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Abstract: The article presents a solution to a boundary value problem for a wave equation containing
a fractional derivative with respect to a spatial variable. This model is used to describe oscillation
processes in a viscoelastic medium, in particular changes in the deformation-strength characteristics
of polymer concrete (dian and dichloroanhydride-1,1-dichloro-2,2-diethylene) under the influence of
the gravity force. Based on the obtained solution to the boundary value problem, the article presents
four numerical examples corresponding to homogeneous boundary conditions and various initial
conditions. The graphs of the found solutions were constructed and the calculation accuracy in the
considered examples was estimated.

Keywords: wave equation; fractional differentiation; eigenvalues and eigenfunctions of boundary
value problem

1. Introduction

Fractional calculus is currently at the center of attention of many researchers in the field of
science and technology. In this regard, we should mention the monograph [1], which is a unique
comprehensive review of fractional calculus and its application. Fractional partial differential equations
play an increasingly important role in many fields of science and engineering, such as physics [2–4],
biology [5,6], finance [7,8] and hydrodynamics [9,10]. Equations that contain fractional derivatives
efficiently describe the motion of structures containing elastic and viscoelastic elements [11,12]. These
equations also describe damped oscillations with fractional damping (in particular, the movement
of rocks in earthquakes [13], fluctuation of nanoscale sensors, etc. [14,15]) and serve as a base for
considering nonlinear oscillation processes [16]. The advantages of fractional derivatives are shown
in modeling the mechanical and electrical properties of real materials, as well as in describing the
rheological properties of rocks. Mathematical and simulation modeling of phenomena and processes,
based on the description of their properties in terms of fractional derivatives, naturally leads to
differential equations of fractional order.

Concrete structures are used everywhere in the construction of buildings and various structures
since they are durable and reliable. At the same time, the concrete structure surface undergoes
significant destructive effects because of external factors. Therefore, at present, based on a concrete
mixture, a material with improved operating characteristics is being made—polymer concrete, which
is distinguished by an increased, compared with concrete, resistance to moisture, low temperatures
and chemical compounds and durability. Polymer concrete can be represented as a set of solid filler
granules located in a viscoelastic medium in modeling. The transverse motion of a filler granule
under the influence of the gravity force or an external force can be described by the equation of a
fractional oscillator. Thus, replacing concrete with polymer concrete leads to replacing the second-order
differential equation with a fractional-order differential equation.
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Let us move on to the mathematical description.

2. Materials and Methods

We consider, in the domain G = {0 ≤ x ≤ X; 0 ≤ t ≤ J}, the first boundary value problem for the
equation of string oscillation with a Riemann–Liouville fractional derivative of order α with respect to
a spatial variable:

a2 ∂
2u
∂t2 =

∂2u
∂x2 + c·Dα

oxu. (1)

Boundary conditions:
u(0, t) = u(X, t) = 0. (2)

Initial conditions:
u(x, 0) = ϕ(x); (3)

u′t(x, 0) = ψ(x). (4)

Here, 0 < α < 2—the order of the fractional derivative; c is a constant; the Riemann–Liouville
fractional differential operator of order α > 0, where m − 1 < α ≤ m; m = 1,2, . . . , is defined as follows:

Dα
ox f (x) =

dm

dxm

 1
Γ(m− α)

∫ x

0

f (τ)dτ

(x− τ)α+1−m

.

Assume that for functions (3)–(4), the following conditions hold:

ϕ(x) ∈ C2(0;X);ϕ′′′ (x) ∈ C(0;X); (5)

ϕ(0) = ϕ(X) = 0; (6)

ϕ′′ (0) = ϕ′′ (X) = 0; (7)

ψ′′ (x) ∈ C(0;X); (8)

ψ(0) = ψ(X) = 0. (9)

Note that more detailed information on Equation (1) can be found in [1]. Problems (1)–(4) are
a generalization and refinement of the problem proposed in [17]. The results of [18] show that to
simulate changes in the deformation-strength characteristics of polymer concrete under the influence
of gravity force, one can use the result of solving problems (1)–(4). Samples of polymer concrete based
on polyester resin (diane and diacyl chloride-1,1-dichloro-2,2-diethylene) were investigated. Polymer
concrete is represented as a set of granules of mineral extender in an elastic-plastic medium. In this
case, the motion of the granule u is described by Equation (1), where c—the viscosity modulus of the
resin; a—related to the rigidity modulus of the resin; α—the elastic-plastic parameter of the medium.
Let us show how to solve problems (1)–(4) by the Fourier method. Conditions (5)–(9) give us an
opportunity to apply the Fourier method correctly in solving problems (1)–(4). Assume that

u(x, t) = X(x)T(t),

then for the unknown function X (x), we obtain the equality

X′′ (x) + c·Dα
oxX(x) = λX(x). (10)

Using the boundary conditions (2), we have:

X(0) = 0; X(X) = 0. (11)
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In this way, to find the unknown function X(x), we obtain the two-point Dirichlet problem
(10)–(11), whose solution, in the case 0 < α < 1, is given in [19].

It is a well-known fact [20] that a negative number λ is an eigenvalue of problems (10)–(11) if, and
only if, λ is a zero of the function

ω(λ) =
∞∑

n=0

(−1)n
n∑

k=0

(
n
k

)
(−λ)n−kckX2n+1−kα

Γ(2n + 2− kα)
. (12)

The corresponding eigenfunctions X j(x) have the form

X j(x) =
∞∑

n=0

(−1)n
n∑

k=0

(
n
k

)(
−λ j

)n−k
ck

Γ(2n + 2− kα)
x2n+1−kα; j = 1, 2, 3, . . . ; (13)

here, λ j is j-th eigenvalue of problems (10)–(11). Here, the most important is the fact that the system of
eigenfunctions (13) is complete in L2 (see [20]).

Note that a general solution of the linear homogeneous equation

a2T′′ (t) = λmT(t)

can be written as follows:

Tm(t) = Am sin
( t

a

√
−λm

)
+ Bm cos

( t
a

√
−λm

)
.

Using this fact, we can write out the solution of the problems (1)–(4) in a standard form:

u(x, t) =
∞∑

m=1

Xm(x)Tm(t) (14)

We will use the following form of initial condition (3)

u(x, 0) =
∞∑

m=1

Xm(x)Bm = ϕ(x) (15)

and also use the following form of initial condition (4)

u′t(x, 0) =
∞∑

m=1

AmXm(x)
√
−λm

a
= ψ(x). (16)

The system of eigenfunctions (13) is complete but it is not orthogonal. Therefore, we introduce
(according to [21]) the following system

{
X̃m(x)

}
m=1;2;...

of functions, which is biorthogonal to the
considered-above system of eigenfunctions.

X̃m(x) =
∞∑

n=0

(−1)n
n∑

k=0

(
n
k

)
(−λm)

n−kck

Γ(2n + 2− kα)
(X− x)2n+1−kα; m = 1, 2, 3, . . . (17)
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Now, it is possible to obtain a system of equations from Equations (15) and (16) for finding the
coefficients {Am}

M
m=1 and {Bm}

M
m=1. Multiplying both sides of (15) and (16) scalarly, we obtain 〈X̃m(x), Xm(x)〉Bm = 〈ϕ(x), X̃m(x)〉

〈X̃m(x), Xm(x)〉Am

√
−λm
a = 〈ψ(x), X̃m(x)〉

; m = 1; 2; . . .

where

〈 f (x), g(x)〉 =

X∫
0

f (x)·g(x)dx.

It follows that 
Bm =

〈ϕ(x),X̃m(x)〉
〈X̃m,Xm〉

Am =
a〈ψ(x),X̃m(x)〉

√
−λm〈X̃m(x),Xm(x)〉

; m = 1; 2; . . . (18)

Note that due to the fulfillment of conditions (5)–(9), we conclude that the series corresponding to
the functions u(x, t), ∂

2u
∂t2 and ∂2u

∂x2 converge uniformly (see [22]).

3. Results

Let us find, numerically, the first eigenvalues and the corresponding eigenfunctions (using the
partial sum of the series in (12) and (13)) via the multi-paradigm numerical computing environment
MATLAB. Considering a model of the polymer concrete reaction under the influence of the gravity
force, we have the following notations: α—parameter of viscoelasticity of a medium; c—viscosity
modulus of a medium. It is a known fact (see [23]) that for the polymer concrete based on polyester
resin (dian and dichloroanhydride-1,1-dichloro-2,2-diethylene), we have α = 1.47 and c = 1.8.

The first seven eigenvalues corresponding to α = 1.47, c = 1.8 and X = 1 are given in Table 1.

Table 1. The first seven eigenvalues of boundary value problems (10)–(11) for α = 1.47, c = 1.8 and X = 1.

λ1 λ2 λ3 λ4 λ5 λ6 λ7

−16.51 −59.49 −125.13 −213.33 −323.27 −455.09 −607.31

The seven eigenfunctions
{
Xm(x)

}
m=1;2;...7 and the functions from the biorthogonal system{

X̃m(x)
}
m=1;2;...7

have been obtained numerically, due to formulas (13) and (17), by replacing the
series with the partial sums of the first 100 terms. The first four eigenfunctions, of the system{
Xm(x)

}
m=1;2;..., corresponding to the case α = 1.47, c = 1.8 and X = 1 are shown at the top of Figure 1,

and the first four, of the system
{
X̃m(x)

}
m=1;2;...

, corresponding to the same case are at the bottom of
Figure 1.

Further, using the MATLAB high-level language for technical calculations, we calculated the
values of the inner product 〈X̃k(x), Xm(x)〉 for the first seven functions of both systems and wrote out
the results in Table 2 with an accuracy of five decimal places.

The matrix of the inner product is diagonal, thus the numerically-found systems of functions{
Xm(x)

}
m=1;2;... and

{
X̃m(x)

}
m=1;2;...

are biorthogonal at the given level of accuracy.
Now, let us consider examples and find an approximate solution to problems (1)–(4) using, instead

of expressing, a solution in the form of series (14), the sum of the first seven terms

u(7)(x, t) =
7∑

m=1

Xm(x)Tm(t).
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Table 2. Inner product of the first seven eigenfunctions of boundary value problems (10)–(11) and
functions of the biorthogonal system; α = 1.47, c = 1.8 and X = 1.

〈X̃k,Xm〉 X1 X2 X3 X4 X5 X6 X7

X̃1 0.01046 0 0 0 0 0 0
X̃2 0 −0.00213 0 0 0 0 0
X̃3 0 0 0.00076 0 0 0 0
X̃4 0 0 0 −0.00035 0 0 0
X̃5 0 0 0 0 0.00018 0 0
X̃6 0 0 0 0 0 −0.00011 0
X̃7 0 0 0 0 0 0 0.00007
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Figure 1. The first four functions, of the system
{
Xm(x)

}
m=1;2;..., (at the top) and

{
X̃m(x)

}
m=1;2;...

(at the
bottom), corresponding to the case α = 1.47 and c = 1.8.

In Examples 1–4, the function ϕ(x) determines the initial position of the granules of the mineral
filler and the function ψ(x) determines the initial speed of the granules of the mineral filler.

Example 1. Let X = 1; J = 3; ϕ (x) = 0; ψ (x) = x(1− x)2. To solve problems (1)–(4), using system
(12), we find the values of the first seven coefficients Am and Bm in series (14). The values of coefficients Am,
calculated by virtue of (18), are shown in Table 3.

Bm = 0 ; m = 1; 2; . . . 7

Table 3. The values of the coefficients Am of the solution u(7)(x, t) (see Example 1).

m 1 2 3 4 5 6 7

Am 0.20862 0.05574 −0.01698 0.01228 −0.00812 0.00586 −0.00503

The graph of the approximate solution u(7)(x, t) is shown in Figure 2.
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conditions in Example 1.

Let us estimate how much the last (seventh) term contributes to the sum; for this purpose,
we consider the ratio of the variation of the seventh term to the variation of the sum of the first
seven terms:

max
{
X7(x)T7(t)

}
−min

{
X7(x)T7(t)

}
max

{
u(7)(x, t)

}
−min

{
u(7)(x, t)

} 100% = 0.5%

Let us indicate the upper estimate for the series members (14):∣∣∣Xm(x)Tm(t)
∣∣∣ ≤ 0.03·m−2.8.

Example 2. Let X = 1; J = 4; ϕ (x) = 0; ψ (x) = (1− x)x3. To solve problems (1)–(4), using system
(12), we find the values of the first seven coefficients Am and Bm in series (14). The values of coefficients Am,
calculated by virtue of (18), are shown in Table 4.

Bm = 0 ; m = 1; 2; . . . 7

Table 4. The values of coefficients Am and Bm of the solution u(7)(x, t) (see Example 2).

m 1 2 3 4 5 6 7

Am 0.14149 −0.13295 0.07009 −0.04226 0.02925 −0.02173 0.01719

The graph of the approximate solution u(7)(x, t) is shown in Figure 3.
Let us estimate how much the last (seventh) term contributes to the sum; for this purpose, we

consider the ratio of the variation of seventh term to the variation of sum of the first seven terms:

max
{
X7(x)T7(t)

}
−min

{
X7(x)T7(t)

}
max

{
u(7)(x, t)

}
−min

{
u(7)(x, t)

} 100% = 1.9%.

Let us indicate the upper estimate for the series members (14):∣∣∣Xm(x)Tm(t)
∣∣∣ ≤ 0.07·m−2.5.
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conditions in Example 2.

Example 3. Let X = 1; J = 5; ϕ (x) = x(1− x); ψ (x) = x(1− x)4. To solve problems (1)–(4), using
system (12), we find the values of the first seven coefficients Am and Bm in series (14). The values of coefficients
Am and Bm, calculated by virtue of (18), are shown in Table 5.

Table 5. The values of the coefficients Am and Bm of the solution u(7)(x, t) (see Example 3).

m 1 2 3 4 5 6 7

Am 0.06758 0.05946 0.01514 0.00500 0.00236 0.00120 0.00049
Bm 1.81104 −0.70356 0.38444 −0.33961 0.23810 −0.24218 0.18670

The graph of the approximate solution u(7)(x, t) is shown in Figure 4.
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Let us estimate how much the last (seventh) term contributes to the sum; for this purpose, we
consider the ratio of the variation of seventh term to the variation of sum of the first seven terms:

max
{
X7(x)T7(t)

}
−min

{
X7(x)T7(t)

}
max

{
u(7)(x, t)

}
−min

{
u(7)(x, t)

} 100% = 2.0%.

Let us indicate the upper estimate for the series members (14):∣∣∣Xm(x)Tm(t)
∣∣∣ ≤ 0.27·m−2.1.

Example 4. Let X = 1; J = 6; ϕ (x) = (1− x)x3; ψ (x) = (1− x)x3. To solve problems (1)–(4), using
system (12), we find the values of the first seven coefficients Am and Bm in series (14). The values of coefficients
Am and Bm, calculated by virtue of (18), are shown in Table 6.

Table 6. The values of the coefficients Am and Bm of the solution u(7)(x, t) (see Example 4).

m 1 2 3 4 5 6 7

Am 0.14149 −0.13295 0.07009 −0.04226 0.02925 −0.02173 0.01719
Bm 0.57490 −1.02545 0.78405 −0.61730 0.52588 −0.46347 0.42359

The graph of the approximate solution u(7)(x, t) is shown in Figure 5.
Mathematics 2020, 8, x 8 of 10 

 

 
Figure 5. A graph of the approximate solution u(଻)(x, t)  of problems (1)–(4) under the imposed 
conditions in Example 4. 

Let us estimate how much the last (seventh) term contributes to the sum; for this purpose, we 
consider the ratio of the variation of seventh term to the variation of sum of the first seven terms: 𝑚𝑎𝑥ሼ𝑋଻(𝑥)𝑇଻(𝑡)ሽ − 𝑚𝑖𝑛ሼ𝑋଻(𝑥)𝑇଻(𝑡)ሽ𝑚𝑎𝑥൛𝑢(଻)(𝑥, 𝑡)ൟ − 𝑚𝑖𝑛൛𝑢(଻)(𝑥, 𝑡)ൟ 100% = 6.0%.  

Let us indicate the upper estimate for the series members (14): |𝑋௠(𝑥)𝑇௠(𝑡)| ≤ 0.29 ∙ 𝑚ିଵ.଺.  

4. Discussion 

In this article: 

- The solution to problems (1)–(4) is presented. 
- The first seven eigenvalues of problems (10)–(11) are found in the case α = 1.47; c = 1.8; 𝔛 = 1, 

which gives us an opportunity to model the deformation-strength characteristics of polymer 
concrete (dian and dichloroanhydride-1,1-dichloro-2,2-diethylene) under the influence of the 
gravity force, with an accuracy of two decimal places. 

- The functions from the system ሼ𝑋෨௠(𝑥)ሽ௠ୀଵ;ଶ;… , which is biorthogonal to the system of 
eigenfunctions ሼ𝑋௠(𝑥)ሽ௠ୀଵ;ଶ;…of problems (10)–(11) , in the case α = 1.47; c = 1.8; 𝔛 = 1, are found 
numerically and their graphs are plotted. 

- The inner products of the eigenfunctions ሼ𝑋௠(𝑥)ሽ௠ୀଵ;ଶ;…of problems (10)–(11) and functions 
from the biorthogonal system ሼ𝑋෨௠(𝑥)ሽ௠ୀଵ;ଶ;…, in the case α = 1.47; c = 1.8; 𝔛 = 1, are calculated 
and the obtained result confirms the correctness of replacing series (13) and (17) with partial 
sums in the calculations. 

- Four numerical examples of the application of the solution to problems (1)–(4) to modeling 
changes in the deformation-strength characteristics of polymer concrete (dian and 
dichloroanhydride-1,1-dichloro-2,2-diethylene) under the influence of the gravity force are 
considered. 

- The rate of decrease in terms (14) corresponding to the considered examples is obtained: |𝑋௠(𝑥)𝑇௠(𝑡)| ≤ 𝐶 ∙ 𝑚ఊ,  

where 0 < 𝐶 < 0.3; −3 < 𝛾 < −1.5  

Figure 5. A graph of the approximate solution u(7)(x, t) of problems (1)–(4) under the imposed
conditions in Example 4.

Let us estimate how much the last (seventh) term contributes to the sum; for this purpose, we
consider the ratio of the variation of seventh term to the variation of sum of the first seven terms:

max
{
X7(x)T7(t)

}
−min

{
X7(x)T7(t)

}
max

{
u(7)(x, t)

}
−min

{
u(7)(x, t)

} 100% = 6.0%.

Let us indicate the upper estimate for the series members (14):∣∣∣Xm(x)Tm(t)
∣∣∣ ≤ 0.29·m−1.6.
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4. Discussion

In this article:

- The solution to problems (1)–(4) is presented.
- The first seven eigenvalues of problems (10)–(11) are found in the case α = 1.47; c = 1.8; X = 1,

which gives us an opportunity to model the deformation-strength characteristics of polymer
concrete (dian and dichloroanhydride-1,1-dichloro-2,2-diethylene) under the influence of the
gravity force, with an accuracy of two decimal places.

- The functions from the system
{
X̃m(x)

}
m=1;2;...

, which is biorthogonal to the system of

eigenfunctions
{
Xm(x)

}
m=1;2;... of problems (10)–(11), in the case α = 1.47; c = 1.8; X = 1, are found

numerically and their graphs are plotted.
- The inner products of the eigenfunctions

{
Xm(x)

}
m=1;2;... of problems (10)–(11) and functions from

the biorthogonal system
{
X̃m(x)

}
m=1;2;...

, in the case α = 1.47; c = 1.8; X = 1, are calculated and
the obtained result confirms the correctness of replacing series (13) and (17) with partial sums in
the calculations.

- Four numerical examples of the application of the solution to problems (1)–(4) to modeling changes
in the deformation-strength characteristics of polymer concrete (dian and dichloroanhydride-1,
1-dichloro-2,2-diethylene) under the influence of the gravity force are considered.

- The rate of decrease in terms (14) corresponding to the considered examples is obtained:∣∣∣Xm(x)Tm(t)
∣∣∣ ≤ C·mγ,

where
0 < C < 0.3; −3 < γ < −1.5

- In the considered-above examples, we have established that the seventh (last) term contributes to
the sum from 0.5% to 6%.

This allows us to speak about the sufficient accuracy of using seven terms to model changes
in the deformation-strength characteristics of polymer concrete (dian and dichloroanhydride-1,
1-dichloro-2,2-diethylene) under the influence of the gravity force.
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