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Abstract: In this paper, we revisit level-dependent quasi-birth-death processes with finitely many
possible values of the level and phase variables by complementing the work of Gaver, Jacobs,
and Latouche (Adv. Appl. Probab. 1984), where the emphasis is upon obtaining numerical methods
for evaluating stationary probabilities and moments of first-passage times to higher and lower levels.
We provide a matrix-analytic scheme for numerically computing hitting probabilities, the number of
upcrossings, sojourn time analysis, and the random area under the level trajectory. Our algorithmic
solution is inspired from Gaussian elimination, which is applicable in all our descriptors since
the underlying rate matrices have a block-structured form. Using the results obtained, numerical
examples are given in the context of varicella-zoster virus infections.

Keywords: epidemic modeling; first-passage times; hitting probabilities; quasi-birth-death processes;
sojourn times
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1. Introduction

In this paper, we shall be concerned with time-homogeneous continuous-time Markov chains
X = {(I(t), J(t)) : t ∈ [0, ∞)} that take values in a bivariate state space S = {(i, j) : i ∈ {0, . . . , N},
j ∈ {0, . . . , Mi}}, for integers Mi ∈ N0 with i ∈ {0, . . . , N} and N ∈ N, and have an irreducible
infinitesimal generator Q with block-tridiagonal representation

Q =


Q0,0 Q0,1

Q1,0 Q1,1 Q1,2
. . . . . . . . .

QN−1,N−2 QN−1,N−1 QN−1,N
QN,N−1 QN,N

 , (1)

where the sub-matrices Qi,i′ are of dimension (1 + Mi)× (1 + Mi′), for i′ ∈ {max{0, i− 1}, i, min{i +
1, N}}, i.e., from any state (i, j), process X can access only states (i′, k) with |i′ − i| ≤ 1 and
k ∈ Mi′ , whence I(t) can change its value by {−1, 0, 1} only. These Markov chains are referred
to as finite quasi-birth-death (QBD) processes, being its first variable I(t) called the level, and the
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second one J(t) the phase; see e.g. Gaver et al. [1]. They are capable of modeling, in a unified
and algorithmically tractable manner, relevant systems, such as queueing models (Baumann and
Sandmann [2]; Gun and Makowski [3]; Perel and Yechiali [4]; Ye and Li [5]), communication networks
(Artalejo and Gómez-Corral [6]; Artalejo and Lopez-Herrero [7]), reliability and manufacturing systems
(Chakravarthy and Gómez-Corral [8]; Moghaddass et al. [9]), and epidemic models (Amador and
Gómez-Corral [10]; Artalejo et al. [11]; Economou et al. [12]; Gamboa and Lopez-Herrero [13]),
among others.

The properties of finite QBD processes have been studied extensively in continuous and discrete
time. For a comprehensive discussion, see, e.g., the monograph of Latouche and Ramaswami
(Chapter 10 in Reference [14]) and references therein. Most of the theoretical work so far carried
out in this setting is concerned with the stationary probability vector. More concretely, Hajek [15]
observes that, under certain conditions for the underlying transition matrices, the stationary vector of
a finite level-independent QBD process has a mixed matrix-geometric form; for a related numerical
method that exploits invariant subspace computations, see the paper by Akar et al. [16]. Gaver et al.
(Section 2 in Reference [1]) use linear level reduction, which is a refined probabilistic justification for
block-Gaussian elimination (Latouche and Ramaswami (Remark 10.1.6 in Reference [14]); Stewart [17]).
Ye and Li [5] (see also Latouche and Ramaswami (Section 10.2 in Reference [14])) propose an efficient
computational approach, termed folding algorithm, which is seen to be a form of odd-even reduction,
and Naoumov [18] presents an algebraically matrix-multiplicative approach for a finite QBD process.
LU-type and UL-type RG-factorizations are used by Li and Cao (Section 3.1 in Reference [19]) in an
attempt to clarify the relations among those results in Gaver et al. [1], Hajek [15], and Naoumov [18].
Elhafsi and Molle [20] present a matrix-geometric expression for the stationary vector of a finite
level-independent QBD process in terms of a set of rate matrices and compare their solution with
several existing solution methods, including the approaches of de Nitto Persone and Grassi [21],
Gun and Makowski [3], and Hajek [15], and a more general solution of Le Boudec [22] for upper
block Hessenberg matrices. Other approaches are related to the group inverse (da Silva Soares and
Latouche [23]) and the matrix continued fraction algorithm (Baumann and Sandmann [24]).

Despite their simplicity and their success in stochastic modeling, there have been few contributions
dealing with random descriptors different from the stationary probability vector in the theory of
finite QBD processes. Gaver et al. (Sections 3–4 in Reference [1]) use Laplace-Stieltjes transforms of
first-passage times from level l(i− 1) to level l(i), where the i′th level is defined as l(i′) = {(i′, j) :
j ∈ {0, . . . , Mi′}}, to derive a product-form expression for the Laplace-Stieltjes transform of the
first-passage time from level l(i − 1) to higher levels l(i′), with i′ ∈ {i, . . . , N}, and similar results
for the first-passage times to lower levels. An up-integral functional is defined in the paper by
Li and Cao [19] (Section 4) and explicit expressions for the Laplace transforms of its conditional
distributions and moments are written in terms of the underlying R- and G-measures. Li and
Sheng [25] propose and implement a generalized folding algorithm for transient analysis of a
finite QBD process, which entails the solution of xQ = a, where a is a predetermined boundary
condition vector, and present comprehensive numerical examples on transient queueing behavior with
correlated arrivals. Based on the R- and G-measures, Shin [26] derives an algorithm for computing
the fundamental matrix of a finite QBD process with absorbing states and shows how the resulting
algorithm can be applied to absorption probabilities, sojourn time distributions, the busy period
and the stationary vector in the multiprogramming model discussed by Neuts [27] (pp. 245–253)
and the M/M/c retrial queue with finite orbit capacity (Artalejo and Gómez-Corral (Chapter 4 in
Reference [28])). Recently, Gómez-Corral and López-García [29] use matrix calculus and exploit the
specific structure of the infinitesimal generator Q in (1) to provide the sensitivities and the elasticities
of finite QBD processes with respect to model parameters, with special emphasis on first-passage times
to level l(0) and hitting probabilities, the maximum level visited by the process before reaching states
in level l(0) and the stationary vector, and illustrate the approach by means of applying multi-type
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versions of the susceptible-infective (SI) and susceptible-infective-susceptible (SIS) epidemic models to
the spread of antibiotic-sensitive and antibiotic-resistant bacterial strains in a hospital ward.

The objective of this paper was to complement the work of Gaver et al. [1] by showing here
that, in the spirit of algorithmic probability, the fundamental ideas of Gaver et al. [1] extend beyond
the stationary distribution and first-passage times to higher and lower levels, and apply to more
complex descriptors arising from epidemic models. The methods we shall follow in this paper are
suggested by some related work of Amador et al. [30], Baumann and Sandmann [31], Lefèvre and
Simon [32], and Neuts [33], where, for instance, the random length of an outbreak and the final size of
the epidemic in SIR-type and SIS-type epidemic models correspond to the absorption time and the
hitting probabilities in a suitably defined absorbing QBD process, and related block-structured Markov
processes. In order to simplify the presentation throughout the paper, we shall assume that (1, j) is the
initial state of process X , for phases j ∈ {0, . . . , M1}, which is related to an invasion time in the spread
of a disease.

The paper is organized as follows. In Section 2, we derive recursive expressions for the hitting
probabilities of restricted versions of process X . In Section 3, we characterize the probability laws
of the number of upcrossings from level l(K − 1) to states in l(K), for a predetermined threshold
K ∈ {2, . . . , N}, and the total time spent at states in higher levels before reaching states in level l(0).
In Section 4, we study the random area under the trajectory of the integer-valued random variable I(t)
before process X visits states in l(0) for the first time. Numerical examples are given in Section 5 in the
setting of varicella-zoster virus infections, and concluding remarks follow in Section 6.

2. First-Passage Times to Higher Levels and Restricted Hitting Probabilities

Let us consider the first-passage time η(1,j),K to level l(K) from state (1, j), for a predetermined
integer K ∈ {2, . . . , N}, and the first-passage time η̄(1,j),0 to level l(0) from state (1, j), with j ∈
{0, . . . , M1}. For phases n ∈ {0, . . . , MK}, we let P(1,j),K(n) denote the restricted hitting probability

P
(
(I(η(1,j),K), J(η(1,j),K)) = (K, n), η(1,j),K < η̄(1,j),0|(I(0), J(0)) = (1, j)

)
,

which is related to the dynamics of process X evolving on those sample paths satisfying η(1,j),K <

η̄(1,j),0.

Remark 1. Note that the probability law of η(1,j),K (respectively, η̄(1,j),0) corresponds to the conditional
distribution of the random variable τn,m defined in Section 3 of Reference [1] with n = 2 and m = K
(respectively, τ̄m,n defined in Section 4 of Reference [1] with m = n = 0), given that (I(0), J(0)) = (1, j).
A product-form expression for the Laplace-Stieltjes transform of η(1,j),K and recursive relations for its expectation
(respectively, the expectation of η̄(1,j),0) can be then obtained from Equations (3.9) and (3.12)–(3.14) (respectively,
(4.4)–(4.6)) of Reference [1].

In order to derive expressions for the restricted hitting probabilities {P(1,j),K(n) : n ∈
{0, . . . , MK}}, it is useful to consider an auxiliary absorbing process X (K) = {X(t) : t ≥ 0} that
takes values in the state space S(K) = {0} ∪ ⋃K−1

i=1 l(i) ∪ {K}, where 0 and K are assumed to be
absorbing states and

⋃K−1
i=1 l(i) is a class of transient states. The infinitesimal generator of X (K) has the

block-structured form

Q(K) =


0 0T

K−1+∑K−1
i=1 Mi

0

t0(K) T(K) tK(K)
0 0T

K−1+∑K−1
i=1 Mi

0

 , (2)
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where the column vector 0a is the null vector of order a, T denotes transposition, the sub-matrix
T(K) is obtained from Q by removing rows and columns associated with states in l(0) and

⋃N
i=K l(i),

the column vectors t0(K) and tK(K) have the form

t0(K) =

(
Q1,011+M0

0K−2+∑K−1
i=2 Mi

)
, and tK(K) =

(
0K−2+∑K−2

i=1 Mi

QK−1,K11+MK

)
,

and the column vector 1a is the unit vector of order a. It is clear that, starting from states in
⋃K−1

i=1 l(i),
the process X (K) defined by (2) is the restriction of process X to the states in

⋃K−1
i=1 l(i) before the first

entrance into states in l(0) ∪⋃N
i=K l(i). In particular, it is found that

P(η(1,j),K < η̄(1,j),0) = eK−1+∑K−1
i=1 Mi

(1 + j)
(
−T−1(K)

)
tK(K), (3)

where ea(b) is a row vector of order a, in which entries are all equal to 0, except the bth entry which
equals 1. The proof of (3) is based on the fact that the transition function P(X(t) = K|X(0) = (1, j)) of
process X (K) is given by

eK−1+∑K−1
i=1 Mi

(1 + j)
(

IK−1+∑K−1
i=1 Mi

− exp{T(K)t}
) (
−T−1(K)

)
tK(K),

which yields P(η(1,j),K < η̄(1,j),0) by taking the limit as t→ ∞, since the sub-matrix T(K) is stable and
the real parts of its eigenvalues are all strictly negative.

By appealing to statement (b) of Lemma 1 in the paper by Gaver et al. [1], it is noted that the matrix
−T−1(K) records expected total times that process X spends at states in

⋃K−1
i=1 l(i) before X visits

states in either l(0) or l(K) for the first time, provided that X starts from any initial state in
⋃K−1

i=1 l(i).
Furthermore, a slight modification of statement (c) of Lemma 1 in Reference [1] permits to establish
that, by denoting by TK(K) the matrix recording infinitesimal rates associated with transitions to states
in l(K) from

⋃K−1
i=1 l(i), the matrix −T−1(K)TK(K) consists of first passage probabilities to level l(K),

given that X starts from any state in
⋃K−1

i=1 l(i).
This means that the (1 + j)th row of −T−1(K)TK(K) consists of the restricted hitting probabilities

P(1,j),K(n), for phases n ∈ {0, . . . , MK}, and consequently, recursive relations for these probabilities can
be derived from Theorem 4.2.4 of the book by Hunter [34] by observing that T(K) can be written in
terms of the sub-matrix T(K− 1).

Theorem 1. For a predetermined integer K ∈ {2, . . . , N} and an initial state (1, j) with j ∈ {0, . . . , M1},
the restricted hitting probability P(1,j),K(n) is specified by

P(1,j),K(n) = u(j, K)QK−1,KeT
1+MK

(1 + n), (4)

for phases n ∈ {0, . . . , MK}, where

u(j, K) =

 e1+M1(1 + j)
(
−Q−1

1,1

)
, i f K = 2,

eK−2+∑K−2
i=1 Mi

(1 + j)V1,2(K), i f K ∈ {3, . . . , N}.
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Moreover, the sub-matrices V1,2(K), for integers K ∈ {3, . . . , N}, are given by V1,2(K) = −T−1(K−
1)U1,2(K)V2,2(K), where

V2,2(K) =
(
−QK−1,K−1 −U2,1(K)(−T−1(K− 1))U1,2(K)

)−1
,

U1,2(K) =

(
0(K−3+∑K−3

i=1 Mi)×(1+MK−1)

QK−2,K−1

)
,

U2,1(K) =
(

0(1+MK−1)×(K−3+∑K−3
i=1 Mi)

, QK−1,K−2

)
,

and satisfy

−T−1(K) =

(
V1,1(K) V1,2(K)
V2,1(K) V2,2(K)

)
, (5)

with V2,1(K) = V2,2(K)U2,1(K)(−T−1(K − 1)) and V1,1(K) = −T−1(K − 1)(IK−2+∑K−2
i=1 Mi

−
U1,2(K)V2,1(K)).

This has the following immediate consequence.

Corollary 1. For a predetermined integer K ∈ {2, . . . , N} and an initial state (1, j) with j ∈ {0, . . . , M1},
P(η(1,j),K < η̄(1,j),0) = u(j, K)QK−1,K11+MK .

Theorem 1 and Corollary 1 suggest an algorithmic solution to compute the restricted hitting
probabilities {P(1,j),K(n) : n ∈ {0, . . . , MK}} and the probability P(η(1,j),K < η̄(1,j),0) by using
Equations (4) and (5) recursively; see Algorithm A1 (Appendix A).

Remark 2. For the sake of completeness, we note that the restricted hitting probability P(i,j),K(n), for any
initial state (i, j) with j ∈ {0, . . . , Mi} and i ∈ {2, . . . , K− 1}, can be similarly derived from the probabilistic
interpretation of the matrix −T−1(K)TK(K), in such a way that

P(i,j),K(n) =
(
−T−1(K)TK(K)

)
Mi−1+∑i−1

i′=1
Mi′+1+j,1+n

, (6)

for phases n ∈ {0, . . . , MK}, where we denote by (A)l,l′ the (l, l′)-th entry of matrix A. Therefore, a general
version of Algorithm A1 (Appendix A) can be written by exploiting the block-structured form of −T−1(K) in
(5), which is left to the interested reader.

3. Number of Upcrossings and Sojourn Times

We shall examine here the number µ(1,j),K of upcrossings from states in level l(K − 1) to level
l(K) (i.e., the number of times the level variable I(t) increases its value from K− 1 to K) and the total
time γ(1,j),K that process X spends at states in

⋃N
i=K l(i) before the first entrance of X into states in l(0),

provided that (1, j) is the initial state.
We note that these descriptors can have different interpretations depending on the particular QBD

process of interest. For example, in an epidemic model (see Section 5), if the level l(K) consists of states
in which exactly K infected hosts are present in the population, the number µ(1,j),K of upcrossings is
equivalent to the number of times the threshold number K of infected hosts is reached during a given
outbreak. This can be relevant when, in particular, K represents a threshold level of infectives at which
some mitigation strategies are implemented, or when K represents a maximum number of infectives
for whom there is actual capacity in the healthcare system to deal with. In these scenarios, it is also
relevant to quantify the total amount of time γ(1,j),K that the epidemic stays at or above level l(K),
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which would quantify the time during which the mitigation strategies are in place, as a measure of
cost, or the time period during which the healthcare capacity is exceeded.

To begin with, we establish the connection between µ(1,j),K and the numbers µ(i,l),K of upcrossings
from level l(K− 1) to level l(K) before a visit to l(0), provided that (i, l) is the initial state, for phases
l ∈ {0, . . . , Mi} and integers i ∈ {K− 1, K}.

Theorem 2. For a predetermined integer K ∈ {2, . . . , N} and an initial state (1, j) with j ∈ {0, . . . , M1},
the mass function of the number µ(1,j),K of upcrossings is given by the probabilities

P
(

µ(1,j),K = 0
)

= 1− u(j, K)QK−1,K11+MK ,

P
(

µ(1,j),K = m
)

=
MK

∑
n=0

P(1,j),K(n)P
(

µ(K,n),K = m− 1
)

, m ∈ N, (7)

where the probabilities {P(µ(K,n),K = m) : m ∈ N0}, for phases n ∈ {0, . . . , MK}, can be expressed as

P
(

µ(K,n),K = m
)

=
MK−1

∑
l=0

Q(K,n),K−1(l)P
(

µ(K−1,l),K = m
)

, m ∈ N0. (8)

In these expressions, the probabilities {P(µ(K−1,l),K = m) : m ∈ N0}, for phases l ∈
{0, . . . , MK−1}, satisfy

P
(

µ(K−1,l),K = 0
)

= 1− e1+MK−1(1 + l)W(K− 1)QK−1,K11+MK ,

P
(

µ(K−1,l),K = m
)

=
MK

∑
n=0

P(K−1,l),K(n)P
(

µ(K,n),K = m− 1
)

, m ∈ N, (9)

where W(K− 1) = −Q−1
1,1 if K = 2, and V2,2(K) if K ∈ {3, . . . , N}, and Q(K,n),K−1(l) is the probability that,

starting from state (K, n), process X visits the state (K− 1, l) when it enters level l(K− 1) for the first time.

Proof. Let us consider what must happen in order for the event {µ(1,j),K = m}, for integers m ∈ N,
to occur. Conditioning on the first entrance of X into l(K) before a visit to l(0), the process X is forced
to return to level l(K), starting from states in l(K), by means of m− 1 upcrossings from l(K− 1) to l(K)
before a visit to l(0) and a number of downcrossings from l(K + 1) to l(K), which are not relevant for
the event {µ(1,j),K = m} to occur. Then, we may obtain (7) by conditioning on the state (K, n) visited
by X in its first entrance into l(K), starting from (1, j), avoiding l(0). Note that, in the special case
m = 0, process X must enter level l(0), starting from (1, j), before moving up to l(K), which occurs
with probability P(η̄(1,j),0 < η(1,j),K) = 1− u(j, K)QK−1,K11+MK , by Corollary 1.

Equation (8) is similarly obtained by conditioning on the state (K− 1, l) visited by process X in
its first entrance into level l(K− 1), starting from state (K, n), whereas (9) is derived from the above
argument by replacing the initial state (1, j) by (K− 1, l). This completes the proof.

In evaluating the sequence {Q(K,n),K−1(l) : l ∈ {0, . . . , MK−1}} of first-passage probabilities,
we may observe that they correspond to the absorption probabilities into states in level l(K − 1)
in an auxiliary absorbing process X̃ (K) that, starting from (K, n), takes values in the state space
S̃(K) = l(K− 1) ∪⋃N

i=K l(i) and has the following block-structured infinitesimal generator:

Q̃(K) =

(
0(1+MK−1)×(1+MK−1)

0(1+MK−1)×(N−K+1+∑N
i=K Mi)

T̃K−1(K) T̃(K)

)
,
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where

T̃K−1(K) =

(
QK,K−1

0(N−K+∑N
i=K+1 Mi)×(1+MK−1)

)
,

and the sub-matrix T̃(K) is obtained from Q by removing rows and columns associated with states
in
⋃K−1

i=0 l(i). Specifically, it is readily seen that the matrix −T̃−1(K)T̃K−1(K) consists of first-passage
probabilities to states in level l(K − 1), provided that process X starts from states in

⋃N
i=K l(i).

This yields

Q(K,n),K−1(l) = e1+MK (1 + n)Ṽ1,1(K)QK,K−1eT
1+MK−1

(1 + l), (10)

for phases n ∈ {0, . . . , MK} and l ∈ {0, . . . , MK−1}, where Ṽ1,1(K) = (−QK,K − (1− δK,N)Ũ1,2(K)
(−T̃−1(K + 1))Ũ2,1(K))−1, δa,b is the Kronecker’s delta, and the matrices Ũ1,2(K) and Ũ2,1(K) are
given by

Ũ1,2(K) =
(

QK,K+1, 0(1+MK)×(N−K−1+∑N
i=K+2 Mi)

)
,

Ũ2,1(K) =

(
QK+1,K

0(N−K−1+∑N
i=K+2 Mi)×(1+MK)

)
.

Algorithm A2 (Appendix B) uses the above recursive relations and iteratively computes
probabilities Q(K,n),K−1(l), for phases n ∈ {0, . . . , MK} and l ∈ {0, . . . , MK−1}, by observing that
the matrix T̃−1(N) is initially assigned the matrix −Q−1

N,N .
The probability generating function ϕ(1,j),K(z) = ∑∞

m=0 zmP(µ(1,j),K = m) of µ(1,j),K can be derived
from (7)–(9) and is given by

ϕ(1,j),K(z) = 1− u(j, K)QK−1,K11+MK + z
MK

∑
n=0

P(1,j),K(n)ϕ(K,n),K(z),

for |z| ≤ 1, where the generating functions ϕ(K,n),K(z), for phases n ∈ {0, . . . , MK}, satisfy

ϕ(K,n),K(z) =
MK−1

∑
l=0

Q(K,n),K−1(l)ϕ(K−1,l),K(z),

for |z| ≤ 1, with

ϕ(K−1,l),K(z) = 1− e1+MK−1(1 + l)W(K− 1)QK−1,K11+MK + z
MK

∑
n=0

P(K−1,l),K(n)ϕ(K,n),K(z),

for |z| ≤ 1 and phases l ∈ {0, . . . , MK−1}. By differentiating these equalities successively with respect
to z and setting z = 1, we may obtain the column vectors m(k)

1 of factorial moments E[µ(1,j),K(µ(1,j),K −
1) · · · (µ(1,j),K − k + 1)] as follows:

m(k)
1 = P1,K

(
km(k−1)

K + m(k)
K

)
, k ∈ N,

where the (1 + j, 1 + n)-th entry of matrix P1,K is given by P(1,j),K(n), for phases j ∈ {0, . . . , M1} and

n ∈ {0, . . . , MK}, and the column vectors m(k)
K are obtained iteratively from the equality

(
I1+MK − P′K,K−1PK−1,K

)
m(k)

K = kP′K,K−1PK−1,Km(k−1)
K , k ∈ N,
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with m(0)
K = 11+MK . In this equality, the (1 + n, 1 + l)-th entry of P′K,K−1 and the (1 + l, 1 + n)-th entry

of PK−1,K are specified by the probabilities Q(K,n),K−1(l) in (10) and P(K−1,l),K(n) in (6), respectively,
for phases l ∈ {0, . . . , MK−1} and n ∈ {0, . . . , MK}.

Let us now turn to the probability law of the random variable γ(1,j),K. The probability law of
γ(1,j),K has the discrete contribution

P(γ(1,j),K = 0) = 1− u(j, K)QK−1,K11+MK ,

since P(γ(1,j),K = 0) = P(η̄(1,j),0 < η(1,j),K), and a continuous contribution, which is linked the
restricted Laplace-Stieltjes transform

ψ(1,j),K(s) = E
[
e−sγ(1,j),K 1{η(1,j),K < η̄(1,j),0}

]
,

for Re(s) ≥ 0.
By conditioning on the first state visited in l(K) before a visit to l(0), it is seen that

ψ(1,j),K(s) =
MK

∑
n=0

P(1,j),K(n)
MK−1

∑
l=0

θ(K,n),K−1(s; l)E
[
e−sγ(K−1,l),K

]
, (11)

for Re(s) ≥ 0, where γ(K−1,l),K is the total time that process X spends at states in
⋃N

i=K l(i) before a visit
to l(0), provided that (K− 1, l) is the initial state, and θ(K,n),K−1(s; l) is the restricted Laplace-Stieltjes
transform of the first-passage time ζ(K,n),K−1(l) to level l(K − 1), provided that (K, n) is the initial
state and the first state visited in level l(K − 1) is (K − 1, l), for phases n ∈ {0, . . . , MK} and
l ∈ {0, . . . , MK−1}. Note that ζ(K,n),K−1(l) is a defective random variable with P(ζ(K,n),K−1(l) < ∞) =

Q(K,n),K−1(l).
Theorem 3 tells us how to compute the column vectors ΘK,K−1(s; l), for l ∈ {0, . . . , MK−1},

with (1 + n)th entry given by θ(K,n),K−1(s; l), for n ∈ {0, . . . , MK}, in terms of the Laplace-Stieltjes
transforms θ(i,n),K−1(s; l) of the first-passage time ζ(i,n),K−1(s; l) to level l(K− 1), provided that (i, n)
is the initial state and the first state visited by process X in level l(K − 1) is (K − 1, l), for phases
n ∈ {0, . . . , MK} and l ∈ {0, . . . , MK−1}, and integers i ∈ {K + 1, . . . , N}. From now on we denote
by q(i,j),(i′ ,j′) the (1 + j, 1 + j′)-th entry of the sub-matrix Qi,i′ and by −q(i,j) the (1 + j, 1 + j)-th entry
of sub-matrix Qi,i, for phases j ∈ {0, . . . , Mi} and j′ ∈ {0, . . . , Mi′}, and integers i′ ∈ {max{0, i −
1}, i, min{i + 1, N}}.

Theorem 3. For phases l ∈ {0, . . . , MK−1}, the column vector ΘK,K−1(s; l) is determined from the equality

ΘK,K−1(s; l) = gK(s; l) + (1− δK,N)G−1
K (s)QK,K+1ΘK+1,K−1(s; l), (12)

for Re(s) ≥ 0, where the column vector ΘK+1,K−1(s; l) is evaluated, starting from ΘN,K−1(s; l) = gN(s; l),
from the relations Θi,K−1(s; l) = gi(s; l) + G−1

i (s)Qi,i+1Θi+1,K−1(s; l), for i ∈ {K + 1, . . . , N − 1}, and the
matrices Gi(s) and the column vectors gi(s; l) satisfy

Gi(s) = sI1+Mi −Qi,i − (1− δi,K)Qi,i−1G−1
i−1(s)Qi−1,i,

gi(s; l) = G−1
i (s)Qi,i−1

(
δi,Ke1+MK−1(1 + l) + (1− δi,K)gi−1(s; l)

)
,

for integers i ∈ {K, . . . , N}.
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Proof. By conditioning on the first state visited by process X after leaving (K, n), it is found that

θ(K,n),K−1(s; l) =
q(K,n),(K−1,l)

s + q(K,n)
+

MK

∑
n′=0,n′ 6=n

q(K,n),(K,n′)

s + q(K,n)
θ(K,n′),K−1(s; l)

+(1− δK,N)
MK+1

∑
n′=0

q(K,n),(K+1,n′)

s + q(K,n)
θ(K+1,n′),K−1(s; l),

for phases n ∈ {0, . . . , MK} and l ∈ {0, . . . , MK−1}, and the sequences of Laplace-Stieltjes transforms
{θ(i,n),K−1(s; l) : l ∈ {0, . . . , MK−1}}, for phases n ∈ {0, . . . , Mi} and integers i ∈ {K + 1, . . . , N} with
K ∈ {2, . . . , N − 1}, satisfy

θ(i,n),K−1(s; l) =
Mi−1

∑
n′=0

q(i,n),(i−1,n′)

s + q(i,n)
θ(i−1,n′),K−1(s; l) +

Mi

∑
n′=0,n′ 6=n

q(i,n),(i,n′)
s + q(i,n)

θ(i,n′),K−1(s; l)

+(1− δi,N)
Mi+1

∑
n′=0

q(i,n),(i+1,n′)

s + q(i,n)
θ(i+1,n′),K−1(s; l).

By using the column vectors Θi,K−1(s; l), for l ∈ {0, . . . , MK−1}, with entries θ(i,n),K−1(s; l), for n ∈
{0, . . . , Mi} and integers i ∈ {K, . . . , N}, the above equations can be rewritten in matrix form as

(
sI1+Mi −Qi,i

)
Θi,K−1(s; l) = Qi,i−1

(
δi,Ke1+MK−1(1 + l) + (1− δi,K)Θi−1,K−1(s; l)

)
+(1− δi,N)Qi,i+1Θi+1,K−1(s; l),

for phases l ∈ {0, . . . , MK−1} and integers i ∈ {K, . . . , N}, from which the theorem follows by
block-Gaussian elimination.

In a similar manner to (11), the Laplace-Stieltjes transform of γ(K−1,l),K can be expressed as

E
[
e−sγ(K−1,l),K

]
= P(µK−1,l),K = 0) + ψ(K−1,l),K(s), (13)

for Re(s) ≥ 0 and phases l ∈ {0, . . . , MK−1}, where ψ(K−1,l),K(s) is the restricted
Laplace-Stieltjes transform of γ(K−1,l),K on the sample paths of X verifying η(K−1,l),K <

η̄(K−1,l),0. From Equations (11)–(13) and the relation

ψ(K−1,l),K(s) =
MK

∑
n=0

P(K−1,l),K(n)
MK−1

∑
l′=0

θ(K,n),K−1(s; l′)E
[
e−sγ(K−1,l′),K

]
,

for phases l ∈ {0, . . . , MK−1}, it is seen that the column vector Ψ1,K(s) with entries ψ(1,j),K(s), for j ∈
{0, . . . , M1}, is given by

Ψ1,K(s) = P1,KΘK,K−1(s) (pK−1 + ΨK−1,K(s)) , (14)

for Re(s) ≥ 0, with

ΨK−1,K(s) =
(
I1+MK−1 − PK−1,KΘK,K−1(s)

)−1 PK−1,KΘK,K−1(s)pK−1, (15)

where the (1 + n, 1 + l)-th entry of the matrix ΘK,K−1(s) records the Laplace-Stieltjes transform
θ(K,n),K−1(s; l) of ζ(K,n),K−1(l), for n ∈ {0, . . . , MK} and l ∈ {0, . . . , MK−1}, and the (1 + l)th entry



Mathematics 2020, 8, 1718 10 of 26

of the column vector pK−1 is given by P(µK−1,l),K = 0), for l ∈ {0, . . . , MK−1}. We may also observe
that the matrix ΘK,K−1(s) has the form

ΘK,K−1(s) = (ΘK,K−1(s; 0), . . . , ΘK,K−1(s; MK−1)),

where the column vectors ΘK,K−1(s; l), for l ∈ {0, . . . , MK−1}, can be derived from Theorem 3;
see Algorithm A3 (Appendix C).

From (14) and (15), it is found that the following relations hold for the column vectors Γ
(k)
k′ ,K =

(−1)kdkΨk′ ,K(s)/dsk|s=0, with k′ ∈ {1, K− 1}:

Γ
(k)
1,K = P1,K

(
Θ

(k)
K,K−1pK−1 +

k

∑
k′=0

(
k
k′

)
Θ

(k′)
K,K−1Γ

(k−k′)
K−1,K

)
, k ∈ N,

Γ
(k)
K−1,K =

(
I1+MK−1 − PK−1,KP′K,K−1

)−1 PK−1,K

×
(

Θ
(k)
K,K−1pK−1 + (1− δk,0)

k

∑
k′=1

(
k
k′

)
Θ

(k′)
K,K−1Γ

(k−k′)
K−1,K

)
, k ∈ N0,

with Θ
(k)
K,K−1 = (−1)kdkΘK,K−1(s)/dsk|s=0, so that the kth moment of the random variable γ(1,j),K is

given by

E[γk
(1,j),K] = δk,0 + (1− δk,0)

(
Γ
(k)
1,K

)
1+j

, k ∈ N0,

for phases j ∈ {0, . . . , M1}. We only briefly indicate here that the matrix Θ
(k)
K,K−1 is derived from (12) by

differentiating k times with respect to s and evaluating at s = 0. Moreover, it can be readily evaluated

from Θ
(k−1)
K,K−1, as shown in Algorithm A4 (Appendix C).

4. Area under the Level Trajectory

Consider the trajectory of the level variable I(t), for which (I(0), J(0)) = (i, j) with (i, j) ∈ S \ l(0),
and define the area under the level trajectory as the stochastic integral

α(i,j),0 =
∫ η̄(i,j),0

0
I(t)dt,

where, in a similar manner to η̄(1,j),0, the random variable η̄(i,j),0 denotes the first-passage time to states
in level l(0), provided that process X starts from state (i, j).

Remark 3. In the setting of epidemic models, α(1,j),0 can be thought of as the total amount of individual time
units of infection during the course of the epidemic. Its probability law, which is inherently linked to the duration
η̄(1,j),0 of an outbreak, is directly related to the cost of the epidemic, as defined by Downton [35] and Gani and
Jerwood [36]; for a related work, also see Ball [37].

The Laplace-Stieltjes transforms φ(i,j),0(s) = E[e−sα(i,j),0 ] of α(i,j),0, for Re(s) ≥ 0 and states (i, j) ∈
S \ l(0), are uniquely determined as the solution to the system of equations

φ(i,j),0(s) =
Mi−1

∑
j′=0

q(i,j),(i−1,j′)

is + q(i,j)
φ(i−1,j′),0(s) +

Mi

∑
j′=0,j′ 6=j

q(i,j),(i,j′)
is + q(i,j)

φ(i,j′),0(s)

+(1− δi,N)
Mi+1

∑
j′=0

q(i,j),(i+1,j′)

is + q(i,j)
φ(i+1,j′),0(s), (16)



Mathematics 2020, 8, 1718 11 of 26

for Re(s) ≥ 0 and states (i, j) ∈ S \ l(0), with φ(0,j′),0(s) = 1, for phases j′ ∈ {0, . . . , M0}. To prove
Equation (16), we may condition on the first state visited by process X after leaving (i, j). If this state is
(i′, j′), which occurs with probability q−1

(i,j)q(i,j),(i′ ,j′), then the conditional distribution of the stochastic
integral α(i,j),0 is equivalent to the convolution of iᾱ(i,j) and α(i′ ,j′),0, where iᾱ(i,j) amounts to the random
area of a rectangle with height i and base given by the sojourn time ᾱ(i,j) at (i, j). Equation (16) is then
obtained from the equality

E
[
e−s(iᾱ(i,j)+α(i′ ,j′),0)

]
=

q(i,j)
is + q(i,j)

φ(i′ ,j′),0(s),

for states (i′, j′) ∈ ⋃min{i+1,N}
i′′=i−1 l(i′′) \ {(i, j)}, since ᾱ(i,j) is an exponentially distributed random variable

with mean q−1
(i,j). In the special case i′ = 0, it is clear that α(0,j′),0 = 0 almost surely.

In matrix form, the system of Equations (16) becomes(
isI1+Mi −Qi,i

)
Φi,0(s) = Qi,i−1

(
δi,111+Mi−1 + (1− δi,1)Φi−1,0(s)

)
+ (1− δi,N)Qi,i+1Φi+1,0(s), (17)

for integers i ∈ {1, . . . , N}, where Φi′ ,0(s) is a column vector of order 1 + Mi′ and its (1 + j′)th
entry is given by the Laplace-Stieltjes transform φ(i′ ,j′),0(s) of α(i′ ,j′),0, for phases j′ ∈ {0, . . . , Mi′} and
i′ ∈ {i− 1, i, min{i + 1, N}}. Equation (17) results in the recursive relations

Φi,0(s) = hi(s) + H−1
i (s)Qi,i+1Φi+1,0(s), i ∈ {1, . . . , N − 1}, (18)

with ΦN,0(s) = hN(s), where Hi(s) = isI1+Mi − Qi,i − (1 − δi,1)Qi,i−1H−1
i−1(s)Qi−1,i and hi(s) =

H−1
i (s)Qi,i−1

(
δi,111+Mi−1 + (1− δi,1)hi−1(s)

)
, for integers i ∈ {1, . . . , N}, from which it follows that

the column vectors a(k)i,0 with entries E[αk
(i,j),0], for phases j ∈ {0, . . . , Mi} and k ∈ N, can be computed,

starting from a(k)N,0 = h(k)
N , as

a(k)i,0 = h(k)
i + H−1

i Qi,i+1a(k)i+1,0, i ∈ {1, . . . , N − 1}, (19)

where Hi = Hi(0) and h(k)
i = H−1

i

(
(1− δi,1)Qi,i−1h(k)

i−1 + kia(k−1)
i,0

)
, with a(0)i,0 = 11+Mi . For an

implementation of (18) and (19), see Algorithms A5 and A6 (Appendix D).

5. An Application to Varicella-Zoster Virus Infections

We illustrate our analysis by focusing here on a mathematical model for varicella-zoster virus in a
nursing home. Varicella-zoster virus (VZV) causes chickenpox (varicella) and shingles (herpes zoster).
In childhood, chickenpox disease produces itchy blisters but rarely causes serious problems. However,
in adults who have not suffered the disease as children, chickenpox can lead to serious complications.
After primary infection, VZV can remain dormant within dorsal root ganglia for life, and it can
reactivate depending on a number of factors including the host immune system. Herpes zoster
is the reactivation of VZV. Factors associated with recurrent disease include, among others, aging,
immunosupression, intrauterine exposure to VZV, or having had varicella at a young age. Shingles is
characterized by a rash of blisters, and it can be very painful but is not life-threatening. Varicella is
highly contagious because the transmission occurs by direct contact, by air (coughing and sneezing)
and by areosolization of virus from skin lesions. A person with active herpes zoster can transmit
the VZV, through direct contact, to a person who never had chickenpox; we refer the reader to
Reference [38] for a flow diagram showing the different stages for an individual during an outbreak.

Our interest is in illustrating the applicability of our methodology by focusing on a Markovian
model for the spread of VZV infection in a closed population, such as a nursing home for elderly
people, subject to repeated outbreaks. The mathematical model assumes an homogeneous and
finite population with constant size N, where residents who die or abandon the nursing home
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are immediately replaced by the admission of a new resident, reflecting high demand for nursing
resources. Newly admitted residents are assumed to be either susceptible or asymptomatic, but never
showing signs or symptoms of varicella or herpes zoster. We define the continuous-time Markov
chain Y = {(I(t), Z(t), A(t)) : t ≥ 0}, where I(t), Z(t) and A(t) represent the number of varicella
infectious (i.e., residents infected and infectious with varicella), zoster infectious (i.e., residents showing
dermal rash of herpes zoster) and asymptomatic (i.e., residents with dormant VZV) residents at time t.
Since we assume constant population size, it is clear that the number of susceptible residents is given
by S(t) = N − I(t)− Z(t)− A(t).

We assume that recovery times, as well as transmission times and the inter-event times for all
other events in this process are exponentially distributed and mutually independent, leading to the
Markovian hypothesis. We make the following further assumptions:

• Varicella infectious residents recover at rate γ.
• Zoster infectious residents recover at rate ε.
• Residents are removed (either by dying or abandoning the nursing facility) at rate µ.
• Newly admitted residents are (asymptomatically) infected with probability q.
• Transmission between susceptible and varicella infectious residents occurs at rate β,

while transmission between susceptible and zoster infectious residents occurs at rate η.
• Reactivation of zoster for asymptomatic residents occurs at rate δ.

These hypotheses lead to a number of state transitions for process Y with infinitesimal rates

q(i,z,a),(i′ ,z′ ,a′) =



iγ, if (i′, z′, a′) = (i− 1, z, a + 1) and i > 0,
zε, if (i′, z′, a′) = (i, z− 1, a + 1) and z > 0,
i(1− q)µ, if (i′, z′, a′) = (i− 1, z, a) and i > 0,
iqµ, if (i′, z′, a′) = (i− 1, z, a + 1) and i > 0,
a(1− q)µ, if (i′, z′, a′) = (i, z, a− 1) and a > 0,
z(1− q)µ, if (i′, z′, a′) = (i, z− 1, a) and z > 0,
zqµ, if (i′, z′, a′) = (i, z− 1, a + 1) and z > 0,
(N − i− z− a)qµ, if (i′, z′, a′) = (i, z, a + 1) and a + i + z < N,
(N − i− z− a)(iβ + zη), if (i′, z′, a′) = (i + 1, z, a) and a + i + z < N,
aδ, if (i′, z′, a′) = (i, z + 1, a− 1) and a > 0,

for any states (i, z, a) and (i′, z′, a′) with (i′, z′, a′) 6= (i, z, a). We point out that some events are omitted
here since they are unobserved by process Y , meaning that they do not cause a change of state (e.g., if an
asymptomatic resident dies and a newly admitted asymptomatic resident arrives, which occurs with
rate aqµ but does not affect the state of the process).

The continuous-time Markov chain Y is defined on the state space

SY = {(i, z, a) : i, z, a ∈ {0, . . . , N}, i + z + a ∈ {0, . . . , N}}.

Even though process Y is three-dimensional (while process X in Section 1 is two-dimensional),
one can obtain a QBD formulation for process Y by organizing SY in levels as

SY =
N⋃

i=0

l(i),

with l(i) = {(i, z, a) ∈ SY : z + a ∈ {0, . . . , N − i}}, for integers i ∈ {0, . . . , N}. The ith level l(i)
is written as l(i) =

⋃N−i
z=0 l(i, z), where l(i, z) = {(i, z, a) ∈ l(i) : a ∈ {0, . . . , N − i− z}}, so that the

number of states in sub-level l(i, z) is #l(i, z) = N + 1− i− z, and

#SY =
(N + 1)(N + 2)(N + 3)

6
.
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This organization of states in terms of levels and sub-levels, as well as the transitions described
above, leads to the following block-tridiagonal representation for the infinitesimal generator of Y :

Q =


A0,0 A0,1

A1,0 A1,1 A1,2
. . . . . . . . .

AN−1,N−2 AN−1,N−1 AN−1,N
AN,N−1 AN,N

 .

We note that this tridiagonal structure means that process Y is a finite QBD process, so that our
arguments in Sections 2–5 directly apply. Variable I(t) in Y is the level, representing the number
of varicella infectious individuals at any given time. The phase J(t) in our original process X in
Section 1 has a bivariate representation here J(t) = (Z(t), A(t)). These phases are organized in terms
of sub-levels as described above. In particular, one orders sub-levels inside l(i) as

l(i, 0) ≺ l(i, 1) ≺ · · · ≺ l(i, N − i),

while states inside each sub-level l(i, z) are ordered as

(i, z, 0) ≺ (i, z, 1) ≺ · · · ≺ (i, z, N − i− z).

Thus, the first phase (denoted by j = 0 in Section 1) in level l(i) is equivalent to the pair (z, a) =
(0, 0), while the last phase is the j = ( (N+1−i)(N+2−i)

2 − 1)th one which corresponds to (z, a) = (N− i, 0),
since the number of phases in each level l(i) (denoted by Mi + 1 in Section 1) is given by

#l(i) =
(N + 1− i)(N + 2− i)

2
.

The organization of phases for each level l(i) in terms of sub-levels l(i, z) means that sub-matrices
Ai,i′ are given as follows:

• For i ∈ {1, . . . N − 1}, sub-matrix Ai,i−1 is associated with jumps of process Y from states in level
l(i) to states in level l(i− 1). In particular, it is given by

Ai,i−1 =


Bi,i−1(0, 0)

Bi,i−1(1, 1)
. . .

Bi,i−1(N − i, N − i) 0

 .

Matrices Bi,i−1(z, z) consist of transition rates from sub-level l(i, z) to sub-level l(i− 1, z) and are
given in Appendix E. We can deal separately with the case i = N, for which

AN,N−1 =
(

BN,N−1(0, 0), 0
)

.

• For i ∈ {0, . . . N − 1}, sub-matrix Ai,i is related to transitions from level l(i) to level l(i) and has
the structured form

Bi,i(0, 0) Bi,i(0, 1)
Bi,i(1, 0) Bi,i(1, 1) Bi,i(1, 2)

. . .
. . .

. . .
Bi,i(N − i− 1, N − i− 2) Bi,i(N − i− 1, N − i− 1) Bi,i(N − i− 1, N − i)

Bi,i(N − i, N − i− 1) Bi,i(N − i, N − i)

 ,
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where matrices Bi,i(z, z′) consist of transition rates from states in sub-level l(i, z) to states in
sub-level l(i, z′), for z′ ∈ {z− 1, z, z + 1}, and are detailed in Appendix E. It is worth noting the
particular case i = N, which leads to the single-element matrix AN,N = −N(µ + γ).

• For i ∈ {1, . . . , N − 1}, sub-matrix Ai,i+1 corresponds to transitions from states in level l(i) to
states in level l(i + 1) and is given by

Ai,i+1 =



Bi,i+1(0, 0)
Bi,i+1(1, 1)

Bi,i+1(2, 2)
. . .

Bi,i+1(N − i− 1, N − i− 1)
0


,

where matrices Bi,i+1(z, z) contain transition rates from states in sub-level l(i, z) to states in
sub-level l(i + 1, z), and are given in Appendix E. It is worth noting the particular case i = 0,
which leads to matrix

A0,1 =



0(N+1)×N
B0,1(1, 1)

B0,1(2, 2)
. . .

B0,1(N − 1, N − 1)
0


.

For process Y , the parameter values (γ, ε, µ, q, β, δ) in our numerical experiments have been
chosen according to the following assumptions:

(i) We consider a long-term nursing facility where the average length of stay of residents is 800 days
(i.e., 2.202 years) [39,40] and set µ = 1/2.202 = 0.454 years −1.

(ii) Residents recover from varicella after an average of 7 days [38]; thus, we set γ = 52.142 years−1.
(iii) The average recovery time for herpes zoster is 20 days [38], so we set ε = 18.250 years−1.
(iv) Based on existing data for the reactivation rate for zoster [38,41,42], we set δ = 0.065 years−1.
(v) Since it is estimated that around 90% of adults in the USA carry VZV and are at risk of

developing herpes zoster [41], and a similar percentage is estimated for other countries in
temperate climates [43], we explore values q ∈ (0.8, 0.9) in our numerical results.

(vi) Varicella is highly infectious, but the particular transmissibility depends on a number of
factors [38,41–43] (e.g., amount of contact in the nursing facility, control strategies in place,
such as cohorting of staff and residents, etc). Thus, we will explore two parameter values
β ∈ {38.0, 190.0}. In particular, we set β = 38.0 to broadly represent a situation where the
nursing home has a range of control strategies in place when the outbreak starts, while β = 190.0
represents the situation where no control strategies are in place. Note that the value β = 190.0
is selected by assuming a basic reproduction number R0 = β/γ = 3.644, in accordance with
estimated results for VZV transmission displayed in Reference [44].
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Finally, herpes zoster is transmitted significantly less than varicella itself [41], but its particular
transmission rate has not been precisely quantified to the best of our knowledge, so we explore values
η ∈ (0, β) in our numerical results.

For purely illustrative purposes, we consider a nursing home with N = 50 residents and focus
on four different scenarios which vary in potential initial conditions and which allow us to carry out
a sensitivity analysis of the summary statistics described in Sections 2–4 on the parameter values
discussed above. In particular, these scenarios are specified as follows:

• Scenario 1. Outbreak initiated by a varicella infectious resident and prevalence of asymptomatics given
by q = 0.9, i.e., initial condition (i, z, a, s) = (1, 0, 45, 4).

• Scenario 2. Outbreak initiated by a zoster infectious resident and prevalence of asymptomatics given by
q = 0.9, i.e., initial condition (i, z, a, s) = (0, 1, 45, 4).

• Scenario 3. Outbreak initiated by a varicella infectious resident and prevalence of asymptomatics given by
q = 0.8, i.e., initial condition (i, z, a, s) = (1, 0, 40, 9).

• Scenario 4. Outbreak initiated by a zoster infectious resident and prevalence of asymptomatics given by
q = 0.8, i.e., initial condition (i, z, a, s) = (0, 1, 40, 9).

For each scenario, our interest is in computing, by means of the analysis in Sections 2–4,
the following summary statistics:

• The probability P(η(i,z,a),K < η̄(i,z,a),0) of reaching level l(K) (that is, K varicella infectious residents
in the nursing home) before reaching level l(0) (end of the varicella outbreak), for different values
of K.

• The mean number E[µ(i,z,a),K] of upcrossings to level l(K).
• The proportion of expected time E[γ(i,z,a),K]/E[η̄(i,z,a),0] that the process Y stays at or above level

l(K) (so, with K or more varicella infectious residents).
• The ratio E[α(i,z,a),0]/(N · E[η̄(i,z,a),0]), which represents the area under the curve of varicella

infectives normalized by the total amount of time units that N residents stay in the nursing home
during the varicella outbreak.

In Figure 1, we plot the probability P(η(i,z,a),K < η̄(i,z,a),0) of reaching a particular threshold value
K of varicella infectives (which might represent, for example, a particular number of infectives which
would trigger the implementation of particular control strategies in the nursing home), for K ∈ {3, 5},
β ∈ {38.0, 190.0} and versus different values of η ∈ (0, β), for Scenarios 1–4. It is clear that this
probability, for those scenarios related to a varicella infective starting the outbreak (Scenarios 1 and 3),
does not significantly depend on the reactivation rate η of zoster infection as one would expect
(since the initially infectious resident is a varicella infective). For Scenarios 2 and 4, in which a zoster
infective starts the outbreak, the probability of reaching K varicella infective residents sharply increases
for initially increasing values of η (better allowing for the initially infective zoster to transmit before
recovering), and then slowly stabilizes. On the other hand, it is worth noting that, due to the highly
infectious nature of VZV, the maximum number of varicella infective residents reached before the end
of the outbreak –not explicitly computed here, but which clearly affects the probability of reaching the
particular threshold levels l(5) and l(10)– directly depends on the number of susceptible residents
in the nursing home when the outbreak starts. This number of susceptibles directly depends on
parameter q (q = 0.9 in Scenarios 1 and 2, leading to 4 susceptible residents; q = 0.8 in Scenarios 3 and
4, leading to 9 susceptible residents) and directly explains the asymptotic behavior of curves observed
in Figure 1 for K = 3 and 5.
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(β = 190.0, K = 5)

(β = 38.0, K = 3)

Figure 1. The probability P(η(i,z,a),K < η̄(i,z,a),0) as a function of η, for N = 50.

In Figure 2, we plot the mean number of upcrossings to level l(K), for K = 3, as a function
of η. We note that we always obtain, regardless of the parameters varied here, a relatively small
mean number of upcrossings (e.g., less than 1.5 in all scenarios). We point out that a mean number
of upcrossings significantly below 1 means that the threshold number K = 3 of varicella infective
residents is not actually reached in most of the stochastic realizations of process Y . This happens,
for example, when a zoster infective resident starts the outbreak and there are control measures in
place, so that the transmissibility of herpes zoster is low (i.e., relatively small values of η in Figure 2).
For large enough values of η, or for those scenarios in which a varicella infective resident starts the
outbreak, a mean number of upcrossings relatively close to 1 illustrates how level l(K) with K = 3 is
in fact reached during the early stages of the outbreak (i.e., while the number of infective residents
is increasing over early times, moving towards its peak beyond K = 3). Values of E[µ(i,z,a),K] slightly
above 1 illustrate the stochasticity of the epidemic process under analysis and might be explained by
stochastic contributions from some particular realizations of the process (for example, if process Y
reaches K = 3 varicella infective residents, and one of these residents recovers before another infection
immediately occurs, moving the process to level l(2) before visiting level l(3) again, and causing then
two upcrossings).
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Figure 2. The mean number E[µ(i,z,a),K ] of upcrossings as a function of η, for β = 38.0, K = 3 and
N = 50.

In Figure 3, we plot the proportion of expected time E[γ(i,z,a),K]/E[η̄(i,z,a),0] that the process Y
stays at or above level l(K). This might be of interest since, for example, if K varicella infective residents
represent an alert or warning level from which the nursing home needs to incur in some particular
costs per unit time (e.g., particular enhanced control measures), the quantity E[γ(i,z,a),K]/E[η̄(i,z,a),0]

would become an implicit quantification of this cost. We plot E[γ(i,z,a),K]/E[η̄(i,z,a),0] for a nursing home
with some control strategies initially in place (so β = 38.0), and for K = 3 for illustrative purposes.
The proportion of expected time spent above level l(K) directly depends on who starts the outbreak
(from either a varicella infective resident or a zoster infective resident) in the first place, the number
of susceptible residents in the nursing home (q = 0.9 versus q = 0.8) and the zoster infectivity rate
η. Proportions near to zero for Scenarios 2 and 4 and small values of η are explained by the fact that
level l(3) is likely not reached in these situations. On the other hand, for increasing values of the
infectivity rate η, the proportion of expected time spent above level l(3) directly depends on how
many susceptible residents stay in the nursing home (which allows for larger epidemic peaks beyond
K = 3 to be reached, likely leading to larger intervals of time until the epidemic curve decreases—by
recoveries of infective residents—and goes again below level l(3)). Similar comments explain the
behavior of Scenarios 1 and 3, but, in these, the impact of parameter η is negligible since a varicella
infective resident starts the outbreak.

Figure 3. The proportion of expected time E[γ(i,z,a),K ]/E[η̄(i,z,a),0] that process X spends at states in
∪N

i=K l(i) during an outbreak as a function of η, for β = 38.0, K = 3 and N = 50.
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In Figure 4, the interest is in the ratio E[α(i,z,a),0]/(N · E[η̄(i,z,a),0]), which represents the area under
the curve of varicella infectious residents normalized by the total amount of time units that N residents
stay at the nursing home during the varicella outbreak. We note here that this descriptor can be seen
as a measure of cost, if, for example, the nursing home incurs in some costs per infective resident and
per unit of time they remain infected. The behavior of this descriptor is similar to that observed in
previous plots, whence we do not repeat preceding observations. However, we should emphasize here
that the normalized area under the number of infectives is always less than the 7% of the total cost
during the outbreak –measured in terms of N · E[η̄(i,z,a),0]–, in such a way that the smallest and the
highest values of the ratio E[α(i,z,a),0]/(N · E[η̄(i,z,a),0]) correspond to Scenarios 2 and 3, respectively,
in our numerical experiments.

(β = 190.0)

(β = 38.0)

Figure 4. The ratio E[α(i,z,a),0]/(N · E[η̄(i,z,a),0]) as a function of η, for N = 50.

6. Conclusions

In this paper, we extended the theory of finite QBD processes, given by Gaver et al. [1] by studying
a number of random descriptors of interest which are defined inspired in their application to epidemic
models, namely first-passage times and hitting probabilities to higher levels, number of upcrossings,
and sojourn times, as well as the area under the level trajectory. We noted that these descriptors can
have specific meanings when focusing on epidemic models: first-passage times and hitting probabilities
can, for example, relate to the duration of an outbreak and the size of the epidemic, respectively;
the number of upcrossings to a particular high level can represent the number of instances a particular
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threshold number of infectives is reached (which might lead to the introduction of particular control
measures), while the area under the level trajectory can be translated into the area under the curve of
infectives, a descriptor that has been analyzed before in the theory of mathematical epidemiology due
to its potential interpretation in terms of the cost of a given outbreak. Although our results have been
derived under the assumption that the finite QBD process is irreducible, they also hold under the less
restrictive condition that l(0) is accessible from the class ∪N

i=1l(i) of communicating states.
In order to analyze these stochastic descriptors or summary statistics, we considered auxiliary

bi-dimensional absorbing processes in which infinitesimal generators are described in terms of levels
and phases, and we presented a block-structured form of these generators. We were able to exploit
this structure to determine recursive relations involving sub-matrices of these infinitesimal generators,
in order to compute the quantities of interest in an iterative and efficient way. Our algorithmic solution
involves recursive procedures and block-Gaussian elimination, whence the computational complexity
of Algorithms A1–A6 (Appendices A–D) can be written in a similar manner to the computational
complexity of the linear level reduction algorithm of Gaver et al. [1], and Algorithms 1.A–3.A of
Gómez-Corral and López-García [29]. This makes the memory requirements of Algorithms A1–A6,
especially for storing auxiliary matrices in Algorithm A1, very demanding even for moderate values
of N depending of the number of phases per level.

To illustrate the applicability of both our analytical and computational results, we have presented
a numerical study of an epidemic model for the transmission of varicella-zoster virus within a
nursing home. There is clearly future work to be done on the joint distribution of the random
vector (Imax, τmax), where Imax is the maximum number of residents who are simultaneously varicella
infectious (i.e., the maximum of the level variable) and τmax is the time taken to reach this maximum
number during an outbreak, and on how to relate herd immunity to the phase variable in the study
of vaccination strategies in the context of varicella-zoster virus infections. Among other interesting
problems to be addressed in epidemic models are also the extension to a population with variable
size or the assumption of non-exponential events. These would lead to QBD processes with infinitely
many possible values of the level variable and/or the phase variable, and piecewise-deterministic
Markov processes, respectively. In these frameworks, the study of the stochastic descriptors analyzed
in Sections 2–4 should require an analytical treatment and related numerical procedures that will
be substantially different from those used in this paper; in particular, the analysis of first-passage
times and sojourn times could benefit from the approach described by Dolgopyat and Goldsheid [45] ,
who obtain necessary and sufficient conditions for the existence of the density of the invariant measure
for random walks when the environment is ergodic in both the transient and recurrent regimes.
Another aspect that deserves further exploration is how the finite-dimensional linear algebra ideas in
Sections 2 and 3 could be replaced by some suitable extension to the QBD case of the Karlin-McGregor
orthogonal polynomial/spectral representation by translating the arguments in Reference [46–48] for
discrete time processes to continuous time.

Author Contributions: Conceptualization, A.G.-C. and M.J.L.-H.; methodology, A.G.-C.; software, D.T.;
validation, M.L.-G. and D.T.; formal analysis, A.G.-C., M.L.-G., and M.J.L.-H.; investigation, A.G.-C., M.L.-G.,
M.J.L.-H., and D.T.; writing–original draft preparation, A.G.-C. and M.L.-G.; writing–review and editing, M.L.-G.
and M.J.L.-H.; supervision, A.G.-C.; project administration, A.G.-C. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the Government of Spain (Ministry of Science and Innovation),
project PGC2018-097704-B-I00 (A.G.-C.; M.L.-G.; M.J.L.-H.), and the Community of Madrid (General Directorate for
Research and Technological Innovation), contract reference CT101/18-CT102/18/PEJD-2018-PRE/TIC-8871 (D.T.).

Acknowledgments: The authors thank the Editor and three anonymous reviewers for their constructive comments,
which have improved the presentation of the paper.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2020, 8, 1718 20 of 26

Appendix A. Restricted Hitting Probabilities {P(1,j),K(n) : n ∈ {0, . . . , MK}}, for Phases
j ∈ {0, . . . , M1}

Algorithm A1 Computation of the restricted hitting probabilities {P(1,j),K(n) : n ∈ {0, . . . , MK}} and the probability
P(η(1,j),K < η̄(1,j),0), for phases j ∈ {0, . . . , M1}.

Step 1: i := 2;
−T−1(i) := −Q−1

i−1,i−1.
Step 2: While i < K,

i := i + 1;

U1,2(i) :=

(
0(i−3+∑i−3

i′=1 Mi′ )×(1+Mi−1)

Qi−2,i−1

)
;

U2,1(i) :=
(

0(1+Mi−1)×(i−3+∑i−3
i′=1 Mi′ )

, Qi−1,i−2

)
;

V2,2(i) :=
(
−Qi−1,i−1 −U2,1(i)(−T−1(i− 1))U1,2(i)

)−1;
V2,1(i) := V2,2(i)U2,1(i)(−T−1(i− 1));
V1,2(i) := −T−1(i− 1)U1,2(i)V2,2(i);
V1,1(i) := −T−1(i− 1)(Ii−2+∑i−2

i′=1 Mi′
−U1,2(i)V2,1(i));

−T−1(i) :=
(

V1,1(i) V1,2(i)
V2,1(i) V2,2(i)

)
;

Step 3: If K = 2, then
u(j, i) := e1+M1 (1 + j)

(
−T−1(i)

)
;

else
u(j, i) := ei−2+∑i−2

i′=1 Mi′
(1 + j)V1,2(i);

P(1,j),i(n) := u(j, i)Qi−1,ieT
1+Mi

(1 + n);
P(η(1,j),i < η̄(1,j),0) := u(j, i)Qi−1,i11+Mi .

Appendix B. Probabilities {Q(K,n),K−1(l) : l ∈ {0, . . . , MK−1}}, for Phases n ∈ {0, . . . , MK}

Algorithm A2 Computation of the first-passage probabilities {Q(K,n),K−1(l) : l ∈ {0, . . . , MK−1}},
for phases n ∈ {0, . . . , MK}.

Step 1: i := N;
−T−1(i) := −Q−1

i,i .
Step 2: If K = N, then

Ṽ1,1(i) := −T̃−1(i);
else

while i > K,
i := i− 1;
Ũ1,2(i) :=

(
Qi,i+1, 0(1+Mi)×(N−i−1+∑N

i′=i+2 Mi′ )

)
;

Ũ2,1(i) :=

(
Qi+1,i

0(N−i−1+∑N
i′=i+2 Mi′ )×(1+Mi)

)
;

Ṽ1,1(i) := (−Qi,i − Ũ1,2(i)(−T̃−1(i + 1))Ũ2,1(i))−1;
Ṽ1,2(i) := Ṽ1,1(i)Ũ1,2(i)(−T̃−1(i + 1));
Ṽ2,1(i) := −T̃−1(i + 1)Ũ2,1(i)Ṽ1,1(i);
Ṽ2,2(i) := −T̃−1(i + 1)

(
IN−i+∑N

i′=i+1 Mi′
+ Ũ2,1(i)Ṽ1,2(i)

)
;

−T̃−1(i) :=
(

Ṽ1,1(i) Ṽ1,2(i)
Ṽ2,1(i) Ṽ2,2(i)

)
.

Step 3: For n ∈ {0, . . . , MK} and l ∈ {0, . . . , MK−1},
Q(i,n),i−1(l) := e1+Mi (1 + n)Ṽ1,1(i)Qi,i−1eT

1+Mi−1
(1 + l).

Appendix C. Column Vectors {ΘK,K−1(s; l) : l ∈ {0, . . . , MK−1}} and Related Moments

Algorithm A3 indicates how one may determine the sequence {ΘK,K−1(s; l) : l ∈ {0, . . . , MK−1}} by
block-Gaussian elimination. The selection s = 0 leads to the matrix P′K,K−1, whence Algorithm A3 is an
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alternative procedure to Algorithm A2 for computing the probabilities Q(K,n),K−1(l), for n ∈ {0, . . . , MK}
and l ∈ {0, . . . , MK−1}.

Algorithm A3 Computation of the column vectors ΘK,K−1(s; l), for phases l ∈ {0, . . . , MK−1} and
a predetermined complex value s with Re(s) ≥ 0.

Step 1: i := K;
Gi(s) := sI1+Mi −Qi,i;
while i < N,

i := i + 1;
Gi(s) := sI1+Mi −Qi,i −Qi,i−1G−1

i−1(s)Qi−1,i.
Step 2: l := −1;

while l < MK−1,
l := l + 1;
i := K;
gi(s; l) := G−1

i (s)Qi,i−1e1+Mi−1 (1 + l);
while i < N,

i := i + 1;
gi(s; l) := G−1

i (s)Qi,i−1gi−1(s; l);
Θi,K−1(s; l) := gi(s; l);
while i > K,

i := i− 1;
Θi,K−1(s; l) := gi(s; l) + G−1

i (s)Qi,i+1Θi+1,K−1(s; l).

Starting from the column vectors Θ
(0)
K,K−1(l), l ∈ {0, . . . , MK−1}, with entries Q(K,n),K−1(l),

for n ∈ {0, . . . , MK}, Algorithm A4 computes iteratively the column vectors Θ
(k)
K,K−1(l) =

(−1)kdkΘK,K−1(s; l)/dsk|s=0 from Θ
(k−1)
K,K−1(l) and, as a consequence, the matrix Θ

(k)
K,K−1(l) corresponds

to (Θ
(k)
K,K−1(0), . . . , Θ

(k)
K,K−1(MK−1)), for integers k ∈ N.

Algorithm A4 Computation of the column vectors Θ
(k)
K,K−1(l) in terms of Θ

(k−1)
K,K−1(l),

for phases l ∈ {0, . . . , MK−1}.

Step 1: i := K;
Fi := −Qi,i;
while i < N,

i := i + 1;
Fi := −Qi,i −Qi,i−1F−1

i−1Qi−1,i.
Step 2: l := −1;

while l < MK−1,
l := l + 1;
i := K;
fi(l) := lF−1

i Θ
(k−1)
i,K−1 (l);

while i < N,
i := i + 1;
fi(l) := F−1

i

(
lΘ(k−1)

i,K−1 (l) + Qi,i−1fi−1(l)
)

;

Θ
(k)
i,K−1(l) := fi(l);

while i > K,
i := i− 1;
Θ

(k)
i,K−1(l) := fi(l) + F−1

i Qi,i+1Θ
(k)
i+1,K−1(l).

Step 3: Θ
(k)
K,K−1(l) :=

(
Θ

(k)
K,K−1(0), . . . , Θ

(k)
K,K−1(MK−1)

)
.
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Appendix D. Laplace-Stieltjes Transform and Moments of α(i,j),0

Under the assumption that (1, j) is the initial state of processX , the Laplace-Stieltjes transform and
the kth moment of α(1,j),0 are derived directly from Algorithms A5 and A6 as φ(1,j),0(s) = (Φ1,0(s))1+j

and E[αk
(1,j),0] =

(
a(k)1,0

)
1+j

, for k ∈ N.

Algorithm A5 Computation of the column vectors Φi,0(s), for integers i ∈ {1, . . . , N} and a predetermined
complex value s with Re(s) ≥ 0.

Step 1: i := 1;
Hi(s) := sI1+Mi −Qi,i;
hi(s) := H−1

i (s)Qi,i−111+Mi−1 ;
while i < N,

i := i + 1;
Hi(s) := isI1+Mi −Qi,i −Qi,i−1H−1

i−1(s)Qi−1,i;
hi(s) := H−1

i (s)Qi,i−1hi−1(s);
Φi,0(s) := hi(s).

Step 2: While i > 1,
i := i− 1;
Φi,0(s) := hi(s) + H−1

i (s)Qi,i+1Φi+1,0(s).

Algorithm A6 Computation of the column vectors a(k)i,0 , for integers i ∈ {1, . . . , N}, k′ ∈ {0, . . . , k} and
a predetermined k ∈ N.

Step 1: k′ := 0;
i := 0;
while i < N,

i := i + 1;
a(k

′)
i,0 := 11+Mi ;

Hi := −Qi,i − (1− δi,1)Qi,i−1H−1
i−1Qi−1,i.

Step 2: While k′ < k,
k′ := k′ + 1;
i := 0;
while i < N,

i := i + 1;
h(k′)

i := H−1
i

(
(1− δi,1)Qi,i−1h(k′)

i−1 + k′ia(k
′−1)

i,0

)
;

a(k
′)

i,0 := h(k′)
i ;

while i > 1,
i := i− 1;
a(k

′)
i,0 := h(k′)

i + H−1
i Qi,i+1a(k

′)
i+1,0.

Appendix E. Matrices Bi,i′(z, z′) in Section 5

In this appendix, we provide precise definitions for matrices Bi,i′(z, z′) in Section 5. In particular,
they are specified as follows:

• For i ∈ {1, . . . , N} and z ∈ {0, . . . , N − i}, matrix Bi,i−1(z, z) contains transition rates from states
in level l(i, z) to states in level l(i− 1, z), and is given by

Bi,i−1(z, z) =


i(1− q)µ i(γ + qµ)

i(1− q)µ i(γ + qµ)
. . . . . .

i(1− q)µ i(γ + qµ)

 .
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• For i ∈ {0, . . . , N− 1} and z ∈ {0, . . . , N− i− 1}, matrix Bi,i+1(z, z) contains transition rates from
states in level l(i, z) to states in level l(i + 1, z), and is given by

Bi,i+1(z, z) =


(N − i− z)(iβ + zη)

(N − i− z− 1)(iβ + zη)
. . .

1 · (iβ + zη)

0

 .

• For i ∈ {0, . . . , N − 1} and z ∈ {1, . . . , N − i}, matrix Bi,i(z, z− 1) contains transition rates from
states in level l(i, z) to states in level l(i, z− 1), and is given by

Bi,i(z, z− 1) =


z(1− q)µ z(ε + qµ)

z(1− q)µ z(ε + qµ)
. . . . . .

z(1− q)µ z(ε + qµ)

 .

• For i ∈ {0, . . . , N− 1} and z ∈ {0, . . . , N− i}, matrix Bi,i(z, z) contains transition rates from states
in level l(i, z) to states in level l(i, z), and has the form
−q(i,z,0) (N − i− z)qµ

(1− q)µ −q(i,z,1) (N − i− z− 1)qµ

. . . . . . . . .
(N − i− z− 1)(1− q)µ −q(i,z,N−i−z−1) qµ

(N − i− z)(1− q)µ −q(i,z,N−i−z)

 ,

with q(i,z,a) = iγ + zε + ((i + z + a)(1− q) + (N − a)q)µ + (N − i− z− a)(iβ + zη) + aδ.
• For i ∈ {0, . . . , N − 1} and z ∈ {0, . . . , N − i− 1}, matrix Bi,i(z, z + 1) contains transition rates

from states in level l(i, z) to states in level l(i, z + 1), and is given by

Bi,i(z, z + 1) =



0
δ

2δ
. . .

(N − i− z− 1)δ
(N − i− z)δ


.
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