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Abstract: In the present work, the notion of generalized Cheng–Yau 1-type Gauss map is proposed,
which is similar to the idea of generalized 1-type Gauss maps. Based on this concept, the surfaces of
revolution and the canal surfaces in the Euclidean three-space are classified. First of all, we show
that the Gauss map of any surfaces of revolution with a unit speed profile curve is of generalized
Cheng–Yau 1-type. At the same time, an oriented canal surface has a generalized Cheng–Yau 1-type
Gauss map if, and only if, it is an open part of a surface of revolution or a torus.
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1. Introduction

The finite-type immersion and finite-type Gauss map proposed by B. Y. Chen are of great
use in classifying and characterizing submanifolds whether they are in a Euclidean space or in
a pseudo-Euclidean space [1,2]. The related research achievements are so numerous due to the
continuous generalizations of such ideas on different submanifolds and in different spacetimes [3,4].
Taking the finite-type Gauss map as an example, the simplest type of finite-type Gauss map is the
1-type Gauss map. An oriented submanifold M is of 1-type Gauss map when its Gauss map G fulfills
∆G = λ(G+ C) for some non-zero constant λ and a constant vector C; the Laplace operator ∆ is
given by

∆ = − 1√
det(gij)

∑
i,j

∂

∂xi (
√

det(gij)gij ∂

∂xj ),

where gij are the components of the inverse matrix of gij. Spheres, circular cylinders and planes in
Euclidean three-space are representatives which have 1-type Gauss maps [5]. Being a development of
the 1-type Gauss map, the notion of a pointwise 1-type Gauss map of submanifolds is put forward
by one of the present authors and D. W. Yoon [6]. An oriented submanifold M with a pointwise
1-type Gauss map fulfills ∆G = f (G+ C) for a constant vector C and a non-zero smooth function
f . Catenoids, helicoids and right cones in Euclidean three-space are typical surfaces with pointwise
1-type Gauss maps [5].

By extending the concept of submanifiolds with pointwise 1-type Gauss maps, submanifolds with
generalized 1-type Gauss maps can be defined. Namely

Definition 1. Ref. [5] A submanifold M in Em is of generalized 1-type Gauss map if its Gauss map G satisfies

∆G = fG+ gC

non-zero smooth functions ( f , g) and constant vector C ∈ Em.
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It is not difficult to find that the generalized 1-type Gauss map of submanifolds is a kind of
extension of the 1-type Gauss map and pointwise 1-type Gauss map. The authors of [5] completely
classified the developable surfaces, in Euclidean three-space, of the generalized 1-type Gauss map.
The canal surfaces and the surfaces of revolution of generalized 1-type Gauss maps have been discussed
recently [7].

In 1977, S.Y. Cheng and S.-T. Yau introduced a second-order differential and self-adjoint operator
L1 = 2, named the Cheng–Yau operator, which is defined on a closed orientable Riemannian manifold
M with a local orthonormal frame field {e1, e2, ..., en} and a dual coframe field {θ1, θ2, ..., θn}, where M
has a symmetric tensor, as follows:

φ = ∑
i,j

φijθiθj

which satisfies the Cheng–Yau condition

n

∑
j=1

φij,j = 0, 1 ≤ i ≤ n,

where φij,k is the covariant derivative of the tensor φij with respect to the metric g in the direction ek.
Then, the Cheng–Yau operator of any C2-function f is defined by [8]

2 f = ∑
i,j

φij fij = ∑
i,j
(φij fi)j = div(φ∇ f ).

In recent years, the concepts of finite-type and pointwise 1-type Gauss maps for the submanifolds
in Euclidean space have been extended and have taken the place of the Laplace operator ∆ with
the Cheng–Yau operator 2. A submanifold M is an L1-pointwise 1-type Gauss map when its Gauss
map can be expressed as 2G = f (G+ C) for a constant vector C and a non-zero smooth function f .
Moreover, when f is a non-zero constant, M is said to have a L1-1-type Gauss map. The rotational and
helicoidal surfaces of L1-pointwise 1-type Gauss map have been discussed in [9]. Two authors of this
paper classified the canal surfaces of L1-pointwise 1-type Gauss map [10].

Similar to the idea of generalized 1-type Gauss map, we could define and discuss the submanifolds
of generalized Cheng–Yau 1-type Gauss maps. In Section 2, the gradient of a smooth function f is
defined on a submanifold and some fundamental elements of canal surfaces are recalled. In Section 3,
the surfaces of revolution and the canal surfaces of generalized Cheng–Yau 1-type Gauss maps are
surveyed, respectively. Last but not least, some typical examples are presented via the Mathemtica
programme.

The surfaces discussed here are regular, smooth and topologically connected.

2. Preliminaries

Let M be an oriented surface in the Euclidean three-space E3. Then, the gradient of a smooth
function f , which is defined in M, can be expressed by

∇ f =
1

g11g22 − (g12)2 {(g22 fx − g12 fy)∂x + (−g12 fx + g11 fy)∂y}, (1)

where {x, y} is a local coordinate system of M, s.t. 〈∂x, ∂x〉 = g11, 〈∂x, ∂y〉 = g12 and 〈∂y, ∂y〉 = g22, fx,
and fy are the partial derivatives of f , respectively [9].

According to the definition of the Cheng–Yau operator of a function f [8], the following conclusion
is straightforward and useful.
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Lemma 1. Ref. [11] Let M be an oriented surface whose Gaussian curvature and mean curvature are denoted
by K and H in E3 . Then, the Cheng–Yau operator acting on its Gauss map G can be expressed by

2G = −∇K− 2HKG. (2)

Remark 1. From Lemma 1, an oriented surface M has an L1-harmonic Gauss map if it is flat; M is of the first
kind of L1-pointwise 1-type Gauss map if its Gaussian curvature is a non-zero constant.

Motivated by the submanifolds of the generalized 1-type Gauss map in Euclidean space,
the following definition is natural.

Definition 2. An oriented submanifold M is of a generalized Cheng–Yau 1-type Gauss map in the Euclidean
space Em if its Gauss map G satisfies

2G = fG+ gC (3)

for non-zero smooth functions ( f , g) and constant vector C ∈ Em.

Remark 2. Obviously, when f and g are non-zero constants, the Gauss map is just an L1-1-type Gauss map;
when the function f is equal to g, it is a Gauss map of the L1-pointwise 1-type. Furthermore, the L1-pointwise
1-type Gauss map is called the first kind for C = 0 and, otherwise, the second kind. When f and g vanish, G is
called the L1-harmonic.

In E3, there exist important and useful surfaces called canal surfaces, which are swept out by
moving spheres along space curves. Based on previous works about such surfaces [10,12,13], we focus
on the canal surfaces of generalized Cheng–Yau 1-type Gauss maps in this work.

Assuming c(s) be a space curve in E3 with an arc-length parameter s and Frenet frame {T, N, B},
according to the generating procedure of canal surfaces, a canal surface M can be expressed as

x(s, θ) = c(s) + r(s){cos ϕT + sin ϕ cos θN + sin ϕ sin θB}, (4)

where −r′(s) = cos ϕ, (ϕ = ϕ(s)) and θ ∈ [0, 2π), ϕ ∈ [0, π). The curve c(s) is said to be the center
curve, r(s) is said to be the radial function of M. In sequence, T, N, B are called the unit tangent,
and the principal, normal and binormal vector fields of c(s), respectively.

Remark 3. In particular, when c(s) is a straight line, M is just a surface of revolution; M is a tube (or pipe
surface) when r(s) is a constant.

To serve the following discussions, we prepare some basic elements of canal surfaces. Initially,
by the aid of the Frenet formula of c(s), from (4), we have

xs =
∂x
∂s

= x1
s T + x2

s N + x3
s B, xθ =

∂x
∂θ

= x1
θ N + x2

θ B, (5)

where

x1
s = −rκ sin ϕ cos θ − rr′′ + sin2 ϕ,

x2
s = −rr′κ − rτ sin ϕ sin θ − rr′ϕ′ cos θ + r′ sin ϕ cos θ,

x3
s = −rr′ϕ′ sin θ + r′ sin ϕ sin θ + rτ sin ϕ cos θ,

x1
θ = −r sin ϕ sin θ,

x2
θ = r sin ϕ cos θ.

(6)

Meanwhile, the Gauss map G of M is given by
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G =
xs × xθ

‖xs × xθ‖
= cos ϕT + sin ϕ cos θN + sin ϕ sin θB, (7)

from which we have

Gs = −(κ sin ϕ cos θ + r′′)T − (r′κ + τ sin ϕ sin θ + r′ϕ′ cos θ)N − (r′ϕ′ sin θ − τ sin ϕ cos θ)B,

Gθ = − sin ϕ sin θN + sin ϕ cos θB.
(8)

By (5), (6) and (8), the first fundamental form gij and the second fundamental form hij are

g11 =
P2 + r2R2

sin2 ϕ
, g12 = r2R, g22 = r2 sin2 ϕ (9)

and

h11 =
−rR2 − PQ

sin2 ϕ
, h12 = −rR, h22 = −r sin2 ϕ, (10)

where

P = rr′′ + rκ sin ϕ cos θ − sin2 ϕ,

Q = κ sin ϕ cos θ + r′′,

R = r′κ sin ϕ sin θ + τ sin2 ϕ.

(11)

By (9) and (10), we have

K =
Q
rP

, H = −1
r
− sin2 ϕ

2rP
, (12)

where K and H are the Gaussian curvature and the mean curvature of M.

Remark 4. From g11g22 − g2
12 = r2P2, due to the regularity of M, P 6= 0.

Simultaneously, we observe the following conclusion.

Proposition 1. Ref. [12] The Gaussian curvature K and the mean curvature H of a canal surface M in E3 are
related by

H = −1
2
(Kr +

1
r
).

Next, we focus on the surfaces of revolution and the canal surfaces that have generalized
Cheng–Yau 1-type Gauss maps, respectively.

3. Surfaces of Revolution with Generalized Cheng–Yau 1-Type Gauss Map

Let M be a surface of revolution in E3 parameterized by

x(s, θ) = (ψ, φ cos θ, φ sin θ) (13)

for some smooth functions, ψ = ψ(s) and φ = φ(s). Assuming that the profile curve is of unit speed,
i.e., φ′2 + ψ′2 = 1, a direct computation shows that

xs = (ψ′, φ′ cos θ, φ′ sin θ), xθ = (0,−φ sin θ, φ cos θ). (14)

At the same time, the Gauss map G of M is

G = (φ′,−ψ′ cos θ,−ψ′ sin θ), (15)



Mathematics 2020, 8, 1728 5 of 12

from which we have

Gs = (φ′′,−ψ′′ cos θ,−ψ′′ sin θ), Gθ = (0, ψ′ sin θ,−ψ′ cos θ).

By some calculations, the first fundamental form gij and the second fundamental form hij are

g11 = 1, g12 = 0, g22 = φ2 (16)

and
h11 = φ′ψ′′ − ψ′φ′′, h12 = 0, h22 = φψ′. (17)

From (16) and (17), the Gaussian curvature K and the mean curvature H can be expressed as

K = −φ′′

φ
, H =

φψ′′ + φ′ψ′

2φφ′
. (18)

By (14), (16), (18) and (1), we obtain

∇K(x) =
φ′φ′′ − φφ′′′

φ2 (ψ′, φ′ cos θ, φ′ sin θ). (19)

From (15), (18), (19) and Lemma 1, the Cheng–Yau operator of the Gauss map G is

2G =
1

φ2 (φφ′′′ψ′ + φφ′′ψ′′, (φφ′φ′′′ + φφ′′2 − φ′′) cos θ, (φφ′φ′′′ + φφ′′2 − φ′′) sin θ). (20)

If M has a generalized Cheng–Yau 1-type Gauss map, i.e., 2G = fG+ gC, where C = (C1, C2, C3)

is a constant vector, by substituting (15) and (20) into (3), we obtain
f φ′ + gC1 = φ′′′ψ′+φ′′ψ′′

φ ,

f (−ψ′ cos θ) + gC2 = φφ′φ′′′+φφ′′2−φ′′

φ2 cos θ,

f (−ψ′ sin θ) + gC3 = φφ′φ′′′+φφ′′2−φ′′

φ2 sin θ.

(21)

The second and third equations of (21) imply that C2 = C3 = 0, obviously. Moreover, f (s) = φ′′−φφ′φ′′′−φφ′′2

φ2ψ′
,

g(s) = φφ′′′−φ′φ′′

C1φ2ψ′
,

(22)

where C1 6= 0 is a constant.
Conversely, when we make use of the given functions ψ and φ, a surface of revolution with a unit

speed profile curve satisfies 2G = fG+ gC for such functions ( f , g) given by (22) and constant vector
C = (C1, 0, 0). Thus, we have the following result.

Theorem 1. Any surface of revolution M with a unit speed profile curve in E3 has a generalized Cheng–Yau
1-type Gauss map. Explicitly, the Gauss map G of M fulfills

2G = fG+ gC

for some non-zero smooth functions ( f (s), g(s)) given by (22) and the constant vector C = (C1, 0, 0), where C1

is a non-zero constant.



Mathematics 2020, 8, 1728 6 of 12

4. Canal Surfaces with Generalized Cheng–Yau 1-Type Gauss Map

Assuming that an oriented canal surface M is of the generalized Cheng–Yau 1-type Gauss map
kind, then, by Lemma 1, we have

2G = −∇K− 2HKG = fG+ gC. (23)

We decompose the constant vector C as follows:

C = C1T + C2N + C3B, (24)

where C1 = 〈C, T〉, C2 = 〈C, N〉, C3 = 〈C, B〉. By (5), (9) and (1), we obtain

∇K(x) =
1

r2P2 [(Ux1
s )T + (Ux2

s + Vx1
θ)N + (Ux3

s + Vx2
θ)B], (25)

where U = g22Ks − g12Kθ , V = −g12Ks + g11Kθ .
Note that, from (11) and (12), the partial derivatives of the Gaussian curvature K are

Ks =
−2rr′κ2 sin2 ϕ cos2 θ − 5rr′r′′κ sin ϕ cos θ + (r′κ − rκ′) sin3 ϕ cos θ

r2P2

+
r′r′′ sin2 ϕ− 4rr′r′′2 − rr′′′ sin2 ϕ

r2P2 ,

Kθ =
κ sin3 ϕ sin θ

rP2 .

(26)

By substituting (7), (24) and (25) into (23), we get
Ux1

s = −r2P2(2HK cos ϕ + f cos ϕ + gC1),
Ux2

s + Vx1
θ = −r2P2(2HK sin ϕ cos θ + f sin ϕ cos θ + gC2),

Ux3
s + Vx2

θ = −r2P2(2HK sin ϕ sin θ + f sin ϕ sin θ + gC3).
(27)

According to the above equation system, we have the following two cases.
Case 1: r′ = − cos ϕ 6= 0. From the first equation of (27), we have

f = −Ux1
s + r2P2(2HK cos ϕ + gC1)

r2P2 cos ϕ
; (28)

by substituting (28) into the last two equations of (27), we obtain

g =
Ux1

s sin ϕ cos θ − cos ϕ(Ux2
s + Vx1

θ)

r2P2(C2 cos ϕ− C1 sin ϕ cos θ)
=

Ux1
s sin ϕ sin θ − cos ϕ(Ux3

s + Vx2
θ)

r2P2(C3 cos ϕ− C1 sin ϕ sin θ)
. (29)

From (29), we have

U[sin ϕ(C2 sin θ − C3 cos θ)x1
s + (C3 cos ϕ− C1 sin ϕ sin θ)x2

s + (C1 sin ϕ cos θ − C2 cos ϕ)x3
s ]

=Vr sin ϕ[C1 sin ϕ− cos ϕ(C2 cos θ + C3 sin θ)].
(30)

Since {cos(nθ), sin(nθ)|n ∈ N} constitutes a linearly independent function system,
when analyzing the coefficients of cos 4θ and sin 4θ in (30) by the aid of (5), (9) and (26), we have{

r2κ3 sin4 ϕ cos3 ϕC2 = 0,
r2κ3 sin4 ϕ cos3 ϕC3 = 0.

(31)
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Based on Equation (31), we think of a non-empty subset O = {p ∈ M | κ(p) 6= 0}. Because
sin ϕ 6= 0, r 6= 0, we know C2 = C3 = 0 on O. By substituting them into (30), we have

r(UR + sin2 ϕV)C1 = 0. (32)

Furthermore, by contrasting the coefficient of the highest degree of sin 3θ in (32), we obtain that
C1 = 0, then C = (0, 0, 0). In this situation, M is of the first kind of L1- pointwise 1-type Gauss map,
i.e., 2G = fG. From the Theorem 3.2 of [10], M is an open part of a surface of revolution, i.e., κ = 0.
Thus, O is empty; κ ≡ 0 when r′ 6= 0. In this case, M is a surface of revolution.

By simplifying (30) with the help of κ = 0, we have

(C3 cos θ − C2 sin θ)(sin ϕ− rϕ′)Ks = 0. (33)

Note that sin ϕ− rϕ′ 6= 0 or else P = 0 and M is degenerate. If Ks = 0, then M has constant
Gaussian curvature due to Kθ = 0 when κ = 0. From Reamrk 1, M is of the first kind of L1- pointwise
1-type Gauss map. Therefore, Ks 6= 0 and (33) follow that C2 = C3 = 0. Furthermore, from (27)
we have

f =
r′Ks

P
− 2HK, g =

Ks

C1P
, (34)

where C1 is a non-zero constant. As κ = 0, P, HandK are all functions of s, (34) yields f = f (s), g = g(s).
Explicitly, we have

f (s) =
(r′′ − rr′r′′′)(1− r′2) + rr′′2(2rr′′ − r′2 − 3)

r2(rr′′ + r′2 − 1)3 ,

g(s) =
(r′r′′ − rr′′′)(1− r′2)− 4rr′r′′2

C1r2(rr′′ + r′2 − 1)3 .
(35)

Therefore, M is of the generalized Cheng–Yau 1-type Gauss map for functions ( f , g) given by (35)
and the vector C = (C1, 0, 0), where C1 6= 0.

Because M is a surface of revolution, we can put c(s) = (s, 0, 0) in (4) with Frenet frame T =

(1, 0, 0), N = (0, 1, 0), B = (0, 0, 1). Therefore, M can be expressed by

x(s, θ) = (s + r(s) cos ϕ(s), r(s) sin ϕ(s) cos θ, r(s) sin ϕ(s) sin θ).

Case 2: r′ = − cos ϕ = 0, i.e., M is a tube surface.
First of all, suppose that C1 6= 0. Then, we get, from the first equation of (27),

g = − x1
s U

C1r2P2 . (36)

Taking (36) into the last two equations of (27), we obtain

f =
(C2x1

s − C1x2
s )U − C1x1

θV
r2P2C1 cos θ

− 2HK =
(C3x1

s − C1x3
s )U − C1x2

θV
r2P2C1 sin θ

− 2HK, (37)

according to (37), we have

U[(C2 sin θ − C3 cos θ)(1− rκ cos θ) + C1rτ] + C1rV = 0. (38)

Considering the coefficient of the power of sin θ in (38) with the help of (9) and (26), we get
C1κ = 0; hence, κ = 0. However, when r′ = 0 and κ = 0, M is part of a circular cylinder. By Remark 1,
it has an L1 harmonic Gauss map. It is a contradiction; therefore, C1 = 0.



Mathematics 2020, 8, 1728 8 of 12

Looking back at the first equation of (27) together with r′ = 0 and C1 = 0, we have x1
s U = 0, i.e.,

κ′ cos θ + κτ sin θ = 0;

therefore, κ = c0, (0 6= c0 ∈ R) and τ = 0, then the center curve c(s) is a circle and M is a torus.
Furthermore, from the last two equations of (27), we have

f = − V(C2 cos θ + C3 sin θ)

rP2(C2 sin θ − C3 cos θ)
− 2HK, g =

V
rP2(C2 sin θ − C3 cos θ)

, (39)

where C2
2 + C2

3 6= 0.
Since V, P, K and H are all functions of θ when r′ = 0 and κ 6= 0 is a constant, (39) yields that the

functions ( f , g) only depend on θ. Explicitly, we have

f (θ) =
κ cos θ(2rκ cos θ − 1)

r2(rκ cos θ − 1)2 − κ sin θ(C2 cos θ + C3 sin θ)

r2(rκ cos θ − 1)2(C2 sin θ − C3 cos θ)
,

g(θ) =
κ sin θ

r2(rκ cos θ − 1)2(C2 sin θ − C3 cos θ)
.

(40)

Therefore, M is of the generalized Cheng–Yau 1-type Gauss map for functions ( f , g) given by (40)
and the vector C = (0, C2, C3), where C2

2 + C2
3 6= 0.

Conversely, suppose M is an open part of a surface of revolution or a torus; we can easily find
that 2G = fG+ gC is fulfilled for some non-zero smooth functions ( f , g) given by (35) and (40) with
the constant vectors C = (C1, 0, 0) and C = (0, C2, C3), respectively.

According to the above discussion works, we have the following results.

Theorem 2. An oriented canal surface M is of the generalized Cheng–Yau 1-type Gauss map if it is a torus or
an open part of a surface of revolution with the following form:

x(s, θ) = (s + r(s) cos ϕ(s), r(s) sin ϕ(s) cos θ, r(s) sin ϕ(s) sin θ).

As immediate consequences of the above theorem, we have

Corollary 1. Let an oriented canal surface M with a generalized Cheng–Yau 1-type Gauss map be an open part
of a surface of revolution. Then, the Gauss map G of M satisfies

2G = fG+ gC

for some non-zero smooth functions ( f (s), g(s)) given by

f (s) =
(r′′ − rr′r′′′)(1− r′2) + rr′′2(2rr′′ − r′2 − 3)

r2(rr′′ + r′2 − 1)3 ,

g(s) =
(r′r′′ − rr′′′)(1− r′2)− 4rr′r′′2

C1r2(rr′′ + r′2 − 1)3

and the vector C = (C1, 0, 0), (C1 ∈ R− {0}) .

In particular, when the canal surface with a generalized Cheng–Yau 1-type Gauss map is an open
part of a surface of revolution, which has a profile curve of unit speed, we have the following result.
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Corollary 2. Let an oriented canal surface M with a generalized Cheng–Yau 1-type Gauss map be an open part
of a surface of revolution that has a profile curve of unit speed. Then, the Gauss map G of M fulfills

2G = fG+ gC

for some non-zero smooth functions ( f (s), g(s)) given by (42) and the constant vector C = (C1, 0, 0), where C1

is a non-zero constant. Moreover, the radius function r(s) of M is given by (44) explicitly.

Proof. By comparing the parametrization of M, as stated in Theorem 2, with the general form of
the surface of revolutionm as stated in (13), we can let ψ(s) = r(s) cos ϕ(s) + s, φ(s) = r(s) sin ϕ(s),
s.t. ψ′2(s) + φ′2(s) = 1, i.e.,

r′2 + (1− r′2 − rr′′)2 = 1. (41)

Because of the assumption for canal surfaces, −r′ = cos ϕ, from the above equation, we have

(rϕ′ − sin ϕ)2 = 1.

By combining the the expression forms of ( f , g) in (35) and (22), we have

f (s) =
ϕ′

r2 sin2 ϕ
+ ε[

ϕ′2 cos 2ϕ

r sin2 ϕ
+

ϕ′′ cos ϕ

r sin ϕ
],

g(s) =
ϕ′2 cos ϕ

C1r sin2 ϕ
+

ϕ′′

C1r sin ϕ
− ε

ϕ′ cos ϕ

C1r2 sin2 ϕ
,

(42)

where, ε = 1 for rϕ′ − sin ϕ = 1; ε = −1 for rϕ′ − sin ϕ = −1.
Furthermore, by solving differential Equation (41), we get

(r + c)(2cr− c2)
1
2 = 3cs + c0, (c, c0 ∈ R), (43)

Then we obtain a real solution of r(s) as follows:

r(s) = − 3c2

3
√

4B
− B

6c 3
√

2
− c

2
, (44)

where A = −972c4s2 − 648c3c0s− 108c2c2
0 − 54c6, B = (A +

√
−2916c16 + A2)

1
3 .

Corollary 3. Let an oriented canal surface M with a generalized Cheng–Yau 1-type Gauss map Gauss map be a
torus. Then, the Gauss map G of M satisfies

2G = fG+ gC

for some non-zero smooth functions ( f (θ), g(θ)) given by

f (θ) =
κ cos θ(2rκ cos θ − 1)

r2(rκ cos θ − 1)2 − κ sin θ(C2 cos θ + C3 sin θ)

r2(rκ cos θ − 1)2(C2 sin θ − C3 cos θ)
,

g(θ) =
κ sin θ

r2(rκ cos θ − 1)2(C2 sin θ − C3 cos θ)

and the vector C = (0, C2, C3) in which C2, C3 ∈ R and C2
2 + C2

3 6= 0.

Remark 5. The canal surfaces that have L1-pointwise 1-type Gauss maps and the ones that have L1-1-type
Gauss maps have been discussed in [10]; we do not repeat them here.
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5. Examples

In this section, we present some typical examples of Cheng–Yau generalized 1-type Gauss maps.

Example 1. Let M be a surface of revolution, as follows (see Figure 1):

x(s, θ) = (es, s2 cos θ, s2 sin θ).

After calculations, its Gauss map G is G = (2s,−es cos θ,−es sin θ), whose Cheng–Yau operator can be
expressed as

2G =
2− 4s2

s4es G− 4
s3es (1, 0, 0).

Figure 1. The surface of revolution in Example 1.

Example 2. Let M be a surface of revolution that has a profile curve of unit speed and is parameterized by
(see Figure 2)

x(s, θ) = (s + r(s) cos ϕ, r(s) sin ϕ cos θ, r(s) sin ϕ sin θ),

where r(s) is given by

r(s) =
1
2
(1 +

1
T
− T),

in which T = (1 + 18s2 − 6
√

s2 + 9s4)
1
3 .

Figure 2. The surface of revolution in Example 2.
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Example 3. Let M be a torus parameterized by (see Figure 3)

x(s, θ) = (sin s− 1
2

sin s cos θ,
1
2

sin θ, cos s− 1
2

cos s cos θ).

Through calculations, we find that its Gauss map G is G = (sin s cos θ,− sin θ, cos s cos θ),
whose Cheng–Yau operator can be expressed as

2G =
16 cos θ

cos θ − 2
G+

16
(cos θ − 2)2 (0, 1, 0).

Figure 3. The torus in Example 3.

Based on the definitions of canal surfaces in Minkowski three-space E3
1 [14,15], the canal surfaces

in E3
1 will be classified in terms of their Gauss maps via the Laplacian operator and the Cheng–Yau

operator in the near future.
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