment Cj for j 6= i it receives in Round 3 was generated by the

simulator but not generated by the respective instance Π
sj
j , j 6= i in the same session.

The adversary A can detect the difference to Game G1 if A replayed a commitment that should have
led to acceptance in Round 4 in that game. Because the committed value Xi is a random value independent
of previous messages, the probability for this is negligible.∣∣Adv(A, G2)− Adv(A, G1)

∣∣ ≤ negl(`)

Game 3. This game reproduces the modification also for adversary-generated commitments: The simulation
of the Send oracle changes so that a fresh instance Πsi

i does not accept in Round 4 whenever one commitment
Cj for j 6= i it receives in Round 3 was adversary-generated. The adversary’s advantage diverges only
negligibly from the previous game:∣∣Adv(A, G3)− Adv(A, G2)

∣∣ ≤ negl(`)
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Game 4. Now, the simulations of the Execute and Send oracles are modified at the point of computing
the session key. The simulator keeps a list of strings (K1, . . . , Kn,G). Once an instance receives the last
Send-2 query, the simulator computes K1, . . . , Kn and checks if for the corresponding string (K1, . . . , Kn,G)
a master key was already issued. If this is the case, it assigns the corresponding master key to the instance.
If no such entry exists in the list, the simulator chooses a session key sk

si
i ∈ {0, 1}` uniformly at random.

Note that, even if the messages from Round 4 are sent out, the master key is still containing sufficient
entropy so that the random oracle output Ĥ is indistinguishable from a random sk

si
i with negligible

probability only. As a result, ∣∣Adv(A, G4)− Adv(A, G3)
∣∣ ≤ negl(`).

Now, clearly, in Game G4, all session keys are chosen uniformly at random and the adversary has
no advantage.

Adv(A, G4) = 0.

Theorem 4. In the quantum random oracle model, the protocol presented in Figure 5 is a correct and secure
authenticated group key establishment protocol fulfilling integrity, in the sense of Definitions 3, 6, and 4.

Proof. (sketch) The proof follows the exact reasoning of Theorem 3; we only need to stress that the
argument from Game 4 is still valid when considering quantum-accessible random oracles. Indeed, in this
last game, the simulations of the Execute and Send oracles are modified at the point of computing the
session key. The simulator keeps a list of strings (K1, . . . , Kn,G), and, upon receiving the last Send-2 query,
it computes the values K1, . . . , Kn and checks if a corresponding master key has already been issued
previously. If this is the case, this master key will be assigned to the instance. Otherwise, the simulator
chooses a session key sk

si
i ∈ {0, 1}` uniformly at random. At this point, all two party keys K1, . . . , Kn are

chosen uniformly at random and are unknown to the adversary. The adversary can only notice this last
change if it has already queried the very same key string to the quantum random oracle Ĥ. This event will
happen with negligible probability. As a result, the output Ĥ is indistinguishable from a random sk

si
i with

overwhelming probability. Thus, we have∣∣Adv(A, G4)− Adv(A, G3)
∣∣ ≤ negl(`).

Now, clearly, in Game G4, all session keys are chosen uniformly at random and the adversary has
no advantage.

Adv(A, G4) = 0.

5. Conclusions

We present in this paper a post-quantum GAKE using Abdalla et al.’s compiler from [8] as design
frame. We choose the Kyber suite [7] as main building block, not only because it is a good design fit for
our compiled strategy, but also considering its promising security properties (as Kyber is one of the four
remaining finalists for public key encryption in the Third Round of the NIST competition). More precisely,
we evidence that a secure 2AKE as needed for our compiled construction can be derived using the FOAKE

transformation proposed in [9], by proving the encryption scheme Kyber.CPA′ to be DS secure.
Our four-round instantiation can as a result be proven to provide post-quantum security guarantees

under the Module-LWE assumption in the quantum random oracle model.
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Appendix A. Non-Perfect Correctness of Kyber.CPA′

As defined in [19], a PKE is said to be (1− δ)-correct if

E
[

max
m∈M

Pr [Dec(sk, Enc(pk, m)) = m]

]
> 1− δ,

where the expectation is taken over (pk, sk) ← KeyGen() and the probability is taken over the random
space of Enc.

Following the proof of Theorem 1 in [7], it is not hard to prove the following theorem, which provides
the value δ when dealing with Kyber.CPA′.

Theorem A1. Let k be a positive integer parameter. Let s, e, r, e1, e2 be random variables that have the same
distribution as in Algorithms 1 and 2. In addition, let cu ← ψk

du
, cv ← ψk

dv
be distributed according to the

distribution ψ defined as follows:
Let ψk

d be the following distribution over R:

1. Choose uniformly-random y← Rk

2. return (y− Descompressq(Compressq(y, d), d)) mod± q

Denote
δ = Pr

[
‖eTr + e2 + cv − sTe1 − sTcu‖∞ ≥ dq/4c

]
,

where, for w = w0 + w1 X + · · ·+ wn−1 Xn−1 ∈ R:

||w||∞ = max
i
|wi mod±q|,

and, similarly, for w = (w1, . . . , wk) ∈ Rk:

||w||∞ = max
i
||wi||∞.

Then, the modified scheme Kyber.CPA′ is (1− δ)-correct.

Appendix B. Transformation from IND-CPA PKE to Secure 2AKE

We reproduce here the result given in [9] about the IND-StAA security of the FOAKE transformation.
The following theorem states that the IND-StAA security of AKE = FOAKE(PKE, G, H), where PKE is a PKE
scheme and G, H are random oracles, reduces to the DS and IND-CPA security of PKE. Note that some
references to oracles appear in the statement; for details about these oracles and the formal definition of
IND-StAA security, see [9].

Theorem A2 ([9]). Assume PKE=(KG,Enc,Dec) to be (1− δ)-correct, and to come with a sampling algorithm Enc
such that it is ε-disjoint. Let N be the number of parties, and suppose that any attacker is granted access to an oracle
REVEAL which reveals the respective session’s key (if already defined). Then, for any IND-StAA adversary B that
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establishes S sessions and issues at most qR (classical) queries to REVEAL, at most qG (quantum) queries to random
oracle G, and at most qH (quantum) queries to random oracle H, there exist adversaries ADS and ACPA against PKE
such that

AdvIND-StAAAKE (B) ≤ 2 S (S + 3 N)AdvDSPKE(ADS)

+ 4 S (S + 3 N)

√
(qG + 2 qH + 3 S)Advcpa

PKE(ACPA) +
4 (qG + 2 qH + 3 S)2

|M|
+ 32 (S + 3 N) (qG + 2 qH + 3 S)2 (1− δ) + 4 S (S + N) εdis

+ S2 (N + 1) µ(KG) µ(Enc) + 2 S2 + µ(KG),

and the running times of ADS and ACPA is about that of B. Here,

µ(KG) = Pr[(pk, sk)← KG, (pk′, sk′)← KG : pk = pk′]

and
µ(Enc) = Pr[(pk, sk)← KG, m, m′ ←M, c← Enc(pk, m), c′ ← Enc(pk, m′) : c = c′].

Appendix C. Transformation from IND-CPA PKE to IND-CCA KEM

We reproduce here the result given in [9] about the IND-CCA security of the FO 6⊥m transformation.
The following theorem states that the IND-CCA security of FO 6⊥m = FO 6⊥(PKE, G, H), where PKE is a PKE
scheme and G, H are random oracles, reduces to the DS and IND-CPA security of PKE. Note that some
references to oracles appear in the statement; for details about these oracles (see [9]).

Theorem A3 ([9]). Assume PKE=(KG,Enc,Dec) to be (1− δ)-correct, and to come with a sampling algorithm
Enc such that it is εdis-disjoint. Suppose that any attacker is granted access to an oracle DECAPS. Then, for any
(quantum) IND-CCA adversary A issuing at most qD (classical) queries to decapsulation oracle DECAPS, at most
qG quantum queries to random oracle G, and at most qH quantum queries to random oracle H, there exist (quantum)
adversaries BDS and ACCA against PKE such that

AdvIND-CCAKEM (A) ≤ 8 · (2qG + qH + qD + 4)2 · δ + AdvDSPKE(BDS)

+ 2

√
(qG + qH) · AdvIND-CPAPKE (BIND-CCA) +

4(qG + qH)
2

|M| + εdis,

and the running times of BDS and BIND-CPA is about that of A.
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