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Abstract: The present study aims to develop novel parametric solutions for the Prouhet Tarry Escott
problem of second degree with sizes 3, 4 and 5. During this investigation, new parametric representations
for integers as the sum of three, four and five perfect squares in two distinct ways are identified. Moreover,
a new proof for the non-existence of solutions of ideal Prouhet Tarry Escott problem with degree 3 and
size 2 is derived. The present work also derives a three parametric solution of ideal Prouhet Tarry Escott
problem of degree three and size two. The present study also aimed to discuss the Fibonacci-like pattern
in the solutions and finally obtained an upper bound for this new pattern.
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1. Introduction

The Diophantine problem endeavors a vast area for research in number theory because of its diversity
as well as its characteristic property of having immense ways to find the solutions. Thus, Diophantine
problems attract number theorists all the time. Some recent studies on Diophantine problems especially on
the generalization of Pell equations to higher degrees and the relationship of Diophantine equations with
the ring of algebraic integers can be seen in [1–4]. Another remarkable work in the field of Diophantine
equations is by Shang [5] in which a necessary condition of solvability of Diophantine equation Wn +

Xn + Yn = Zn over M2(Q) has been derived. The Prouhet Tarry Escott problem of size n and degree
k ((n, k)-PTE problem) focuses on determining two disjoint sets of integers, say, {xi}n

i=1 and {yi}n
i=1

where these two sets satisfy the Diophantine system ∑n
i=1 xk

i = ∑n
i=1 yk

i ; k = 1, 2, ...s. If s = n− 1, it is
called the ideal solutions and otherwise called non-ideal. It was Bastein who proved the impossibility
of {x1, x2, · · · , xn} =n {y1, y2, · · · , yn} where x′is do not form a permutation of y′is. He applied a result
from the elementary symmetric function which states that the two distinct sets of roots of a polynomial
equation of degree n have the same elementary symmetric functions [6]. Later, Tarry proved that the first
2n(2a + 1) integers can be split up into two equivalent classes each consists of 2n−1(2a + 1) integers where
the sum of the tth powers in one class will be equal to that of the second class for t = 1, 2, · · · , n. It is to be
noted that the system of equations ∑i ak

i = ∑i bk
i ; i, k = 1, 2, · · · , n is equivalent to the system ∑i ai = ∑i bi,

∑ a1a2 = ∑ b1b2, · · · , ∑ a1a2 · · · an = ∑ b1b2 · · · bn. Thus, the PTE problem can be reformulated as the
problem of detecting two polynomial equations of same degree such that both the equations have the
same integral roots and the first n coefficients are equal to each other [6].

Several works exists in evaluating the solutions of the PTE problem [7–19]. Choudhary [20,21] studied
PTE problem with the additional condition of equal product of integers and then established the complete
ideal solutions for the fourth degree case. Dickson [22] established a method for finding all integral
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solutions of the (3, 2) and (4, 2)-PTE problem. Later, Gopalan and Srikanth [23] found a general form of
parametric soluitons of non-ideal (4, 2)-PTE problem. The different approaches to the 2nd degree problem
and its related problems over finite field can be seen in [24,25]. Bolker et al. [26] first observed the relation
between the PTE problem and the Prouhet-Thue-Morse (PTM) sequence. Later, Nguyen [27] has derived
the solutions of general PTE problem by using the product generating formula for PTM sequence. Recently,
Srikanth and Veena [28] performed a detailed survey on the PTE problem and addressed the difficulties as
well as future directions of the problem systematically.

The PTE problem is the most general case of easier waring problem which concerns the integral
solutions of the equation n = xk

1 + xk
2 + · · · + xk

m. Ramanujan [29] provided the integral solutions of
the equation n = ax2

1 + bx2
2 + cx2

3 + dx2
4 for the given natural numbers a, b, c, d. Rabin and Shallit [30]

constructed a randomized polynomial-time algorithm for finding one representation of the given integer n
as n = x2

1 + x2
2 + x2

3 + x2
4. Elia [31] proved that the prime numbers can be proclaimed as the sum of four

squares. Recently, Borkovich and Jagy [32] discovered a new design for intgers as the sum of three squares.
In the present study, the authors aim to develop some new parametric forms of solutions of the (3, 2),

(4, 2) and (5, 2) PTE problems and also to study the Fibonacci like pattern in the solutions of non-ideal PTE
problem. In Section 2, a new proof for the non-existence of solutions of (3, 2)-PTE problem is presented.

2. On the Ideal PTE Problem

Theorem 1. The system of Diophantine equations ∑3
i=1 xi = ∑3

i=1 yi and ∑3
i=1 x2

i = ∑3
i=1 y2

i = 4a(8b + 7) has
no integer solutions.

Proof. Legendre [6] showed that for any positive integer m ∈ N , the set of all positive integers can be
exemplified as m = α2 + β2 + γ2 for some integers (α, β, γ) if and only if m 6= 4a(8b + 7) where a ∈ N and
b is any integer. Therefore, the equation x2

1 + x2
2 + x2

3 = 4a(8b + 7) has no integral solutions.

Lemma 1. A new parametric form of solutions of the (3, 2)-PTE problem is given by x1 = e1, x2 = e2, x3 =

k − e1 − e2, y1 = e3, y2 = e4, y3 = k − e3 − e4; where ei ∈ Z, the set of all integers for i = 1, · · · , 4,
and k =

(
∑4

i=1 ei

)
− e1e2−e3e4

(e1+e2)−(e3+e4)
∈ Z.

Proof. Let ∑3
i=1 xi = ∑3

i=1 yi = k. Take x1 = e1, x2 = e2 where e1 and e2 are any integers. Thus x3 =

k− e1 − e2. Similarly, if y1 = e3 and y2 = e4, then y3 = k− e3 − e4. Now, applying these values in second
degree equation it provides

2e2
1 + 2e2

2 + 2e1e2 − 2ke1 − 2ke2 = 2e2
3 + 2e2

4 + 2e3e4 − 2ke3 − 2ke4

e2
1 + e2

2 + e1e2 − e2
3 − e2

4 − e3e4 = k

(
2

∑
i=1

ei −
4

∑
i=3

ei

)
.

Therefore,

k =
e2

1 + e2
2 + e1e2 − e2

3 − e2
4 − e3e4(

∑2
i=1 ei

)
−
(

∑4
i=3 ei

)
=

(e1 + e2)
2 − e1e2 − [(e3 + e4)

2 − e3e4](
∑2

i=1 ei

)
−
(

∑4
i=3 ei

)
=

(e1 + e2)
2 − (e3 + e4)

2(
∑2

i=1 ei

)
−
(

∑4
i=3 ei

) − e1e2 − e3e4(
∑2

i=1 ei

)
−
(

∑4
i=3 ei

) .
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Now (e1 + e2)
2 − (e3 + e4)

2 is of the form a2 − b2 which is equal to (a + b)(a− b). Thus (e1 + e2)
2 −

(e3 + e4)
2 = (e1 + e2 + e3 + e4)(e1 + e2 − e3 − e4). Hence

k =
(e1 + e2 + e3 + e4)(e1 + e2 − e3 − e4)

e1 + e2 − e3 − e4
− e1e2 − e3e4

e1 + e2 − e3 − e4

=
(∑4

i=1 ei)(e1 + e2 − (e3 + e4))(
∑2

i=1 ei

)
−
(

∑4
i=3 ei

) − e1e2 − e3e4(
∑2

i=1 ei

)
−
(

∑4
i=3 ei

)
=

(
4

∑
i=1

ei

)
− e1e2 − e3e4(

∑2
i=1 ei

)
−
(

∑4
i=3 ei

) .

This proves the Lemma 1.

Lemma 2. All integral solutions of the relation xy−zw
(x+y)−(z+w)

∈ Z satisfy the following conditions

1. y = w + α1.
2. z = w− β1 + (β1 + α1)T,

where β1 is an integer, T = t−w
α1

, α1 is any divisor of t− w and t is an integer.

Proof. Consider the form xy−zw
(x+y)−(z+w)

. Let x = z + β1 and y = w + α1 where α1 and β1 are integers.
Then

xy− zw
(x + y)− (z + w)

=
(z + β1)(w + α1)− zw

z + β1 + w + α1 − z− w

=
zα1 + wβ1 + a1β1

β1 + α1

=
wβ1 + wα1 − wα1 + zβ1 + β1α1

β1 + α1

=
w(β1 + α1) + α1(z− w) + β1α1

β1 + α1

= w +
(α1(z− w + β1))

(β1 + α1)
.

It is clear that xy−zw
(x+y)−(z+w)

∈ Z if and only if k = xy−zw
(x+y)−(z+w)

∈ Z if and only if z = w − β1 +

(β1 + α1)T, where T = t−w
α1

, α1 is any divisor of t − w and β1 and w are any integers. Now, take z =

w− β1 + (β1 + α1)T, where t is any integer, α1 is any divisor of t and T = t−w
α1

. i.e.,

(α1(z− w + β1))

(β1 + α1)
=

w− β1 + (β1 + α1)T − w + β1

β1 + α1
α1

= Tα1

= t− w

Thus, we obtain xy−zw
(x+y)−(z+w)

= t. Hence the proof.

Replacing x by e1, y by e2, z by e3, w by e4 in Lemma 2 and combining the results of both Lemma 1
and Lemma 2, we obtain Theorem 2.
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Theorem 2. The parametric form x1 = e1, x2 = e2, x3 = k− e1 − e2, y1 = e3, y2 = e4 and y3 = k− e3 − e4,
where

1. ei; i = 1, · · · , 4 satisfy the relation e1e2−e3e4
(e1+e2)−(e3+e4)

∈ Z

2. k =
(

∑4
i=1 ei

)
− e1e2−e3e4

(∑2
i=1 ei)−(∑4

i=3 ei)
3. e2 = e4 + α1

4. e3 = e4 − β1 + (β1 + α1)T
5. T = t−e4

α1

6. e1 = e3 + β1

7. α1 and β1 are integers such that α1|(t− e4) where t is any interger

provides a new parametric form of the integral solutions of the (3, 2)-PTE problem.

Proof. By Lemma 1, the parametric form of all integral solutions of (3, 2)-PTE problem x1 = e1, x2 = e2,
x3 = k − e1 − e2, y1 = e3, y2 = e4, y3 = k − e3 − e4; where ei ∈ Z; i = 1, · · · , 4 and k =

(
∑4

i=1 ei

)
−

e1e2−e3e4
(e1+e2)−(e3+e4)

∈ Z. Thus, the proof completes immediately if we replace x, y, z and w by e1, e2, e3 and e4

respectively in Lemma 2.

Example 1. Let β1 = 7, t = 5 and e4 = 3. Then α1 be any divisor of 2. Take α1 = 1. Then we have e1 = 19,
e2 = 4, e3 = 12 and e4 = 33. So, x1 = e1 = 19, x2 = e2 = 4, x3 = k− e1− e2 = 10, y1 = e3 = 12, y2 = e4 = 3,
and y3 = k− e3 − e4 = 18. Thus we obtain solution sets as {19, 4, 10} and {12, 3, 18}.

Corollary 1. If we take e1 = e3 or e2 = e4 in Theorem 2, then the Diophantine system ∑3
i=1 xi = ∑3

i=1 yi and
∑3

i=1 x2
i = ∑3

i=1 y2
i does not posess any integral solutions.

Proof. Assume e1 = e3 in Theorem 2. Then, we get e1e2−e3e4
(e1+e2)−(e3+e4)

= 0 and β1 = 0. Thus the solutions
becomes x1 = t, x2 = e4 + α1, x3 = s4, y1 = t, y2 = e4 and y3 = e4 + α1 where t, e4 and α1 are any integers
with α1|(t− e4). i.e., we obtain solution sets as X = {t, e4 + α1, e4} and Y = {t, e4, e4 + α1} where X and Y
are not distinct as one is a permutation of other.

Theorems 3 and 4 also provide different forms of parametric solutions of (3, 2)-PTE problem in such a
way that Theorem 3 provides two parametric solutions and Theorem 4 provides three parametric solutions.

Theorem 3. A two parametric form of integral solutions of the Diophantine system ∑3
i=1 xi = ∑3

i=1 yi and
∑3

i=1 x2
i = ∑3

i=1 y2
i is given by x1 = t1, x2 = t2, x3 = 2t2 − t1 − 3, y1 = t1 + 1, y2 = 2t2 − t1 − 2 and

y3 = t2 − 2.

Proof. Let x1 = t1, x2 = t2, x3 = 2t2 − t1 − 3, y1 = t1 + 1, y2 = 2t2 − t1 − 2 and y3 = t2 − 2. Then,

x1 + x2 + x3 = t1 + t2 + 2t2 − t1 − 3 = 3t2 − 3.

Similarly,
y1 + y2 + y3 = t1 + 1 + 2t2 − t1 − 2 + t2 − 2 = 3t2 − 3.

Thus we obtain x1 + x2 + x3 = y1 + y2 + y3. Now, consider

x2
1 + x2

2 + x2
3 = t2

1 + t2
2 + (2t2 − t1 − 3)2

= 22
1 + 5t2

2 − 12t2 + 6t1 − 4t1t2 + 9
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and

y2
1 + y2

2 + y2
3 = (t1 + 1)2 + (2t2 − t1 − 2)2 + (t2 − 2)2

= 22
1 + 5t2

2 − 12t2 + 6t1 − 4t1t2 + 9.

Thus, we obtain x2
1 + x2

2 + x2
3 = y2

1 + y2
2 + y2

3. Hence the proof.

Example 2. Let t1 = 5 and t2 = −3 in Theorem 3. Then we have x1 = 5, x2 = −3, x3 = −14, y1 = 6, y2 = −13
and y3 = −5 where these x′is and y′is satisfy 5− 3− 14 = −12 = 6− 13− 5 and 52 + (−3)2 + (−14)2 =

62 + (−13)2 + (−5)2.

Theorem 4. A three parametric form of integral solutions of the Diophantine system ∑3
i=1 xi = ∑3

i=1 yi and
∑3

i=1 x2
i = ∑3

i=1 y2
i is given by x1 = 5t1, x2 = 6t3− t2− 4t1, x3 = 2t1− 3t3− 2t2, y1 = 5t3, y2 = 6t1− t2− 4t3

and y3 = 2t3 − 2t2 − 3t1 provided t1 − t3 6= 0.

Proof. Let ∑3
i=1 xi = ∑3

i=1 yi = p. Take x1 = 5t1. Then

x2 + x3 = p− 5t1. (1)

Let α and β be two constants such that

1× α− 1× β = 1. (2)

Then α = 2 and β = 1. Multiply (2) by p− 5t1. Then, we obtain

2(p− 5t1)− (p− 5t1) = p− 5t1. (3)

(1) and (3) gives [x2 − 2(p− 5t1)] + [x3 + (p− 5t1)] = 0. i.e.,

[x2 − 2(p− 5t1)− 5t2] + [x3 + (p− 5t1) + 5t2] = 0.

Thus we have
x2 = 2(p− 5t1) + 5t2

and
x3 = −(p− 5t1)− 5t2.

Similarly take y1 + y2 + y3 = p and y1 = 5t3. Then as in the previous case we obtain y1 = 5t3,
y2 = 2(p− 5t3) + 5t4 and y3 = −(p− 5t3)− 5t4. Now, apply these general values in the second degree
equation and simplifying we obtain

150t2
1 + 50t2

2 − 50pt1 + 30pt2 − 150t1t2 = 150t2
3 + 50t2

4 − 50pt3 + 30pt4 − 150t3t4.

Put t2 = t4. Then we have

150(t2
1 − t2

3)− 150t2(t1 − t3) = 50p(t1 − t3)

3(t1 + t3)− 3t2 = p; provided t1 − t3 6= 0

p = 3(t1 + t3 − t2).
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Hence x1 = 5t1, x2 = 6t3 − t2 − 4t1, x3 = 2t1 − 3t3 − 2t2, y1 = 5t3, y2 = 6t1 − t2 − 4t3 and
y3 = 2t3 − 2t2 − 3t1.

Example 3. Let t1 = 5, t3 = 10 and t2 = 0. Then t1 − t3 6= 0. So we obtain x1 = 25, x2 = 40, x3 = −20,
y1 = 50, y2 = −10, y3 = 5 where 25 + 40− 20 = 45 = 50− 10 + 5 and 252 + 402 + (−20)2 = 2625 =

502 + (−10)2 + 52.

According to Frolov [10], if {x1, x2, · · · , xn} =k {y1, y2, · · · , yn}, then {Mx1 +K, Mx2 +K, · · · , Mxn +

K} =k {My1 + K, My2 + K, · · · , Myn + K}. Thus by the repeated application of this, infinite number of
solutions can be generated.

Theorem 5. Let t, β1, e4 are any integers and α1 be any divisor of t− e4. Then, the integer 2e2
4 + t2 + α2

1 + β2
1 +

2β2
1

α2
1
(t− e4)

2 + 2e4(α1 − β1) +
2β1
α1

(t2 − e2
4) +

2β2
1

α1
(e4 − t) can be written as the sum of three perfect squares in

two disparate ways.

Proof. As per the assumptions in Theorem 2, choose the integers t, ei; i = 1, · · · , 4, α1, β1 and k.
Then, we obtain

k = 2e4 + α1 − β1 + t +
2β1

α1
(t− e4).

Let x1 = e1 = e4 + (β1 + α1)
(t−e4)

α1
, x2 = e2 = e4 + α1, y1 = e3 = e4− β1 + (β1 + α1)

(t−e4)
α1

and y2 = e4.
Consider the equation ∑3

i=1 xi = ∑3
i=1 yi = k.

Then, we have

x3 = k− e1 − e2

= e4 − β1 +
β1

α1
(t− e4)

and

y3 = k− e3 − e4

= e4 + α1 +
β1

α1
(t− e4).

We know that x1 = e1 where e1 = e4 + (β1 + α1)
(t−e4)

α1
. Thus

x1 = e4 + (β1 + α1)
(t− e4)

α1

= e4 +
t− e4

α1
β1 +

(t− e4)

α1
α1

= e4 +
t− e4

α1
β1 + t− e4

= t +
t− e4

α1
β1
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Now, consider

x2
1 + x2

2 + x2
3 = [e4 +

β1

α1
(t− e4)]

2 + [e4 + α1]
2 + [e4 − β1 +

β1

α1
(t− e4)]

2

= 2e2
4 + t2 + α2

1 + β2
1 +

2β2
1

α2
1
(t− e4)

2 + 2e4(α1 − β1) +

2β1

α1
(t2 − e2

4) +
2β2

1
α1

(e4 − t).

Similarly, we know that y1 = e3 where e3 = e4 − β1 + (β1 + α1)
(t−e4)

α1
. Thus

y1 = e4 − β1 + (β1 + α1)
(t− e4)

α1

= e4 − β1 +
(t− e4)

α1
β1 +

(t− e4)

α1
α1)

= e4 − β1 +
(t− e4)

α1
β1 + t− e4

= t− β1 +
β1

α1
(t− e4),

and thus

y2
1 + y2

2 + y2
3 = [t− β1 +

β1

α1
(t− e4)]

2 + e2
4 + [e4 + α1 +

β1

α1
(t− e4)]

2

= 2e2
4 + t2 + α2

1 + β2
1 +

2β2
1

α2
1
(t− e4)

2 + 2e4(α1 − β1) +

2β1

α1
(t2 − e2

4) +
2β2

1
α1

(e4 − t).

Comparing the values of x2
1 + x2

2 + x2
3 and y2

1 + y2
2 + y2

3 we get,

x2
1 + x2

2 + x2
3 = 2e2

4 + t2 + α2
1 + β2

1 +
2β2

1
α2

1
(t− e4)

2 + 2e4(α1− β1)+
2β1

α1
(t2− e2

4)+
2β2

1
α1

(e4− t) = y2
1 + y2

2 + y2
3.

Hence the proof.

3. On the Non-Ideal PTE Problem

Some new parametric forms of solutions of the (4, 2)-PTE problem and (5, 2)-PTE problem have been
discussed in Section 3.

Lemma 3. A parametric form of integral solutions of the (4, 2)-PTE problem is given by x1 = e1, x2 = e2,
x3 = e3, x4 = k − e1 − e2 − e3, y1 = e4, y2 = e5, y3 = e6, y4 = k − e4 − e5 − e6 and k =

(
∑6

i=1 ei

)
−

(e1e2+e1e3+e2e3)−(e4e5+e5e6+e4e6)
(e1+e2+e3)−(e4+e5+e6)

∈ Z, where ei ∈ Z, i = 1, · · · , 6.

Proof. Consider the equation ∑4
i=1 xi = ∑4

i=1 yi. Let ∑4
i=1 xi = k = ∑4

i=1 yi. Then we have x1 + x2 + x3 +

x4 = k = y1 + y2 + y3 + y4. Let x1 = e1, x2 = e2 and x3 = e3. Then x4 = k − e1 − e2 − e3. Similarly,
if y1 = e4, y2 = e5 and y3 = e6, then y4 = k− e4 − e5 − e6. Substituting these values in ∑4

i=1 x2
i = ∑4

i=1 y2
i ,
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we obtain (e2
1 + e2

2 + e2
3 + e1e2 + e1e3 + e2e3)− (e2

4 + e2
5 + e2

6 + e4e5 + e4e6 + e5e6) = k
[
∑3

i=1 ei −∑6
i=4 ei

]
.

i.e., (e1 + e2 + e3)
2 − (e1e2 + e1e3 + e2e3)− [(e4 + e5 + e6)

2 − (e4e5 + e4e6 + e5e6)] = k
[
∑3

i=1 ei −∑6
i=4 ei

]
.

From this, k can be written as

k =
(e1 + e2 + e3)

2 − (e4 + e5 + e6)
2(

∑3
i=1 ei

)
−
(

∑6
i=4 ei

) − (e1e2 + e1e3 + e2e3)− (e4e5 + e4e6 + e5e6)(
∑3

i=1 ei

)
−
(

∑6
i=4 ei

)
i.e.,

k =

(
6

∑
i=1

ei

)
− (e1e2 + e1e3 + e2e3)− (e4e5 + e5e6 + e4e6)(

∑3
i=1 ei

)
−
(

∑6
i=4 ei

)
Hence the proof.

Lemma 4. The integral solutions of the relation (a1b1+a1c1+b1c1)−(a2b2+b2c2+a2c2)
(a1+b1+c1)−(a2+b2+c2)

∈ Z satisfy the
following conditions:

(I) a1 = a2 + α1

(II) b1 = b2 + β1

(III) c1 = b2 + β1 + α1T

where α1 is any integer, T = t−b2
β1

such that t, b2 are any integers and β1|(t− b2).

Proof. Let a1 = a2 + α1, b1 = b2 + β1 and c1 = c2 − β1. Then, (a1 + b1 + c1)− (a2 + b2 + c2) = α1 and

(a1b1 + a1c1 + b1c1)− (a2b2 + b2c2 + a2c2) = b2α1 + c2α1 − b2β1 + c2β1 − β2
1

= (c2 + b2)α1 + β1(c2 − b2 − β1)

So,
(a1b1 + a1c1 + b1c1)− (a2b2 + b2c2 + a2c2)

(a1 + b1 + c1)− (a2 + b2 + c2)
= (b2 + c2) +

β1

α1
(c2 − b2 − β1)

Thus, (a1b1+a1c1+b1c1)−(a2b2+b2c2+a2c2)
(a1+b1+c1)−(a2+b2+c2)

∈ Z if and only if β1
α1
(c2 − b2 − β1) ∈ Z if and only if c2 =

b2 + β1 + α1T; where T = t−b2
β1

.
Hence,

(a1b1 + a1c1 + b1c1)− (a2b2 + b2c2 + a2c2)

(a1 + b1 + c1)− (a2 + b2 + c2)
= c2 + t

If the parameters a1, b1, c1, a2, b2 and c2 in Lemma 4 are replaced by ei ; i = 1, · · · , 6 and then the
simultaneous applications of Lemmas 3 and 4, we obtain Theorem 6.

Theorem 6. The parametric form x1 = e1, x2 = e2, x3 = e3, x4 = k− e1 − e2 − e3, y1 = e4, y2 = e5. y3 = e6

and y4 = k− e4 − e5 − e6 where

• ei; i = 1, · · · , 6 satisfy (e1e2+e1e3+e2e3)−(e4e5+e5e6+e4e6)
(e1+e2+e3)−(e4+e5+e6)

∈ Z

• k =
(

∑6
i=1 ei

)
− (e1e2+e1e3+e2e3)−(e4e5+e5e6+e4e6)

(e1+e2+e3)−(e4+e5+e6)

• e1 = e4 + α1

• e2 = e5 + β1
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• e3 = e5 + α1T
• e6 = e5 + β1 + α1T
• T = t−e5

β1

• t, α1, e4, e5 and β1 are any integers such that β1 is any divisor of (t− e5)

provide integral solutions of the non-ideal (4, 2)-PTE problem.

Proof. By Lemma 3, the parametric form of the integral solutions (4, 2)-PTE problem is x1 = e1, x2 = e2,
x3 = e3, x4 = k − e1 − e2 − e3, y1 = e4, y2 = e5, y3 = e6 and y4 = k − e4 − e5 − e6 where ei ∈ Z; i =

1, 2, · · · , 6 with k =
(

∑6
i=1 ei

)
− (e1e2+e1e3+e2e3)−(e4e5+e5e6+e4e6)

(e1+e2+e3)−(e4+e5+e6)
∈ Z. If we replace a1 by e1, b1 by e2, c1 by e3,

a2 by e4, b2 by e5, c2 by e6 in Lemma 4 we will have the theorem.

Example 4. Let t = 5, α1 = −2, e4 = 3 and e5 = 2. Then t− e5 = 3. Take β1 = 1. Then e6 = −3, e1 = 1,
e2 = 3, e3 = −4 and k = 0. So x1 = 1, x2 = 3, x3 = −4, x4 = 0, y1 = 3, y2 = 2, y3 = −3, y4 = −2.

Theorem 7 also provides another parametric solution of (4, 2)-PTE problem.

Theorem 7. A four parametric form of integral solutions of (4, 2)-PTE problem is given by x1 = 5t1, x2 = t2,
x3 = 6t3 − 4t1 − t5, x4 = 2t1 − 3t3 − 2t5, y1 = 5t3, y2 = t2, y3 = 6t1 − 4t3 − t5 and y4 = 2t3 − 3t1 − 2t5;
provided t1 − t3 6= 0.

Proof. Consider the equation
4

∑
i=1

xi =
4

∑
i=1

yi = k.

Let x1 = 5t1, x2 = t2. Then we obtain

x3 + x4 = k− 5t1 − t2. (4)

Let α and β are two integers such that 1× α− 1× β = 1. Then α = 2 and β = 1. i.e.,

1× 2− 1× 1 = 1.

Multiplying this with k− 5t1 − t2, we obtain

2(k− 5t1 − t2)− (k− 5t1 − t2) = k− 5t1 − t2. (5)

Then, (4) and (5) gives

[x3 − 2(k− 5t1 − t2)] + [x4 + (k− 5t1 − t2)] = 0.

This implies
[x3 − 2(k− 5t1 − t2)− 5t5] + [x4 + (k− 5t1 − t2) + 5t5] = 0.

Thus, x3 = 2(k− 5t1− t2) + 5t5 and x4 = −(k− 5t1− t2)− 5t5. Similarly, we obtain y3 = 2(k− 5t3−
t4) + 5t6 and y4 = −(k− 5t3 − t4)− 5t6. Applying the values of x′is and y′is in the second degree equation,
we obtain

x2
1 + x2

2 + x2
3 + x2

4 = 25t2
1 + t2

2 + [2(k− 5t1 − t2) + 5t5]
2 + [(k− 5t1 − t2) + 5t5]

2,

y2
1 + y2

2 + y2
3 + y2

4 = 25t2
3 + t2

4 + [2(k− 5t3 − t4) + 5t6]
2 + [(k− 5t3 − t4) + 5t6]

2.
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After elementary simplification, we obtain
150t2

1 + 6t2
2 + 50t2

5− 50kt1− 10kt2 + 50t1t2 + 30kt5− 150t1t5− 30t2t5 = 150t2
3 + 6t2

4 + 50t2
6− 50kt3− 10kt4 +

50t3t4 + 30kt6 − 150t3t6 − 30t4t6. Now take t5 = t6 and t2 = t4 and after simplifying further we obtain

150t2
1 − 50kt1 + 50t1t2 − 150t1t5 = 150t2

3 − 50kt3 + 50t2t3 − 150t3t5

150(t2
1 − t2

3) + 50t2(t1 − t3)− 150t5(t1 − t3) = 50k(t1 − t3)

3(t1 + t3) + t2 − 3t5 = k; provided t1 − t3 6= 0

k = 3t1 + 3t3 + t2 − 3t5.

So, by substituting the value of k, we obtain x3 = 6t3− 4t1− t5, x4 = 2t1− 3t3− 2t5, y3 = 6t1− 4t3− t5

and y4 = 2t3 − 3t1 − 2t5. This proves the theorem.

Example 5. Let t1 = 1, t2 = −3, t3 = 2 and t5 = −1. Then t1 − t3 6= 0. k = 9. Thus x3 = 9, x4 = −2,
y3 = −1 and y4 = 3.

Theorem 8. Any integer of the form 45a2 + b2 + 45c2 + 5d2 − 60ac, where a, b, c, d∈ Z with a− c 6= 0 can be
disclosed as the sum of four perfect squares in two distinct ways.

Proof. Let x1 = 5a, x2 = b, x3 = 6c− 4a− d, x4 = 2a− 3c− 2d, y1 = 5c, y2 = b, y3 = 6a− 4c− d and
y4 = 2c− 3a− 2d; provided a− c 6= 0. Then,

x2
1 + x2

2 + x2
3 + x2

4 = 25a2 + b2 + (6c− 4a− d)2 + (2a− 3c− 2d)2

= 45a2 + b2 + 45c2 + 5d2 − 60ac.

Similarly,

y2
1 + y2

2 + y2
3 + y2

4 = 25c2 + b2 + (6a− 4c− d)2 + (2c− 3a− 2d)2

= 45a2 + 45c2 + b2 + 5d2 − 60ac.

Comparing these two we get

x2
1 + x2

2 + x2
3 + x2

4 = y2
1 + y2

2 + y2
3 + y2

4

Hence the proof.

Theorem 9 is a particular case of the result by Nguyen [11] which illustrates a particular solution of
the non-ideal PTE problem ∑4

i=1 xr
i = ∑4

i=1 yr
i ; r = 1, 2 by using PTM sequence.

Theorem 9. The first eight non-negative integers can be partitioned into two sets of equal size such that the elements
in each set satisfy the non-ideal (4, 2)-PTE problem.

Proof. Consider the Prouhet-Thue-Morse sequence defined by

ν2(n) =

(
d

∑
j=0

nj

)
mod 2,
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where n = n020 + n121 + · · ·+ nd2d is the base-2 expansion of the integer n. Now, consider the first eight
non-negative integers, say {0, 1, 2, 3, 4, 5, 6, 7}. We define two disjoint sets S0 and S1 in such a way that

n ∈ Sν2(n).

Then, we obtain S0 = {0, 3, 5, 6} and S1 = {1, 2, 4, 7} such that

0 + 3 + 5 + 6 = 1 + 2 + 4 + 7,

02 + 32 + 52 + 62 = 12 + 22 + 42 + 72.

Hence the proof.

Remark 1. In Theorem 9, if we consider the generalized Prouhet-Thue-Morse sequence under modulo 3, then
we can partition the first 27 non-negative integers into three distinct sets of equal size satisfying the relations
∑9

i=1 xr
i = ∑9

i=1 yr
i ; r=1,2.

Remark 2. Consider the assignment n ∈ Sν2(n) as in Theorem 9. Now, define sk(m) = ∑n∈Sk
nm; for m = 1, 2

and k = 0, 1. Let A = (a0, a1) be a vector consisting of two arbitrary complex values such that a0 + a1 = 0. Define
F3(x; A) to be a polynomial of degree 7 whose coefficients belong to A and repeat according to ν2(n). i.e.,

F3(x; A) =
7

∑
n=0

aν2(n)x
n.

So, we obtain F3(x; A) = a0 + a1x + a1x2 + a0x3 + a1x4 + a0x5 + a0x6 + a1x7. Put x = eθ and define
G3(θ) := F3(eθ ; A). Then,

G3(θ) = a0 + a1eθ + a1e2θ + a0e3θ + a1e4θ + a0e5θ + a0e6θ + a1e7θ .

Let G(m)
3 (θ) denotes the mth derivative of G3(θ) for m = 1, 2. i.e.,

G(1)
3 (θ) = a1eθ + 2a1e2θ + 3a0e3θ + 4a1e4θ + 5a0e5θ + 6a0e6θ + 7a1e7θ

and
G(2)

3 (θ) = a1eθ + 4a1e2θ + 9a0e3θ + 16a1e4θ + 25a0e5θ + 36a0e6θ + 49a1e7θ .

At θ = 0, we obtain

G(1)
3 (0) = 14a0 + 14a1

= 14(a0 + a1)

= 0; since a0 + a1 = 0,

and

G(2)
3 (0) = 70a0 + 70a1

= 70(a0 + a1)

= 0; since a0 + a1 = 0.



Mathematics 2020, 8, 1775 12 of 18

However, both G(1)
3 (0) and G(2)

3 (0) can also be written as G(1)
3 (0) = a0s0(1) + a1s1(1) and G(2)

3 (0) =

a0s0(2) + a1s1(2). Since G(1)
3 (0) = 0 and G(2)

3 (0), we get a0s0(1) + a1s1(1) = 0 and a0s0(2) + a1s1(2) = 0.
From the choice of a0 and a1, we get s0(1) = s1(1) and s0(2) = s1(2) where S0 = {0, 3, 5, 6} and S1 = {1, 2, 4, 7}.

Theorem 10. The parametric form of all integral solutions of the non-ideal PTE problem

5

∑
i=1

xi =
5

∑
i=1

yi (6)

5

∑
i=1

x2
i =

5

∑
i=1

y2
i (7)

is given by x1 = 5t1, x2 = t2, x3 = t3, x4 = 6t4 − 4t1 − t7, x5 = 2t1 − 3t4 − 2t7, y1 = 5t4, y2 = t2, y3 = t3,
y4 = 6t1 − 4t4 − t7 and y5 = 2t4 − 3t1 − 2t7.

Proof. Consider
5

∑
i=1

xi =
5

∑
i=1

yi = k.

Let x1 = 5t1, x2 = t2, x3 = t3, y1 = 5t4, y2 = t5 and y6 = t6.Then we get

x4 + x5 = k− 5t1 − t2 − t3 (8)

and
y4 + y5 = k− 5t4 − t5 − t6.

Let α and β be two integers such that 1× α− 1× β = 1. Then α = 2 and β = 1. So 1× 2− 1× 1 = 1.
Multiplying by k− 5t1 − t2 − t3, we get

2(k− 5t1 − t2 − t3)− 1(k− 5t1 − t2 − t3) = k− 5t1 − t2 − t3. (9)

(8) and (9) we get
[x4 − 2(k− 5t1 − t2 − t3)] + [x5 + (k− 5t1 − t2 − t3)] = 0. (10)

Adding and subtracting 5t7 we obtain

[x4 − 2(k− 5t1 − t2 − t3)− 5t7] + [x5 + (k− 5t1 − t2 − t3) + 5t7] = 0. (11)

Thus, x4 = 2(k − 5t1 − t2 − t3) + 5t7 and x5 = −(k − 5t1 − t2 − t3) − 5t7. Similarly, we get y4 =

2(k− 5t4 − t5 − t6) + 5t8 and y5 = −(k− 5t4 − t5 − t6)− 5t8. Now, substitute the values of xi’s and yi’s in
(7), we get x2

1 + x2
2 + x2

3 + x2
4 + x2

5 = 25t2
1 + t2

2 + t2
3 + [2(k− 5t1− t2− t3)+ 5t7]

2 + [(k− 5t1− t2− t3)+ 5t7]
2

and y2
1 + y2

2 + y2
3 + y2

4 + y2
5 = 25t2

4 + t2
5 + t2

6 + [2(k− 5t4− t5− t6) + 5t8]
2 + [(k− 5t4− t5− t6) + t8]

2. Take
t7 = t8, t2 = t5 and t3 = t6. After performing elementary calculations we obtain

3(t2
1 − t2

4) + t2(t1 − t4) + t3(t1 − t4)− 3t7(t1 − t4) = k(t1 − t4)

k = 3(t1 + t4 − t7) + t2 + t3

provided t1 − t4 6= 0. Thus, x4 = −4t1 + 6t4 − t7, x5 = 2t1 − 3t4 − 2t7, y4 = 6t1 − 4t4 − t7 and y5 =

−3t1 + 2t4 − 2t7. Hence the proof.
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Example 6. Let t1 = 1, t4 = 2, t7 = −1, t2 = 1 and t3 = −2. Then k = 11. Thus, x4 = 9, x5 = −2, y4 = −1
and y5 = 3. Hence {5, 1,−2, 9,−2} =2 {10, 1,−2,−1, 3}.

Theorem 11. If a1, a2, a3, a4 and a5 are any integers with a1 − a4 6= 0, then the integer of the form 45a2
1 + a2

2 +

a2
3 + 45a2

4 + 5a2
5 − 60a1a4 can be represented as the sum of five perfect squares in two distinct ways.

Proof. Let x1 = 5a1, x2 = a2, x3 = a3, x4 = 6a4 − 4a1 − a5, x5 = 2a1 − 3a4 − 2a5, y1 = 5a4, y2 = a2,
y3 = a3, y4 = 6a1 − 4a4 − a5 and y5 = 2a4 − 3a1 − 2a5.Then,

x2
1 + x2

2 + x2
3 + x2

4 + x2
5 = 25a2

1 + a2
2 + a2

3 + (6a4 − 4a1 − a5)
2 + (2a1 − 3a4 − 2a5)

2

= 45a2
1 + a2

2 + a2
3 + 45a2

4 + 5a2
5 − 60a1a4.

Similarly,

y2
1 + y2

2 + y2
3 + y2

4 + y2
5 = 25a2

4 + a2
2 + a2

3 + (6a1 − 4a4 − a7)
2 + (2a4 − 3a1 − 2a5)

2

= 45a2
4 + a2

2 + a2
3 + 45a2

1 + 5a2
5 − 60a1a4.

Comparing these two we get

x2
1 + x2

2 + x2
3 + x2

4 + x2
5 = y2

1 + y2
2 + y2

3 + y2
4 + y2

5.

Hence the proof.

4. On Fibonacci Like Pattern in PTE Problem

Because of the uncertainty in nature, the Fibonacci numbers are always become fishy to the
mathematicians. One can expound the Fibonacci sequence of numbers using the looping as

F1 = 1, F2 = 1 and
Fn = Fn−1 + Fn−2; for n > 2.

Some remarkable studies on Fibonacci numbers and their applications can be seen in [33–35].
In Section 4, the Fibonacci like pattern appearing in the solutions of the (4, 2)-PTE problem is analyzed by
impossing an additonal condition xi = xi−1 + xi−2, yi = yi−1 + yi−2 for i ≥ 3 to the problem.

Note 1. Consider the Diophantine equation
3

∑
i=1

xi =
3

∑
i=1

yi, (12)

where x3 = x1 + x2 and y3 = y1 + y2. If we replace x3 and y3 in (12) by x1 + x2 and y1 + y2, we obtain

2

∑
i=1

xi =
2

∑
i=1

yi,

which is the (2, 1)-PTE problem. Thus, any solution of ∑2
i=1 xi = ∑2

i=1 yi will provide solution to (12).

Note 2. It does not guarantee that the solutions of ideal PTE problem satisfy the Fibonacci like pattern. This is
because, in the (3, 2)-PTE problem, if x3 = x1 + x2 and y3 = y1 + y2, then after some algebraic operations the
system will reduce to (2, 2)-PTE problem which has no solutions.
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Theorem 12. A two parameter family of infinitely many integral solutions of the system of equations ∑4
i=1 xi =

∑4
i=1 yi and ∑4

i=1 x2
i = ∑4

i=1 y2
i where xi = xi−1 + xi−2, yi = yi−1 + yi−2 for i ≥ 3, is given by x1 = 8t1,

y1 = 8t2, x2 = 5t2 − t1, y2 = 5t1 − t2, x3 = 5t2 + 7t1, y3 = 5t1 + 7t2, x4 = 10t2 + 6t1 and y4 = 10t1 + 6t2,
provided t2 − t1 6= 0.

Proof. Consider the following equations

4

∑
i=1

xi =
4

∑
i=1

yi, (13)

4

∑
i=1

x2
i =

4

∑
i=1

y2
i . (14)

Put x3 = x1 + x2, x4 = x2 + x3 = x1 + 2x2, y3 = y1 + y2 and y4 = y2 + y3 = y1 + 2y2. Then, we have

x1 + x2 + (x1 + x2) + (x1 + 2x2) = y1 + y2 + (y1 + y2) + (y1 + 2y2),

3x1 + 4x2 = 3y1 + 4y2.

Similarly

x2
1 + x2

2 + (x1 + x2)
2 + (x1 + 2x2)

2 = y2
1 + y2

2 + (y1 + y2)
2 + (y1 + 2y2)

2

3x2
1 + 6x2

2 + 6x1x2 = 3y2
1 + 6y2

2 + 6y1y2

x2
1 + 2x2

2 + 2x1x2 = y2
1 + 2y2

2 + 2y1y2

(x1 + x2)
2 + x2

2 = (y1 + y2)
2 + y2

2.

Thus (13) and (14) becomes

3x1 + 4x2 = 3y1 + 4y2

(x1 + x2)
2 + x2

2 = (y1 + y2)
2 + y2

2.

Let
3x1 + 4x2 = 3y1 + 4y2 = p.

Take x1 = 8t1 and y1 = 8t2. Then, we have x2 = p−24t1
4 and y2 = p−24t2

4 . Substituting these values,
we get [

8t1 +
p− 24t1

4

]2
+

[
p− 24t1

4

]2
=

[
8t2 +

p− 24t2

4

]2
+

[
p− 24t2

4

]2

(8t1 + p)2 + (p− 24t1)
2 = (8t2 + p)2 + (p− 24t2)

2

p[32t2 − 32t1] = 64(t2
2 − t2

1) + 242(t2
2 − t2

1)

p = 20(t2 + t1); t2 − t1 6= 0.
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So,

y2 =
p− 24t2

4

=
20t2 + 20t1 − 24t2

4
= 5t1 − t2

and

x2 =
p− 24t1

4

=
20t2 + 20t1 − 24t1

4
= 5t2 − t1.

Thus the solutions of the problem is given by x1 = 8t1, y1 = 8t2, x2 = 5t2 − t1, y2 = 5t1 − t2,
x3 = 5t2 + 7t1, y3 = 5t1 + 7t2, x4 = 10t2 + 6t1 and y4 = 10t1 + 6t2 provided t2 − t1 6= 0.

Example 7. Let t1 = 2 and t2 = 3. Then t2 − t1 = 1 6= 0. x1 = 16, x2 = 13, x3 = 29, x4 = 42, y1 = 24,
y2 = 7, y3 = 31 and y4 = 38.

Corollary 2. The primes 2 and 3 divides ∏4
i=1(xi − yi).

Proof. Let C = ∏4
i=1(xi − yi). As per the assumptions in Theorem 12, we have x1 = 8t1, y1 = 8t2,

x2 = 5t2 − t1, y2 = 5t1 − t2, x3 = 5t2 + 7t1, y3 = 5t1 + 7t2, x4 = 10t2 + 6t1 and y4 = 10t1 + 6t2. Then

C =
4

∏
i=1

(xi − yi)

= (8t1 − 8t2)× (6t2 − 6t1)× (2t1 − 2t2)× (4t2 − 4t1)

= 8× 6× 2× 4× (t1 − t2)
4.

So, the primes 2 and 3 divides C. The other prime divisors of C will obtain accordingly as the number
(t1 − t2) since t1 and t2 can take any integers such that t1 − t2 6= 0.

If N(k) denote the least positive integer such that the Diophantine system ∑s
i=1 xk

i = ∑s
i=1 yk

i ; k =

1, 2, · · · , n; and xi = xi−1 + xi−2; yi = yi−1 + yi−2 for i ≥ 3, possess nontrivial integer solutions, then from
Note 1 and Theorem 12 we obtain N(1) = 3 and N(2) = 4. Thus, we arrive at the Theorem 13.

Theorem 13. N(k) ≤ [ 1
2 k(k + 1)] + 2.

Proof. Let n > sks!. Define

A = {(x1, x2, · · · , xs) : 1 ≤ xi ≤ n; i = 1, 2, · · · , s and xs = xs−1 + xs−2; s ≥ 3}.

Then there are (n − 1)! elements in A. Let (ai), (bi) ∈ A. Then we can take (ai), (bi) as (ai) =

(x1, x2, · · · , xs) and (bi) = (y1, y2, · · · , ys) for some integers xi and yi; i = 1, 2, ...s. We define an equivalence
relation on A by (ai) ∼ (bi) if and only if (ai) := (x1, x2, · · · , xs) is a permutation of (bi) := (y1, y2, · · · , ys).
For example, if (ai) = (1, 2, 3) is an element in A, then all its six permutations like (2, 3, 1), (3, 1, 2), · · ·
are equivalent to (ai). The reason for defining the equivalence relation like this is that generally in PTE
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problems if (1, 2, 3) satisfies the left hand side equality then the right hand side solution should not be the
permutation of (1, 2, 3). Since (x1, x2, · · · , xs) has atmost s! distinct permutations, there are (n−1)!

s! distinct
classes in A/ ∼. Define

(Sj(ai)) = xj
1 + xj

2 + · · ·+ xj
s

for j = 1, 2, · · · , k. Note that s ≤ (Sj(ai)) ≤ snj. So there are atmost ∏j=1 k(snj − s + 1) < ∏j=1 ksnj =

skn
k(k+1)

2 distinct sets ((S1(ai)), (S2(ai), · · · , (Sk(ai)). Choose s = [ 1
2 k(k + 1)] + 2. Then, we have

skn
k(k+1)

2 = sksn−2 <
n
s!

ns−2 =
ns−1

s!
<

(n− 1)!
s!

since n > sks!. So the number of possible ((S1(ai)), (S2(ai), · · · , (Sk(ai)) is less than the number of distinct
(ai). Thus, the two distinct sets {x1, x2, · · · , xs} and {y1, y2, · · · , ys} form a solution of degree k.

5. Conclusions

In the present study, a new parametric solution of the non-ideal PTE problem
s
∑

i=1
xr

i =
s
∑

i=1
yr

i ; r = 1, 2

with s = 3, 4 and 5 has been developed. The main significance of the present solution is that the method
adopted is very simple and the parametric solutions are new compared to other works in this area. It is
also noteworthy that a new proof of the non-existence of solutions of (3, 2)-PTE problem has been derived.
In the present work, a three parametric solution of (3, 2)-PTE problem has been obtained which is new
in the study of the solutions of PTE problem. Moreover, a new parametric form of positive integers
that can be expressed as the sum of three, four and five perfect squares in two distinct ways has been
determined. Another significance of this study is that a parametric form of solutions of the PTE problem
in which solutions satisfying Fibonacci like pattern has been formulated and then obtained a bound for
the size of this particular PTE problem. Further, it is observed that the arithmetic function derived from
the PTM sequence is non-multiplicative. The present study has been done for order two with sizes three,
four! and five. It can be further extended for higher degrees and higher sizes. One of the applications
of the (4, 2)-PTE problem is in the combinatorics where the PTE partitions are used to pour the same
volume of coffee from a container into a finite number of cups so that each gets almost the same amount of
caffeine, as discussed in [26]. In general, the solutions of the PTE problem play a major role in fields like
combinatorics, the easier waring problems, and in finding the rational points on elliptic curves.
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