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Abstract: A physical asset’s health is the consequence of a series of factors, ranging from the
characteristics of the location where it operates to the care it is submitted to. These characteristics can
influence the durability or the horizon of the useful life of any equipment, as well as determine its
operational performance and its failure rates in the future. Therefore, the assessment of the influence
of asset health on Life Cycle Costs is a compelling need. This paper proposes the incorporation
of a factor that reflects the projected behavior of an asset’s health index into its corresponding
Life Cycle Costing (LCC) model. This allows cost estimates to be made more realistic and LCC
models to be operated more accurately. As a way of validating this proposal, a case study is shown.
The methodology proposed in this case study was applied in a real case, considering an LNG facility
located in central Chile. In addition, sensitivity studies and comparisons with the results obtained by
a traditional Life Cycle Costing model are included. The results show the usefulness of incorporating
asset health aspects into the Life Cycle Costing of physical assets.

Keywords: assets health; Life Cycle Costing; reliability

1. Introduction

The concept of value has been extensively underlined in the Asset Management literature in
recent years. Since the approval of ISO 55000 [1,2], which indicates the permanent need for value
determination by organizations, it has become imperative to use a life cycle management approach for
value generation and to establish decision-making processes that are in line with management needs
and organizational objectives.

The Economic Engineering methodology known as Life Cycle Costing (LCC), is used especially
as a framework to determine the impact of a number of decisions and processes of a physical asset
over its useful life [3–5]. This technique allows the estimation of the total costs associated with the
ownership and operation of an asset during its expected life. Usually, LCC models consider as cost
elements the initial investment [6], preventive maintenance costs, major maintenance costs, operating
costs, projected costs associated with failure events and disposal costs.

Traditionally, different methods have been used to estimate the costs and impacts associated
with failure events. However, this is one of the aspects of the assessment with the greatest levels
of uncertainty regarding the probability of occurrence of different failure events and the partial or
insufficient knowledge about the behavior of the degradation processes. There is also not much
information on how much equipment care affects its failure rate. To estimate the occurrence of
failure events of an asset, different models have been developed to capture the behavior of the failure
rate. For such estimation, information provided by manufacturers, the experience of the operator
and failure records are usually used. The characteristic or attribute of an asset on which the most
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accurate estimates of failure rates are based is reliability. Reliability is defined as the ability of an
asset to perform its intended functions and remain within the limits of the given operating conditions
for a given time interval. The reliability analysis process seeks to represent mathematically the
occurrences of failure events using different probabilistic distribution models, such as exponential
distribution, generally applied to electrical systems, or Weibull distribution, generally applied to
rotating machines and wear processes. However, when such distributions are obtained, and when
they are incorporated into the Life Cycle Cost estimation models, relevant information on the health
of the assets is not available. Furthermore, these models do not observe how health is affected
by specific environmental and operational variables of the equipment under analysis. The use of
asset health and composite risk indexes presents an excellent opportunity for asset management [7].
By including findings from preventive maintenance actions as well as information collected on the
condition of equipment, such indexes are incorporated as a risk factor into investment decision-making
processes and maintenance strategies definitions and, more generally, into asset management as a
value generator [8]. Subsequently, in 2006, Hjartarson and Otal [9] suggested the use of these indices to
predict and take into account the impacts of preventive maintenance on health indices in order to be
able to foresee the future state of assets based on the current health index and maintenance practices.

More recently, some authors have made efforts to define asset health indices. In the proposal of
De la Fuente et al. [10] and a subsequent case study [11], we have seen an adaptation of the report
proposed by UK DNO [12] for the calculation of an asset health index that considers a large part of
the factors and variables mentioned in the previous paragraph. A relevant aspect of obtaining these
indices is the uncertainty that exists during the process of estimation of the values of the factors that
affect the asset health. Choudhary et al. (2018) [13] use fuzzy values and logical decision rules to
estimate a health index based on information from diagnostic tests on electricity generators. On the
other hand, Nurcahyanto et al. [14], proposed the use of Neural Networks to predict the behavior of an
asset health index and estimate the life of an asset.

To evaluate the costs associated with the ownership of a system of physical assets, there is a
set of procedures that are grouped into the so-called Life Cycle Costing. The computation of Life
Cycle Costs (defined as a series of states through which an element passes from its conception to
its elimination) [15,16] is intended to support different types of analysis based on the behavior of
all the costs that can be attributed to an asset throughout its useful life. These costs correspond to
two main categories: capital expenditures (CAPEX) and operational expenditures (OPEX). The early
implementation of costing techniques allows for early assessment of potential design problems and
quantification of cost impacts throughout the life cycle of industrial assets [17]. Other definitions of
Life Cycle Costing include the following:

1. Woodhouse [18] states that Life Cycle Cost Analysis is a systematic process of technical-economic
evaluation. Through such a process, it is possible to select and decide the moment of replacement
of any physical asset in production systems. In addition, LCC assesses the impact of all the costs
throughout the useful life in physical asset management.

2. UNE 60300-3-3 established that Life Cycle Cost Analysis is a technique or tool with which it is
possible to make cost estimates over a certain period of time. For this purpose, the initial capital
costs, future operating costs and the calculation of replacement costs over a lifetime are taken
into account.

Crespo et al. [19] provide clear definitions of the life of an asset and the life cycle of an asset.
In addition, they list a number of terms that have been commonly used in different industries to
represent the set of management decisions that involve costs over the entire useful life of an asset.
This is how they mention terms such as TCO (Total Cost of Ownership) [20], LCC (Life Cycle Cost),
WLC (Whole Life Cost), and COO (Cost of Ownership) [21] and incorporate the concepts of TVO (Total
Value of Ownership) and WLV (Whole Life Value) [22], two terms that come from the comparative
analysis to support IT investment decisions. All of those concepts have been used to support decisions
that consider the values (benefits and costs) delivered across the complete life of an asset.
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The LCC of a physical asset corresponds to the present value of the total cost (TOTEX) over
its useful life. As discussed above, the most important factors in LCC include the initial capital
cost (CAPEX), operating and maintenance costs (OPEX) and disposal costs at the end of the assets’
useful life [23,24]. According to [23], recent approaches to maintenance management decision-making
are not fully able to take into account future technological changes and complex and time-sensitive
environmental issues. On the other hand, the imperfect model of preventive maintenance assumes
that the state of the system is at some point between “as good as new” and “as bad as old” after
maintenance actions. Consequently, the degree of effectiveness of such actions will influence the
reliability aspects of the equipment in the forthcoming periods [24]. Moreover, aspects related to the
management of critical spare parts, mainly those related to high capital and ownership costs, should
be present in Life Cycle Costing models [25]. Therefore, there is a knowledge gap in integrating
factors such as maintenance activities (including overhauls), maintenance logistics, environmental
performance, risk and time-sensitivity effects to encourage dynamic asset management decisions.

According to Woodward [26], the design of LCC models should be complemented by sound
information management and appropriate statistical techniques to forecast future costs of ownership.
Roda et al. [27] argue that methods that adopt ex-ante estimation for Life Cycle Costs are the most
appropriate, especially those based on next-event simulation mechanisms. In order to improve the
accuracy of cost estimation, more recently, various costing techniques have been used to determine
future costs of ownership, such as those based on Activity-Based Costing (ABC) [28,29].

Conventional LCC methods present two major disadvantages: they do not incorporate a realistic
representation of the future behavior of the failure rate, and they treat the costs associated with
operation and maintenance activities in an excessively approximate manner. According to [30], most of
the reported cases of LCC application were far from ideal. Compared with the methods suggested in
the literature, many of the case studies and applications covered fewer periods of the total life cycle,
used expert judgment-based costing methods rather than statistical methods and obtained or estimated
much less detailed cost information. In addition, such studies relied on deterministic estimates of Life
Cycle Costs rather than using sensitivity analysis.

For this reason, this paper proposes a methodology for calculating Life Cycle Cost Analysis that
incorporates aspects of reliability and the health of physical assets. This methodology is intended
to be a tool that allows for a more precise quantification of the amount of degradation of an asset
over time and the influence that this causes on the failure mechanisms. In this way, it is possible to
mathematically relate the failure rate to the condition of the asset, and finally, to the Life Cycle Costs.

The remainder of this paper is divided into four sections: Section 2 presents the proposed
methodology, Section 3 shows a case study of the application of the proposed methodology. In Section 4,
a sensitivity analysis is provided. To validate the application of the proposed model, a comparison
with a traditional model is presented in Section 5. Finally, conclusions, limitations and further research
avenues are discussed in Section 6.

2. Methodology

The fundamental approach to Life Cycle Costing applied in this work is based on the formulation
made by the Woodward model [26]. This model, in summary, proposes the following procedure:
identification of failure types (critical), determination of the main cost elements, estimating the
frequencies of occurrence of critical failure modes and calculating and expressing the sum of all costs
in present value. The equation of Life Cycle Costs of a physical asset is given by:

LCCP =
T∑

t=1

[IC + OC + PMC + TFC + MMC−RV] (1)

where LCCP is the Total Life Cycle Costs in present value, for a discount rate (i) and in an expected
lifetime (T); IC is the Initial acquisition and installation cost in present value; OC is the operating costs
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in present value; PMC is the preventive maintenance costs in present value; TFC is the Total failure
costs in present value; MMC is the major maintenance costs in present value; RV is the residual value of
the asset at the end of its useful life in present value; T is the period of time in years. The cost elements
considered in Equation (1) are obtained by the following equations:

Operational costs in present value:

OCP = OC(t)·PF (i, t) (2)

where PF (i, t) is the Single Present Value Factor, and, i is the Discount rate (%).
Preventive maintenance costs in present value:

PMCP = PMC(t)·PF (i, t) (3)

Total costs due to failures in period t:

CPFt =
F∑

f=1

[
δi·C f

] [
$

year

]
(4)

where δi is the failure mode i frequency units (failures/time). Cf is the cost of failure f.

TFCP = CPF(t)·PF (i, t) (5)

The expression TFCP represents the amount of money, in present value, that is needed to be able
to cover the annual expenses expected from failures during T years.

Major maintenance cost in present value:

MMCP = MMC(t)·PF (i, t) (6)

The asset health index is represented as a dimensionless number between 0.5 (when the asset
condition or state is new) and 10 (when the condition of the equipment corresponds to the end of its
useful life). Calculating the health index of an asset and projecting it over time allows us to estimate
the speed with which it deteriorates and project at what point it is close to the end of its useful life.

In order to effectively apply this methodology to any specific asset, it is important to determine
which operational and reliability modifiers will affect the health of the asset. In addition, failure modes,
operation and maintenance history, among others, should be considered. The first step of this
methodology is intended for the estimation of the life of the asset, taking into account location factors
and operating load factors. The location factors (FL) consider aspects related to distance from the coast
band, atmospheric conditions, etc. The Load Factor (FLD) is defined by the relationship between the
load of the equipment at its expected operating point (or warranty point) according to the characteristics
of the installation where it is located and the maximum load it could be exposed to. The estimated life
of the asset corresponds to the quotient of the estimated normal life, which generally comes from the
information provided by the manufacturer. This information is eventually adjusted on the basis of the
experience of the company’s technical management and the product of the load and location factors.
The second stage of the procedure for obtaining the health index corresponds to the calculation of the
rate of the aging of the asset, which is determined by the following equation:

Φ =
ln

(
HI estimated li f e

HInew

)
Estimated Li f e

(7)

where Φ is the rate of aging of the asset; HInew = 0.5 is the health index value corresponding to a
new asset; HIestimated life = 5.5 is the health index value corresponding to an asset that has reached its
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estimated lifetime. The third phase of the procedure consists of obtaining the initial health index (HIi).
This dimensionless number, which is between 0.5 and 10, is determined by using the following equation:

HIi(t) = HInew·eΦ·t (8)

Subsequently, the current health index is obtained (HIC). The Current Health Index is the result of
the application of the different modifiers that mathematically reflect the evidence of deterioration or
wear and tear on the asset. The modifiers are classified into three categories: health, reliability and
load. The Current Health Index equation is:

HIC(t) = HInew·e
Φ·t

ML(t) ·MH(t)·MR(t) (9)

where HIC(t) is the Current Health Index for each age t of the asset; MH is the Health Modifier for each
age t of the asset; MR is the reliability modifier for each t age of the asset; ML is the load modifier for
each age t of the asset. Equation (10) shows how to determine the value of the Health Modifier (MH(t)):

MH(t) =
H∏

h=1

MHh(t) (10)

where MHh(t) are the values of different Health Modifiers h for each age t, and i corresponds to
the indices for different Health Modifiers. Equation (11) shows how to determine the value of the
Reliability Modifier (MR(t)):

MR(t) =
R∏

r=1

MRr(t) (11)

where r = 1, . . . , R are the indices for different reliability modifiers. MRr(t) is the value of different
reliability modifiers r for each age t. Therefore, the actual health index of an asset will be determined
by its operating conditions, its level of deterioration and its reliability performance. As the objective is
to include the health status of the asset(s) in the Life Cycle Cost calculations, the behavior of each of
these factors must be predicted in each period of the assessment for the calculation of its corresponding
Health Index. For more details regarding the nature of the modifiers, we suggest [12,31].

As a way of integrating the health index calculation model and the Life Cycle Costing model,
the use of the k-factor is proposed. With the incorporation of this factor, the objective is to impact the
failure rate associated with the physical asset with the real state of its health.

Usually, the parameters that allow for projecting future behavior of the failure rate are obtained from
a historical record or benchmark reliability data, or they come from Original Equipment Manufacturer’s
databases considering generic behaviors of similar equipment [32]. Therefore, these parameters hardly
consider the real impact of the state of health indices and the factors and modifiers that define them.

The hypothesis is that the initial health index only allows, as its name indicates, to continue
projecting the initial state of health of the asset. In this way, the future failure rate, depending on this
situation, will be impacted by the one initially observed. However, adjusting the values of the projected
failure rates by a multiplication factor that denotes the relationship of proportionality between the
initial health index and the actual health index will give a more realistic representation of the failure
rate in each of the future periods. This will enable consideration to be given, over any period of time,
to the specific behavior of the factors and modifiers included in obtaining them.

Thus, the Health Correction Factor k represents the relationship between the Initial Health Index
of an asset with an estimated normal Life, a Location and Load Factor, inherent to its technical position
and the Health Index of the same asset, affected by the real condition of the equipment, reflected
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according to the value of each of its modifiers in time. The k-factor is the quotient between the Current
Health Index HIC and the Initial Current Health Index HIi and is given by the following equation:

k(t) =
HIC(t)
HIi (t)

(12)

where HIi(t) is the Initial Current Health Index for each age of the asset, and HIC(t) is the Current
Health Index for every age of the asset.

The change that may occur in each of the modifiers affecting the health of the asset under study
will be recorded and reflected in its Current Health Index (HIC). External factors, inherent to its
technical location, its average load and the number of hours worked may vary.

The Health Correction Factor (k) translates the semi-quantitative information obtained from
the Health Index of an asset and proportionally adjusts the failure rate of the asset. This factor is a
non-dimensional number that represents the amount of real deterioration or wear and tear of the
asset in each period of time in relation to its initial theoretical condition. The k-value increases as the
health of the equipment deteriorates, or in other words, the more the current (expected) health of the
equipment deviates from its initial expected condition.

Then, the predicted failure rate for each period is corrected by the Health Correction Factor k.
With this, it is possible to consider any expected variation in the condition of the asset and reflect it in
the failure rate. Thus, the failure rate, λ, is corrected according to the following equation:

λ j = k j·λinitial j (13)

where k j is the Health Correction Factor k for each age of the asset, and λinitial j is the failure rate λ for
each age of the asset, according to its reliability parameters and the operation hours.

λ(t) =
β·t(β−1)

ηβ
(14)

where t is the time; η is the scale parameter, characteristic life (Weibull distribution for reliability); and β
corresponds to the shape parameter (Weibull distribution for reliability).

Making all the substitutions, the corrected version of the equation of the Life Cycle Cost of an
asset is presented below. This equation incorporates aspects of Asset Health as a basis for estimating
Reliability costs:

LCC (P) = IC+
T∑

t=1

[
OC·(1 + ir)(t−1)

·
1

(1+i)t

]
+

T∑
t=1

[
PMC·(1 + ir)(t−1)

·
1

(1+i)t

]
+

T∑
t=1

 12∑
j=1

[
λ jt·k jt· t jt

]
·C f

·(1 + ir)(t−1)
·

(
1

(1+i)t

)
+

T∑
t=1

[
MMC·(1 + ir)(t−1)

·

(
1

(1+i)t

)]
−

[
RV·

(
1

(1+i)T

)]
(15)

where LCC (P) represents the amount of money in present value required to meet all operating expenses
of an asset over T years; Cf is the amount of money associated to solve a failure event; λ jt= failure rate
of the equipment in month j and year t; k jt corresponds to the value of the k factor for month j and
year t; t jk represents the time of operation of the equipment in the month j and the year t; j = 1, . . . ,
12 = months counter. t =1, . . . , T corresponds to the years counter; ir represents the inflation rate in
%/year. It should be noted that the term in Equation (15) that contains the major maintenance cost
(MMC) should be accounted for only in the periods in which the asset overhaul is executed.
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3. Case Study

To illustrate and validate the proposed model, it was applied to calculate the corrected Life Cycle
Cost of a compressor installed in a gasification plant. In the normal operation of the plant’s tanks,
LNG vapor, called BOG (boil off gas), is produced from the evaporation of a percentage of the liquefied
natural gas by the heat absorption of the system. In pipes and other secondary equipment, BOG is
also generated in a smaller percentage. When pressure increases due to expansion, a collecting system
takes them back to the LNG tanks. To control the pressure in the tanks, as a result of the generation
of BOG, the design of the plant considered contention compressors to subsequently send the vapors
to the recondenser for recovery by cooling, transforming it back into LNG. During the process of
unloading a vessel, it is necessary to send back vapors in order to compensate pressure differences.
For this purpose, an unloading centrifugal compressor is used to recover BOG from the tanks and send
it to both the recondenser and the vessel.

If during the discharge process the plant emission is low, the discharge compressor compresses
BOG that cannot be completely recondensated as there is not enough LNG available for heat exchange
in the recondenser. For this scenario, a pipeline compressor is used to take the BOG that is not going to
be recondensed, compress it to pipeline pressure and inject it directly into the pipeline. The main data
of the equipment are:

• Type: reciprocal, two-stage, double action
• Estimated normal life (hours) 9000
• Warranty point load (kW) 564
• Maximum load rating (kW) 690
• Annual usage (hours) ~4380

The following paragraphs describe the steps to obtain the health factors and modifiers, and the
respective Health Indices, in order to compute the projected values of k. To calculate the estimated life,
the Location Factor (FL) of the equipment was determined according to the characteristics inherent to
its functional placement. The values of each of the location factors are summarized in Tables 1–5:

Table 1. Values for the distance from coast band factor (Fdc).

Distance from Coast Band Fdc

0 km–1 km 1.2
1 km–5 km 1.15

5 km–10 km 1.1
10 km–20 km 1.05

>20 km 1.0

Table 2. Values for exposure location (Fexp).

Position Fexp

Indoors 1.2
Outdoors 1.0

Table 3. Values for the average annual temperature factors (Ft).

Temperature (◦C) Ft

0–10 1.0
10–20 1.05
20–30 1.1
>30 1.15
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Table 4. Values for height above sea level factors (Fhsl).

Height above the Sea Level Fhsl

0–500 m 1.0
500–1000 m 1.1
1000–2000 m 1.2

>2000 m 1.3
>20 km 1.0

Table 5. Values for exposition to aggressive agents’ factors (Fag).

Level of Exposition Fag

No exposition 1.0
Exposition to one external agent 1.2

Exposition to more than one external agent 1.4

The compressor is located in a plant in Central Chile, approximately four hundred meters from
the sea. This region presents a highly corrosive atmosphere, where the average annual temperature is
approximately 20 ◦C. The equipment is located under an open shed. Considering all of those aspects,
it is estimated that the LF value will take the average value of 1.1. The values of each of the location
factors are summarized in Table 6. Since the equipment is located outdoors, the value of the Location
Factor (SF) is calculated according to Equation (15).

Table 6. Summary of Location Factor Values.

N◦ Category Factor Valor

1 Distance from coast band Fdc 1.2
2 Exposure Fexp 1.1
3 Average temperature Ft 1.05
4 Height above sea level Fhsl 1

5 Level of exposition to
aggressive factors (corrosive) Fag 1.2

Then the value of the Location Factor (FL) is calculated according to Equation (16):

FL = max
(
Fdc, Fexp, Ft, Fhsl, Fag

)
= 1.2 (16)

The Load Factor (FLD) is calculated through Equation (17), according to the load at the warranty
point and the maximum allowable load of the equipment:

FLD =
Load at the warranty point
Maximum allowable load

=
564
690

= 0.817 (17)

Finally, the estimated life of the compressor is calculated by Equation (18):

Estimated Li f e =
Normal Estimated Li f e

FL·FLD
=

9000
1.2 ∗ 0.817

= 9175.5 [h] (18)

Equation (19) is used to calculate the aging rate of the equipment:

Φ =
ln

(
5.5
0.5

)
9175.5

= 0.0002613 (19)

To obtain the Compressor Health Index, it was necessary to carry out a vast study of all the
characteristics of its critical components and the outstanding aspects in its operation. In addition,
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information was collected from analyses, evaluations and maintenance actions carried out from a
condition-based maintenance work program designed specifically for the equipment. All the failure
modes were also reviewed with the objective of designing Health Modifiers and Reliability Modifiers
that could accurately represent the real deterioration processes or states of the equipment. This analysis
and the resulting choices were made on the basis of ISO 17359:2003 standard.

The ISO 17359:2003 standard shed light and provided guidance for the selection of condition
monitoring and diagnosis techniques to be applied to the equipment. It is the primary standard
of a body of documents that covers the domain of a condition monitoring program. It provides
overall routines to be considered when establishing a condition-based maintenance, and it prescribes
condition monitoring activities towards the identification of the root cause of failure modes describing
the generic approach to establishing alarm criteria to perform an efficient diagnosis and prognosis in
critical equipment.

The following describes each of the Health Modifiers that were selected to be applied in the
calculation of the Health Index for the compressor under study:

• Thermography: Thermography is a technique that allows precise observation of the temperature
of a surface without any contact with it. In this case, this procedure is applied to equipment
in order to detect hot spots, indicating places where there could be excessive friction, bearing
damage and/or potential short circuits (ISO 18434-1 2008).

• Coolant leakage: The second compression stage of the equipment is refrigerated. Refrigerant leaks
can reduce the ability to extract heat from the equipment, leading to early damage in components
such as the piston, casing and the intake and exhaust valves.

• Lubricant leaks: Lubricant losses can be caused by the deterioration or poor condition of the
following elements: O-rings at the ends of the crankshaft, pressure and sealing rings, grooves in
the crankshaft, oil scraper rings and piston rod, among others.

• Number of start-ups: As the compressor is a large-scale rotary machine, each start-up involves
removing all the components from their rest and overcoming the total inertia of the equipment.
Each single start involves stress wear on the equipment components, such as electric motor,
crankshaft, connecting rods, crossheads and bearings.

• Vibrations: Excessive vibrations can damage the mechanical components of the equipment.
This manifestation can indicate the bad assembly of some component, the loosening of connections
or the deterioration of parts, such as bearings of the crankshaft and/or connecting rod, crosshead
pin, piston gripping, breakage or inadequate clearance of the admission and/or exhaust valves
(ISO 20816:1:2016 [33]).

• Oil analysis: This is a procedure applied to the lubricant used in the equipment to control its
condition, as well as, to indirectly establish the condition of the internal components by measuring
the amount of wear metals present in the oil, possible contamination and particle counting,
among others (ISO 14830:1:2019 [34]).

As previously mentioned, Health Modifiers manifest different aspects of the condition of the asset;
therefore, it is necessary to ponder the impact of each one on the Health Index. The different possible
degradation scenarios must also be determined. These should be reflected in the values defined for
each modifier. Tables 7 and 8 show the possible values of the selected Health Modifiers:
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Table 7. Health Modifiers.

Category No Evidence >Normal >Max. Value
Thermography 1 1.1 1.2

Category <40 40–80 >80–120 >120
Number of start ups 1 1.1 1.15 1.2

Category Good Emergent Alert Dangerous
Vibrations 1 1.1 1.2 1.25

Category No leakage Few Excessive
Lubricant leaks 1 1.05 1.1
Coolant leaks 1 1.05 1.1

Category Satisfactory Emergent No satisfactory
Lubricant analysis 1 1.2 1.3

Table 8. Reliability Modifiers.

Category 0–3 4–5 >5
Number of overhauls 1 1.05 1.1

Category 0–50% 50–75% 75–100%
% de inactivity 1 1.05 1.1

Category In the average Below average Above average
Reliability w/r to the average 1 1.05 1

The Reliability Modifier values applied to the calculation of the equipment health index are
summarized in Table 8:

Once the values of the Health and Reliability Modifiers had been defined, it was possible to
calculate the Current Health Index of the equipment. For this purpose, the following assumptions
were considered:

• It is considered that the equipment works approximately 9500 h in a period of two years.
• The equipment begins to operate after an overhaul; therefore, it is assumed that the state of the

equipment will be “as good as new”, consequently, all modifiers start from the value “1”.
• Each age recorded represents one calendar month of operation of the equipment, i.e., the change

in each of the modifiers will be recorded monthly and the value of the variable “time” corresponds
to the accumulated hours worked monthly.

• It was assumed that the Modifiers Vibration, Lubricant and Coolant Leakage worsen over time,
while the Modifiers Thermography, Number of Start-Ups and Oil Analysis were based on the
collected history, replicating their past behavior into the future.

• The Reliability Modifier: Percentage of Inactivity was calculated according to the historical
data collected.

• The Load Modifier was calculated based on the average load recorded and obtained from the
data collected.

The Current Health Index is calculated according to Equation (9), and the time variable (t)
corresponds to the elapsed time registered by the company since the first start-up of the equipment after
an overhaul. As mentioned above, each age recorded corresponds to one calendar month of operation,
counting the working hours until the end of its life cycle, i.e., until the compressor is again put out of
service to overhaul. Figure 1 shows a cognitive map that depicts the influence of the various factors
affecting the life of an asset: the arrows labeled with a positive sign indicate a direct relationship—i.e.,
as the factor increases, the index will increase—while those arrows labeled with a “-“ indicate an
inverse influence relationship—i.e., as the factor increases, the index will tend to decrease or vice versa.
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Table 9. Weibull parameters of the Compressor.

Item Infant Mortality Useful life Aging

Range (h) 0–1000 1000–6000 >6000
η 1068 7680 1806
β 0.9 1 1.1

To calculate the corrected failure rate, the Health Correction Factor (k) value was determined
for each age of the equipment as described in Equation (10). The corrected failure rate (λ*k) was
determined for each age of the equipment with Equation (11). Table 10 shows the values obtained for
the Correction Factor (k) and the corrected failure rate (λ*k) for an equipment life cycle, i.e., twenty-four
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months of operation. The remainder of the LCC computation process is shown in the next section that
addresses the sensitivity analysis.

Table 10. k-factor and corrected failure rate λ*k values.

Age (Months) HIi HI k λ

(per h)
λ*k

(per h)

January-16 0.54 0.62 1.16 0.000962 0.001112
February-16 0.59 0.65 1.10 0.000889 0.000975

March-16 0.67 0.72 1.08 0.000130 0.000140
Aprol-16 0.80 1.02 1.29 0.000130 0.000168
May-16 0.91 1.16 1.27 0.000130 0.000165
June-16 0.99 1.28 1.30 0.000130 0.000169
July-16 1.07 1.23 1.16 0.000130 0.000151

August-16 1.19 1.33 1.12 0.000130 0.000146
September-16 1.32 1.43 1.09 0.000130 0.000142

October-16 1.40 1.68 1.20 0.000130 0.000157
November-16 1.60 1.88 1.18 0.000130 0.000153
December-16 1.83 2.25 1.23 0.000130 0.000161
January-17 1.99 2.53 1.27 0.000130 0.000165

February-17 2.16 3.06 1.42 0.000130 0.000185
March-17 2.40 3.11 1.29 0.000687 0.000889
April-17 2.76 3.46 1.25 0.000693 0.000868
May-17 3.06 3.68 1.20 0.000697 0.000837
June-17 3.43 4.33 1.26 0.000701 0.000884
July-17 3.61 4.98 1.38 0.000703 0.000968

August-17 4.07 5.09 1.25 0.000707 0.000884
September-17 4.50 5.34 1.19 0.000710 0.000843

October-17 4.96 7.39 1.49 0.000713 0.001063
November-17 5.62 8.80 1.57 0.000717 0.001124
December-17 5.96 9.98 1.67 0.000719 0.001204

4. Sensitivity Analysis

The purpose of this section is to validate the LCC model by considering the behavior of the OPEX
associated with the operation of the asset over a period of 10 years. For this purpose, and based on the
failure rate corrected by the Health Index expressed through the k factor, the costs associated with the
Reliability were estimated.

Six hypotheses were put forward for evaluation. With these hypotheses, the aim is to measure the
behavior in the total costs due to failures, varying the criteria for carrying out an overhaul. In addition,
the case of a simpler (less expensive) and imperfect (not leaving the equipment as good as new)
overhaul was also considered. The hypotheses are described below:

Hypothesis 1. Base case: The overhaul is executed every 9500 operating hours. It returns the equipment to
as-good-as-new condition.

Hypothesis 2. The overhaul is executed every 9500 operating hours. The overhaul is less expensive, but less
efficient, and the equipment does not return to its as-good-as-new condition.

Hypothesis 3. An overhaul is performed when HI = 5.5.

Hypothesis 4. An overhaul is performed when HI = 4.0.

Hypothesis 5. An overhaul (cheaper) is performed when HI = 5.5. The overhaul returns the assets to a condition
less-than-as-new.
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Hypothesis 6. An overhaul is performed when HI = 4.0. The overhaul is cheaper, but less effective; that is,
the equipment does not return to its as-good-as-new condition.

Using Equation (13), the number of failures for each age of the equipment was estimated according
to the number of operating hours at each corresponding age, and finally, through Equation (11),
the number of annual failures was estimated. Table 11 shows the calculated values.

Table 11. Obtention of the annual failure rate.

(Year) (Month) (Failures/Hour) (Hours) (Failure/Month) (Failure/Year)

2016 January-16 0.001112 284 0.32

1.32 *

2016 February-16 0.000975 342 0.33
2016 March-16 0.000140 466 0.07
2016 April-16 0.000168 686 0.12
2016 May-16 0.000165 517 0.09
2016 June-16 0.000169 318 0.05
2016 July-16 0.000151 281 0.04
2016 August-16 0.000146 410 0.06
2016 September-16 0.000142 397 0.06
2016 October-16 0.000157 240 0.04
2016 November-16 0.000153 499 0.08
2016 December-16 0.000161 517 0.08

2017 January-17 0.000165 332 0.05

3.77 *

2017 February-17 0.000185 306 0.06
2017 March-17 0.000889 410 0.36
2017 April-17 0.000868 533 0.46
2017 May-17 0.000837 399 0.33
2017 June-17 0.000884 434 0.38
2017 July-17 0.000968 196 0.19
2017 August-17 0.000884 456 0.40
2017 September-17 0.000843 383 0.32
2017 October-17 0.001063 371 0.39
2017 November-17 0.001124 478 0.54
2017 December-17 0.001204 219 0.26

* The number of annual failures obtained was rounded up to the nearest integer.

Table 12 summarizes the cost values used to perform a Life Cycle Cost Analysis of the equipment.

Table 12. Compressor’s Operating costs.

Category US$

Annualized operational cost $224.935
Annualized Preventive maint. cost $5180

Overhaul cost $20,000
Failure cost $2000

To perform a compressor Life Cycle Cost calculation, a cash flow structure was used in which
costs were corrected annually by using an inflation rate. Each of the cost categories must be expressed
in present value. In order to compare the obtained results, an analysis of the operational costs (OPEX)
of each hypothesis was carried out. Table 13 shows the present value (PV) of the operational costs for
each case.
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Table 13. Calculation of annual failures costs.

N◦ Hypotheses Total Number of Failures N◦ Overhauls CTPF (USD) PV (USD)

1 Basic Case 25 5 $26,906 $1,360,097
2 Cheap Overhaul 45 5 $48,554 $1,355,451
3 Overhaul at HI = 5.5 20 5 $22,102 $1,356,981
4 Overhaul at HI = 4.0 19 7 $16,140 $1,369,180
5 HI = 5.5 and cheap overhaul 20 8 $22,815 $1,345,885
6 HI = 4.0 and cheap overhaul 20 9 $22,260 $1,349,818

In the plant under analysis, the compressors are considered as medium critical because the
occurrence of failures does not affect the operational continuity of the plant. Therefore, the cost
associated with failure events does not include penalties for production unavailability or downtime.
Thus, the cost per failure will be associated only with the labor costs of the repair, having consequently
a low impact on the total economic calculation. It is based on the aforementioned that the result of
Hypothesis 2 can be explained: although the failure rate increases significantly and the number of
total failures is almost double of that of the base case, the results are similar. This is because the cost
associated with such failures does not exceed the amount of money saved by performing cheaper and
less effective overhaul procedures.

Hypothesis 4 gives the highest present value of costs. In this case, by advancing the overhaul,
a lower number of failures is estimated; that is, six failures less than the theoretical base case. However,
the amount of additional money that will be spent on overhauls is much greater than the money saved
due to the lower number of fault events.

Considering Hypothesis No. 3, by anticipating the major maintenance (overhaul) the number of
total failures is reduced. However, since the value of failure costs does not have a great impact on the
total costs, a result very similar to the base case is obtained.

Hypothesis No. 5 and No. 6 show the lowest values, which is explained by the fact that in both
cases the failure rate and consequently the total number of failures is reduced. As the overhaul is
considerably advanced, in both hypotheses, the equipment does not reach its aging period and the
failure rate will increase only during a short period of infant mortality after each overhaul. Although
both hypotheses have a high number of overhauls, the costs associated with these will be lower than
the theoretical case because they are less expensive.

5. Comparison with Traditional Model

To demonstrate the impact of failure events on total Life Cycle Costs, it is proposed to compare
the results of two of the previously proposed hypotheses with those obtained using a traditional Life
Cycle Costing model. Details of each case are described below:

• Case A: Life Cycle Cost Analysis considering a constant failure rate and a Weibull Distribution.
The failure frequency function λ is defined by the mean time between failures (MTBF). The required
data for this estimation were provided by the organization.

• Case B: Life Cycle Cost Analysis incorporating Asset Health aspects (basic case): costs are estimated
considering a variable failure rate based on the ratio of the amount of equipment deterioration to
the initial condition, which is quantified by its HI health index. In this case, the overhaul criteria
and the quality of the overhaul will be based on data or assumptions provided by the organization.

• Case C: Life Cycle Cost Analysis incorporating Asset Health aspects (overhaul case cheaper and
less effective): costs are estimated from a variable failure rate based on the relationship of the
amount of equipment deterioration and initial condition, which is quantified by its HI health index.
In this case, the overhaul criterion is based on data or assumptions provided by the organization.
In addition, and as already mentioned, it is assumed that the overhaul procedure does not return
the equipment to its as-good-as-new condition.



Mathematics 2020, 8, 1787 15 of 18

Table 14 shows the number of failures per year during the assessment period for the three cases
under analysis. As mentioned above, the result of the traditional method uses a constant failure rate
over time. The other two cases show a two-year cyclical behavior of the failure rate, a time interval
that corresponds to the time between overhauls. The hypothesis of less expensive overhauls shows
a higher failure rate over time since in this case the model mimics higher degradation levels of the
equipment over time.

Table 14. Projected annual failures according to traditional method, base case and cheaper overhaul.

Year Case A Case B Case C

2016 1 1 2
2017 1 4 7
2018 1 1 2
2019 1 4 7
2020 1 1 2
2021 1 4 7
2022 1 1 2
2023 1 4 7
2024 1 1 2
2025 1 4 7
Total 10 25 45

Number of overhauls 5 5 5

Table 15 shows the annual costs considering the reliability behavior and the values adjusted
by the inflation rate for each case. In this case, by isolating the costs associated with failure events,
the impact of the reliability factor on the economic aspects of the life cycle of an asset can be appreciated.
Since the proposed mathematical model aims to incorporate the realistic behavior of the failure rate,
it considers the effect of deterioration, the existence of overhaul procedures, the load and operation
time. In addition, it takes into account the existence of periods of infant mortality and aging (aspects
that the traditional model does not consider). This can be considered a good approximation to achieve
a cost estimate with a more conservative view.

Table 15. Failure event costs.

Year Case A Case B Case C

2016 $2000 $2000 $4000
2017 $2060 $8240 $14,420
2018 $2122 $2122 $4244
2019 $2185 $8742 $15,298
2020 $2251 $2251 $4502
2021 $2319 $9274 $16,230
2022 $2388 $2388 $4776
2023 $2460 $9839 $17,218
2024 $2534 $2534 $5067
2025 $2610 $10,438 $18,267
Total $22,928 $57,828 $104,022

Figure 3 clearly shows the difference in costs due to low reliability for each year caused by the
variation in the failure rate, confirming the hypothesis stated above: by isolating the total costs due to
failures, it is possible to appreciate the effect caused by the deterioration processes, among other factors,
in the failure rate and consequently the difference in costs, despite the fact that, in this particular case,
the Life Cycle Cost is not greatly affected.
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6. Conclusions

This paper proposes and experiments with a Life Cycle Costing model based on the adaptation of
the Active Health Index methodology. This model is used as the basis for quantifying the deterioration
of a complex asset in order to relate its health to the failure rate. Thanks to this, the economic impact of
the reliability factor on the life of an asset can be quantified. With this methodology, it was possible to
compare and analyze the results obtained by simulating different possible scenarios.

According to the results obtained, it is demonstrated that the model proposed in this study allows
a good approximation of the trend of the failure rate based on the Health Index of an asset; in other
words, the amount of deterioration of the asset.

In the presented case study, it is shown that, from an economic point of view, the occurrence of
fault events does not have the same prominence in the final result as the quantity and quality of the
overhauls that are executed. However, in other cases, the occurrence of failure events could have an
important impact on the operation of the plant, since possible penalty costs could significantly increase
the costs of the failure.

A comparison of the proposed methodology with the traditional method of Life Cycle Costing
shows that in the traditional method, failure costs remains constant over the expected useful life,
which is considered a limitation in the traditional model. Therefore, the traditional method overlooks
important aspects that will affect the real situation and the occurrence of phenomena that influence it
(operations, preventive and corrective maintenance, quality of maintenance, etc.).

The methodology proposed in this study is a step forward in the development of Reliability
Engineering techniques and in the search for reducing the uncertainty, unawareness and lack of
analysis that generate a high cost to companies in the form of unforeseen failures during their operation.
The methodology can be applied during the normal operation as well as in design phases with
the objective of obtaining the maximum possible profitability in its decision-making and physical
asset management processes. One of the outstanding aspects of the methodology is its simplicity of
implementation, since it has been applied using a conventional spreadsheet, with the use of some code
macros to accomplish certain levels of automation of some processes.

Finally, the analysis of the results obtained in the calculations combined with the result of each
simulated scenario constitute a tool with which the company’s technical team can establish decisions
related to maintenance planning (preventive, inspections, overhauls, etc.), taking into account the
particular conditions of each asset, that is, the impact of each failure event, technical complexity,
criticality and maintainability of the equipment, among others.

When forecasting the future states of the Health Modifiers and factors, it incorporates uncertainty
into the values defined for each of them. The cognitive map is said to be an apparatus to express the
interinfluence of parameters and factors that characterize the dynamics of a system in a given domain.
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However, these maps have the disadvantage of not being able to handle incomplete or precarious
information to represent causal relationships between these parameters. In future works, we shall
propose the implementation of fuzzy cognitive maps to better handle the uncertainty or lack of defined
information about the states of certain modifiers or factors used to estimate health indices [35,36].

In the same direction, it is important to bear in mind that the model can be further enhanced by
incorporating Monte Carlo simulations to obtain more realistic results. This would require derivation
of probability distribution functions for the main cost elements included in the model based on the
analysis of existing data.
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