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Abstract: In this paper, in order to apply the concept of octahedron sets to multi-criteria group
decision-making problems, we define several similarity and distance measures for octahedron sets.
We present a multi-criteria group decision-making method with linguistic variables in octahedron set
environment. We give a numerical example for multi-criteria group decision-making problems.
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1. Introduction

In real world, we frequently encounter with decision-making problems with uncertainty and vagueness
that can be difficult to solve with the classical methods. A number of techniques have been developed
to solve uncertinities; similarity measures are one of tools solving decision-making problems. Chen and
Hsiao [1] studied some similarity measures for fuzzy sets introduced by Zadeh [2]. Pramanik and Mondal [3]
defined the concept of weighted fuzzy similarity measure (called a tangent similarity measure) and applied
it to medical diagnosis. Hwang and Yang [4] made a new similarity measure for intuitionistic fuzzy sets
proposed by Atanassov [5]. Pramanik and Mondal [6] proposed intuitionistic fuzzy similarity measure
based on tangent function and applied it to multi–attribute decision. Ren and Wang [7] introduced the notion
of similarity measures for interval-valued intuitionstic fuzzy sets proposed by Atanassov and Gargov [8].
Baroumi and Smarandache [9] dealt with several similarity measures between neutrosophic sets and applied
them to decision-making problems introduced by Smarandache [10]. Ye [11] defined a similarity measure
for interval neutrosophic sets and applied it to decision-making method. Sahin and Liu [12] introduced
various distance and similarity measures between single-valued neutrosophic hesitant fuzzy sets (see
Reference [13,14]) and discussed MADM problems based on the single-valued neutrosophic hesitant fuzzy
information. Kaur and Garg [15,16] applied it to decision-making and studied cubic intuitionistic fuzzy
aggregation operators (see Reference [17,18]). Pramanik et al. [19] proposed a similarity measure for cubic
neutrosophic sets and applied it a multi-criteria group decision-making (MCGDM) method.

Recently, Kim et al. [20] defined an octahedron set composed of an interval-valued fuzzy set,
an intuitionistic set and a fuzzy set that will provide more information about uncertainty and vagueness.
The purpose of this paper is to review recent research into the octahedron set applications with
MCGDM method. This paper proposes a new methodology for the theory of octahedron set with
defining several distance and similarity measures between octahedron sets. Moreover, we prove that
each is distance and similarity measure. This new application offers some important insights into
octahedron sets with MCGDM method based on a similarity measure for octahedron sets. The findings
reported here shed new light on an application area of octahedron sets. This approach will prove useful
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in expanding our understanding of how the application of octahedron sets can be done. The findings
of this study could have a number of important implications for future practice with analyzing our
numerical example for MCGDM problems that is given in this paper. In order to apply the concept of
octahedron sets to MCGDM problems, this paper is presented as follows: In Section 2, we list some
basic notions that are needed in next section. In Section 3, we propose several distance and similarity
measures between octahedron sets and prove that each is distance and similarity measure. In Section 4,
we present a MCGDM method based on a similarity measure for octahedron sets environments.
In addition, we give a numerical example for MCGDM problems to demonstrate the usefulness and
applicability of our proposed method. There is a relatively small body of literature that is concerned
with the application of soft octahedron sets. In recent years, there has been an increasing amount of
literature on the application of set theories. One of the aim of this research was to improve the works
on the application of octahedron sets by proposing suitable examples in this paper. All these findings
will provide a base to researchers who want to work in the field of the application of octahedron
sets and will help to strengthen the foundations of the other MCGDM problems in octahedron set
environment, such as economic policy, foreign policy between countries, trade policy, financial policy,
etc., by using big data.

2. Preliminaries

Let I ⊕ I = {ā = (a∈, a 6∈) ∈ I × I : a∈ + a 6∈ ≤ 1}, where I = [0, 1]. Then, each member ā of I ⊕ I
is called an intuitionistic point or intuitionistic number. In particular, we denote (0, 1) and (1, 0) as 0̄
and 1̄, respectively. Refer to Reference [21] for the definitions of the order (≤) and the equality (=) of
two intuitionistic numbers, and the infimum and the supremum of any intuitionistic numbers.

Definition 1 (Reference [5]). For a nonempty set X, a mapping A : X → I⊕ I is called an intuitionistic fuzzy
set (briefly, IF set) in X, where, for each x ∈ X, A(x) = (A∈(x), A 6∈(x)), and A∈(x) and A 6∈(x) represent the
degree of membership and the degree of nonmembership of an element x to A, respectively. Let (I ⊕ I)X denote
the set of all IF sets in X and for each A ∈ (I ⊕ I)X , we write A = (A∈, A 6∈). In particular, 0̄ and 1̄ denote the
IF empty set and the IF whole set in X defined by, respectively:

For each x ∈ X,
0̄(x) = 0̄ and 1̄(x) = 1̄.

Refer to Reference [5] for the definitions of the inclusion, the equality, the intersection, and the union of
intuitionistic fuzzy set and operations c, [ ], � on (I ⊕ I)X .

The set of all closed subintervals of I is denoted by [I], and members of [I] are called interval
numbers and are denoted by ã, b̃, c̃,, etc., where ã = [a−, a+] and 0 ≤ a− ≤ a+ ≤ 1. In particular,
if a− = a+, then we write as ã = a. Refer to Reference [20] for the definitions of the order and the
equality of two interval numbers, as well as the infimum and the supremum of any interval numbers.

Definition 2 (Reference [22,23]). For a nonempty set X, a mapping A : X → [I] is called an interval-valued
fuzzy set (briefly, an IVF set) in X. Let [I]X denote the set of all IVF sets in X. For each A ∈ [I]X and x ∈ X,
A(x) = [A−(x), A+(x)] is called the degree of membership of an element x to A, where A−, A+ ∈ IX are
called a lower fuzzy set and an upper fuzzy set in X, respectively. For each A ∈ [I]X , we write A = [A−, A+].
In particular, 0̃ and 1̃ denote the interval-valued fuzzy empty set and the interval-valued fuzzy empty whole set
in X defined by, respectively: for each x ∈ X,

0̃(x) = 0 and 1̃(x) = 1.

Refer to Reference [22,23] for the definitions of the inclusion, the equality, the intersection, and the union of
intuitionistic fuzzy set and operation c on [I]X .
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Now, members of [I]× (I ⊕ I)× I are written by ˜̄a =< ã, ā, a >=< [a−, a−], (a∈, a 6∈), a >, ˜̄b =<

b̃, b̄, b >=< [b−, b−], (b∈, b 6∈), b >, etc., and are called octahedron numbers. Furthermore, we define
the following order relations between ˜̄a and ˜̄b (see Reference [20]):

(i) (Equality) ˜̄a = ˜̄b⇔ ã = b̃, ā = b̄, a = b,

(ii) (Type 1-order) ˜̄a ≤1
˜̄b⇔ a− ≤ b−, a+ ≤ b+, a∈ ≤ b∈, a 6∈ ≥ b 6∈, a ≤ b,

(iii) (Type 2-order) ˜̄a ≤2
˜̄b⇔ a− ≤ b−, a+ ≤ b+, a∈ ≤ b∈, a 6∈ ≥ b 6∈, a ≥ b,

(iv) (Type 3-order) ˜̄a ≤3
˜̄b⇔ a− ≤ b−, a+ ≥ b+, a∈ ≥ b∈, a 6∈ ≤ b 6∈, a ≤ b,

(v) (Type 4-order) ˜̄a ≤4
˜̄b⇔ a− ≤ b−, a+ ≤ b+, a∈ ≥ b∈, a 6∈ ≤ b 6∈, a ≥ b.

From the above orders, we can define the inf and the sup of octahedron numbers as follows.

Definition 3 (Reference [20]). Let ˜̄a, ˜̄b ∈ [I]× (I ⊕ I)× I. Then,

(i) ˜̄a ∧1 ˜̄b =
〈
[a− ∧ b−, a+ ∧ b+], (a∈ ∧ b∈, a 6∈ ∨ b 6∈), a ∧ b

〉
,

˜̄a ∧2 ˜̄b =
〈
[a− ∧ b−, a+ ∧ b+], (a∈ ∧ b∈, a 6∈ ∨ b 6∈), a ∨ b

〉
,

˜̄a ∧3 ˜̄b =
〈
[a− ∧ b−, a+ ∧ b+], (a∈ ∨ b∈, a 6∈ ∧ b 6∈), a ∧ b

〉
,

˜̄a ∧4 ˜̄b =
〈
[a− ∧ b−, a+ ∧ b+], (a∈ ∨ b∈, a 6∈ ∧ b 6∈), a ∨ b

〉
,

(ii) ˜̄a ∨1 ˜̄b =
〈
[a− ∨ b−, a+ ∨ b+], (a∈ ∨ b∈, a 6∈ ∧ b 6∈), a ∨ b

〉
,

˜̄a ∨2 ˜̄b =
〈
[a− ∨ b−, a+ ∨ b+], (a∈ ∨ b∈, a 6∈ ∧ b 6∈), a ∧ b

〉
,

˜̄a ∨3 ˜̄b =
〈
[a− ∨ b−, a+ ∨ b+], (a∈ ∧ b∈, a 6∈ ∨ b 6∈), a ∨ b

〉
,

˜̄a ∨4 ˜̄b =
〈
[a− ∨ b−, a+ ∨ b+], (a∈ ∧ b∈, a 6∈ ∨ b 6∈), a ∧ b

〉
.

Definition 4 (Reference [20]). Let X be a nonempty set, and let A = [A−, A+] ∈ [I]X, A = (A∈, A 6∈) ∈
(I ⊕ I)X, λ ∈ IX. Then, the triple A = 〈A, A, λ〉 is called an octahedron set in X. In fact, A : X →
[I]× (I⊕ I)× I is a mapping. In particular, the octahedron empty (resp. whole) set in X, denoted by 0̈ (resp. 1̈),
is an octahedron set in X defined by:

0̈ =
〈

0̃, 0̄, 0
〉

, 1̈ =
〈

1̃, 1̄, 1
〉

.

It is obvious that, for each A ∈ 2X, χA =
〈
[χA , χA ], (χA , χAc ), χA

〉
∈ O(X) and then 2X ⊂ O(X),

where 2X denotes the set of all subsets of X and χA denotes the characteristic function of A.
Furthermore, we can easily see that, for each A = 〈A, λ〉 ∈ C(X), A = 〈A, (A−, A+), λ〉 , A =

〈A, (λ, λc), λ〉 ∈ O(X) and then C(X) ⊂ O(X). In this case, we denote 〈A, (A−, A+), λ〉 and
〈A, (λ, λc), λ〉 as AA and Aλ, respectively. In fact, we can consider octahedron sets as a generalization
of cubic sets.

Definition 5 (Reference [20]). Let X be a nonempty set, and let A = 〈A, A, λ〉 , B = 〈B, B, µ〉 ∈ O(X).
Then, we can define following order relations between A and B:

(i) (Equality) A = B ⇔ A = B, A = B, λ = µ,
(ii) (Type 1-order) A ⊂1 B ⇔ A ⊂ B, A ⊂ B, λ ≤ µ,

(iii) (Type 2-order) A ⊂2 B ⇔ A ⊂ B, A ⊂ B, λ ≥ µ,
(iv) (Type 3-order) A ⊂3 B ⇔ A ⊂ B, A ⊃ B, λ ≤ µ,
(v) (Type 4-order) A ⊂4 B ⇔ A ⊂ B, A ⊃ B, λ ≥ µ.
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Definition 6 (Reference [20]). Let X be a nonempty set, and let (Aj)j∈J = (
〈
Aj, Aj, λj

〉
)j∈J be a family of

octahedron sets in X. Then, the Type i-union ∪i and Type i-intersection ∩i of (Aj)j∈J , (i = 1, 2, , 3, 4), are
defined as follows, respectively:

(i) (Type i-union)
⋃1

j∈J Aj =
〈⋃

j∈J Aj,
⋃

j∈J Aj,
⋃

j∈J λj

〉
,

⋃2
j∈J Aj =

〈⋃
j∈J Aj,

⋃
j∈J Aj,

⋂
j∈J λj

〉
,

⋃3
j∈J Aj =

〈⋃
j∈J Aj,

⋂
j∈J Aj,

⋃
j∈J λj

〉
,

⋃4
j∈J Aj =

〈⋃
j∈J Aj,

⋂
j∈J Aj,

⋂
j∈J λj

〉
,

(ii) (Type i-intersection)
⋂1

j∈J Aj =
〈⋂

j∈J Aj,
⋂

j∈J Aj,
⋂

j∈J λj

〉
,

⋂2
j∈J Aj =

〈⋂
j∈J Aj,

⋂
j∈J Aj,

⋃
j∈J λj

〉
,

⋂3
j∈J Aj =

〈⋂
j∈J Aj,

⋃
j∈J Aj,

⋂
j∈J λj

〉
,

⋂4
j∈J Aj =

〈⋂
j∈J Aj,

⋃
j∈J Aj,

⋃
j∈J λj

〉
.

Let R be the real space. Then, for any intervals A = [a1, a2] and B = [b1, b2] of R, the Hausdorff
distance dH(A, B) between A and B is defined by:

dH(A, B) = max(| a1 − b1 |, | a2 − b2 |). (1)

Throughout this paper, let X = {x1, x2, x3, · · · , xn} be a universal set.

3. Distance and Similarity Measures between Octahedron Sets

Definition 7. A mapping d : O(X)×O(X) → I is called a distance measure on O(X), if it satisfies the
following conditions: For any A, B, C ∈ O(X),

(DM1) 0 ≤ d(A,B) ≤ 1,
(DM2) d(A,B) = 0 if and only if A = B,
(DM3) d(A,B) = d(B,A),
(DM4) if A ⊂1 B ⊂1 C, then d(A, C) ≥ d(A,B) ∨ d(B, C).

In this case, d(A,B) is called the distance measure between A and B.

Definition 8. A mapping s : O(X)×O(X) → I is called a similarity measure on O(X), if it satisfies the
following conditions: For any A, B, C ∈ O(X),

(DM1) 0 ≤ s(A,B) ≤ 1,
(DM2) s(A,B) = 1 if and only if A = B,
(DM3) s(A,B) = s(B,A),
(DM4) if A ⊂1 B ⊂1 C, then s(A, C) ≤ s(A,B) ∧ s(B, C).

In this case, d(A,B) is called the similarity measure between A and B.

In fact, distance measure and similarity measure from Definitions 7 and 8, we can easily see that
s(A,B) = 1− d(A,B).

Now, we give some types of distance measures between two octahedron sets in the following:
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Example 1. (1) (Generalized normalized distance measure) Let δ > 0. We define dGN : O(X)×O(X)→
I is the mapping defined as: For any A, B ∈ O(X),

dGN(A,B) = [ 1
5n Σn

i=1(| A−(xi)− B−(xi) |δ + | A+(xi)− B+(xi) |δ
+ | A∈(xi)− B∈(xi) |δ + | A 6∈(xi)− B 6∈(xi) |δ

+ | λ(xi)− µ(xi) |δ)]
1
δ .

Then, dGN is a distance measure on O(X) (see Propositions 1 and 2).

In particular, if δ = 1, then dGN reduces an octahedron normalized Hamming distance and denoted
by dNH :

dNH(A,B) = 1
5n Σn

i=1(| A−(xi)− B−(xi) | + | A+(xi)− B+(xi) |
+ | A∈(xi)− B∈(xi) | + | A 6∈(xi)− B 6∈(xi) |
+ | λ(xi)− µ(xi) |).

If δ = 2, then dGN reduces an octahedron normalized Euclidean distance and denoted by dNE:

dNE(A,B) = [ 1
5n Σn

i=1(| A−(xi)− B−(xi) |2 + | A+(xi)− B+(xi) |2
+ | A∈(xi)− B∈(xi) |2 + | A 6∈(xi)− B 6∈(xi) |2

+ | λ(xi)− µ(xi) |2)]
1
2 .

In fact, dGN can be viewed as a most generalized case of distance measures.
(2) (Generalized octahedron normalized Hausdorff distance) We define dGNH : O(X)×O(X)→ I is the

mapping defined as: for any A, B ∈ O(X),

dGNH(A,B) = [ 1
n Σn

i=1max(| A−(xi)− B−(xi) |δ, | A+(xi)− B+(xi) |δ,
| A∈(xi)− B∈(xi) |δ, | A 6∈(xi)− B 6∈(xi) |δ,
| λ(xi)− µ(xi) |δ)]

1
δ .

Then, dGNH is a distance measure on O(X) (see Propositions 3 and 4).

In particular, if δ = 1, then dGNH reduces an octahedron normalized Hamming-Hausdorff distance and
denoted by dNHH :

dNHH(A,B) = 1
n Σn

i=1max(| A−(xi)− B−(xi) |, | A+(xi)− B+(xi) |,
| A∈(xi)− B∈(xi) |, | A 6∈(xi)− B 6∈(xi) |,
| λ(xi)− µ(xi) |).

If δ = 2, then dGNH reduces an octahedron normalized Euclidean-Hausdorff distance and denoted
by dNEH :

dNEH(A,B) = [ 1
n Σn

i=1max(| A−(xi)− B−(xi) |2, | A+(xi)− B+(xi) |2,
| A∈(xi)− B∈(xi) |2, | A 6∈(xi)− B 6∈(xi) |2,
| λ(xi)− µ(xi) |2)]

1
2 .

In many practical situations, the weight of each element xi ∈ X should be taken into account.
For example, in MADM problems, since the considered attribute has different importance in general,
we need to be assigned with different weights. Since an octahedron set has three types of degree (an
interval-valued fuzzy membership degree, an intuitionistic fuzzy membership degree and a fuzzy
membership degree) and each degree may have different importance according to a decision-maker,
different weights can be assigned to each element in each degree. We assume that the weights
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ω = (ω1, ω2, · · · , ωn)T with ωi ∈ I, Σn
i=1ωi = 1; η = (η1, η2, · · · , ηn)T with ηi ∈ I, Σn

i=1ηi = 1;
ξ = (ξ1, ξ2, · · · , ξn)T with ξi ∈ I, Σn

i=1ξi = 1 denote the weights assigned to interval-valued fuzzy
membership degree, intuitionistic fuzzy membership degree and fuzzy membership degree of an
octahedron set.

Now, we give some types of weighted distance measures between two octahedron sets in
the following:

Example 2. (1) (Generalized octahedron weighted distance measure) Let δ > 0. We define dGW : O(X)×
O(X)→ I is the mapping defined as: for any A, B ∈ O(X),

dGW(A,B) = [ 1
5n Σn

i=1(ωi | A−(xi)− B−(xi) |δ +ωi | A+(xi)− B+(xi) |δ
+ηi | A∈(xi)− B∈(xi) |δ +ηi | A 6∈(xi)− B 6∈(xi) |δ

+ξi | λ(xi)− µ(xi) |δ)]
1
δ .

Then, dGW is a weighted distance measure on O(X) (The proof is omitted).

In particular, if δ = 1, then dGW reduces an octahedron weighted Hamming distance and denoted by
dWH :

dWH(A,B) = 1
5n Σn

i=1(ωi | A−(xi)− B−(xi) | +ωi | A+(xi)− B+(xi) |
+ηi | A∈(xi)− B∈(xi) | +ηi | A 6∈(xi)− B 6∈(xi) |
+ξi | λ(xi)− µ(xi) |).

If δ = 2, then dGW reduces an octahedron weighted Euclidean distance and denoted by dWE:

dWE(A,B) = [ 1
5n Σn

i=1(ωi | A−(xi)− B−(xi) |2 +ωi | A+(xi)− B+(xi) |2
+ηi | A∈(xi)− B∈(xi) |2 +ηi | A 6∈(xi)− B 6∈(xi) |2

+ξi | λ(xi)− µ(xi) |2)]
1
2 .

(2) (Generalized octahedron weighted Hausdorff distance) We define dGWH : O(X)×O(X) → I is the
mapping defined as: For any A, B ∈ O(X),

dGWH(A,B) = [ 1
n Σn

i=1max(ωi | A−(xi)− B−(xi) |δ, ωi | A+(xi)− B+(xi) |δ,
ηi | A∈(xi)− B∈(xi) |δ, ηi | A 6∈(xi)− B 6∈(xi) |δ,
ξi | λ(xi)− µ(xi) |δ)]

1
δ .

Then, dGWH is a weighted distance measure on O(X) (The proof is omitted).

In particular, if δ = 1, then dGWH reduces an octahedron weighted Hamming-Hausdorff distance and
denoted by dWHH :

dWHH(A,B) = 1
n Σn

i=1max(ωi | A−(xi)− B−(xi) |, ωi | A+(xi)− B+(xi) |,
ηi | A∈(xi)− B∈(xi) |, ηi | A 6∈(xi)− B 6∈(xi) |,
ξi | λ(xi)− µ(xi) |).

If δ = 2, then dGWH reduces an octahedron weighted Euclidean-Hausdorff distance and denoted by
dWEH :

dWEH(A,B) = [ 1
n Σn

i=1max(ωi | A−(xi)− B−(xi) |2, ωi | A+(xi)− B+(xi) |2,
ηi | A∈(xi)− B∈(xi) |2, ηi | A 6∈(xi)− B 6∈(xi) |2,
ξi | λ(xi)− µ(xi) |2)]

1
2 .

Proposition 1. The mapping dNH defined in Example 1 (1) is a distance measure on O(X).
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Proof. Since the proofs of (DM2) and (DM3) are easy from the definition of dNH , we will show only
(DM1) and (DM4).

(DM1) Let A, B ∈ O(X). Then, by the definition of dNH ,

| A−(xi)− B−(xi) |≥ 0, | A+(xi)− B+(xi) |≥ 0,
| A∈(xi)− B∈(xi) |≥ 0, | A 6∈(xi)− B 6∈(xi) |≥ 0, | λ(xi)− µ(xi) |≥ 0.

Thus, we have

dNH(A,B) = 1
5n Σn

i=1(| A−(xi)− B−(xi) | + | A+(xi)− B+(xi) |
+ | A∈(xi)− B∈(xi) | + | A 6∈(xi)− B 6∈(xi) |
+ | λ(xi)− µ(xi) |)
≥ 0.

In addition, by the definition of dNH ,

| A−(xi)− B−(xi) |≤ 1, | A+(xi)− B+(xi) |≤ 1,
| A∈(xi)− B∈(xi) |≤ 1, | A 6∈(xi)− B 6∈(xi) |≤ 1, | λ(xi)− µ(xi) |≤ 1.

So, we get

dNH(A,B) = 1
5n Σn

i=1(| A−(xi)− B−(xi) | + | A+(xi)− B+(xi) |
+ | A∈(xi)− B∈(xi) | + | A 6∈(xi)− B 6∈(xi) |
+ | λ(xi)− µ(xi) |)
≤ 1.

Hence, 0 ≤ dNH(A,B) ≤ 1.
(DM4) Suppose A = 〈A, A, λ〉 , B = 〈B, B, µ〉 , C = 〈C, C, ν〉 ∈ O(X) such that A ⊂1 B ⊂1 C,

and let xi ∈ X. Then, we have
A(xi) ≤1 B(xi) ≤1 C(xi), i.e.,

A−(xi) ≤ B−(xi) ≤ C−(xi), A+(xi) ≤ B+(xi) ≤ C+(xi),
A∈(xi) ≤ B∈(xi) ≤ C∈(xi), A 6∈(xi) ≥ B 6∈(xi) ≥ C 6∈(xi),
λ(xi) ≤ µ(xi) ≤ ν(xi).

Thus, we get

dNH(A, C) = 1
5n Σn

i=1(| A−(xi)− C−(xi) | + | A+(xi)− C+(xi) |
+ | A∈(xi)− C∈(xi) | + | A 6∈(xi)− C 6∈(xi) |
+ | λ(xi)− ν(xi) |)
≥ 1

n Σn
i=1(| A−(xi)− B−(xi) | + | A+(xi)− B+(xi) |

+ | A∈(xi)− B∈(xi) | + | A 6∈(xi)− B 6∈(xi) |
+ | λ(xi)− µ(xi) |)
= dNH(A,B).

Similarly, we have dNH(A, C) ≥ dH(B, C). So, dNH(A, C) ≥ dNH(A, C) ∨ dNH(B, C).
This completes the proof.

Proposition 2. Two mappings dGN and dNE defined in Example 1 (1) are distance measure on O(X).

Proof. The proofs are similar to the proof of Proposition 1.

Proposition 3. A mapping dG and dGNH defined in Example 1 (2) are distance measure on O(X).
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Proof. Since the proofs of (DM2) and (DM3) are easy from the definition of dGNH , we will show only
(DM1) and (DM4).

(DM1) Let A, B ∈ O(X). Then, by the definition of dGNH , we can easily obtain the following:

max(| A−(xi)− B−(xi) |δ, | A+(xi)− B+(xi) |δ, | A∈(xi)− B∈(xi) |δ,
| A 6∈(xi)− B 6∈(xi) |δ, | λ(xi)− µ(xi) |δ) ≥ 0.

Thus, dGNH(A,B) ≥ 0. Similarly, we can easily prove that dGNH(A,B) ≤ 1. So, 0 ≤
dGNH(A,B) ≤ 1.

(DM4) Suppose A, B, C ∈ O(X) such that A ⊂1 B ⊂1 C, and let xi ∈ X. Then, we have

A−(xi) ≤ B−(xi) ≤ C−(xi), A+(xi) ≤ B+(xi) ≤ C+(xi),
A∈(xi) ≤ B∈(xi) ≤ C∈(xi), A 6∈(xi) ≥ B 6∈(xi) ≥ C 6∈(xi),
λ(xi) ≤ µ(xi) ≤ ν(xi).

Thus, we get

max(| A−(xi)− C−(xi) |δ, | A+(xi)− C+(xi) |δ, | A∈(xi)− C∈(xi) |δ,
| A 6∈(xi)− C 6∈(xi) |δ, | λ(xi)− ν(xi) |δ)
≥ max(| A−(xi)− B−(xi) |δ, | A+(xi)− B+(xi) |δ, | A∈(xi)− B∈(xi) |δ,
| A 6∈(xi)− B 6∈(xi) |δ, | λ(xi)− µ(xi) |δ).

So, dGNH(A, C) ≥ dH(A,B). Similarly, we get dGNH(A, C) ≥ dGNH(B, C). Hence, dGNH(A, C) ≥
dGNH(A,B) ∨ dGNH(B, C). This completes the proof.

Proposition 4. Two mappings dNHH and dNEH defined in Example 1 (2) are distance measure on O(X).

Proof. The proofs are similar to the proof of Proposition 3.

Remark 1. In Definition 7, although the condition (DM4) is changed into the following:
(DM

′
4) if A ⊂i B ⊂i C (i = 1, 2, 3, 4), then d(A, C) ≥ d(A,B) ∨ d(B, C),

we can easily see that all the distance measures given in Examples 1 and 2 satisfy the condition (DM
′
4).

Now, from the relationships between distance measures and similarity measures, we can give
some examples of similarity measures on O(X).

Example 3. Let A, B ∈ O(X).

(1) (Generalized octahedron similarity measure corresponding to dGN)

sGN(A,B) = 1− dGN(A,B). (2)

In fact,
sGN(A,B) = 1− [ 1

5n Σn
i=1(| A−(xi)− B−(xi) |δ + | A+(xi)− B+(xi) |δ

+ | A∈(xi)− B∈(xi) |δ + | A 6∈(xi)− B 6∈(xi) |δ

+ | λ(xi)− µ(xi) |δ)]
1
δ .

(Octahedron similarity measure corresponding to dNH)

sNH(A,B) = 1− dNH(A,B). (3)
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In fact,
sNH(A,B) = 1

n Σn
i=1[1−

1
5 (| A−(xi)− B−(xi) | + | A+(xi)− B+(xi) |

+ | A∈(xi)− B∈(xi) | + | A 6∈(xi)− B 6∈(xi) |
+ | λ(xi)− µ(xi) |)].

(Octahedron similarity measure corresponding to dNE)

sNE(A,B) = 1− dNE(A,B). (4)

In fact,
sNE(A,B) = 1− [ 1

5n Σn
i=1(| A−(xi)− B−(xi) |2 + | A+(xi)− B+(xi) |2

+ | A∈(xi)− B∈(xi) |2 + | A 6∈(xi)− B 6∈(xi) |2

+ | λ(xi)− µ(xi) |2)]
1
2 .

(2) (Generalized octahedron similarity measure corresponding to dGNH)

sGNH(A,B) = 1− dGNH(A,B). (5)

In fact,

sGNH(A,B) = 1− [ 1
n Σn

i=1max(| A−(xi)− B−(xi) |δ, | A+(xi)− B+(xi) |δ,
| A∈(xi)− B∈(xi) |δ, | A 6∈(xi)− B 6∈(xi) |δ

| λ(xi)− µ(xi) |δ)]
1
δ .

(Octahedron similarity measure corresponding to dNHH)

sNHH(A,B) = 1− dNHH(A,B). (6)

In fact,
sNHH(A,B) = 1

n Σn
i=1[1−max(| A−(xi)− B−(xi) |, | A+(xi)− B+(xi) |,

| A∈(xi)− B∈(xi) |, | A 6∈(xi)− B 6∈(xi) |,
| λ(xi)− µ(xi) |)].

(Octahedron similarity measure corresponding to dNEH)

sNEH(A,B) = 1− dNEH(A,B). (7)

In fact,

sNEH(A,B) = 1− [ 1
n Σn

i=1max(| A−(xi)− B−(xi) |2, | A+(xi)− B+(xi) |2,
| A∈(xi)− B∈(xi) |2, | A 6∈(xi)− B 6∈(xi) |2,
| λ(xi)− µ(xi) |2)]

1
2 .

(3) (Generalized octahedron similarity measure corresponding to dGW)

sGW(A,B) = 1− dGW(A,B). (8)
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In fact,

sGW(A,B) = 1− [ 1
5n Σn

i=1(ωi | A−(xi)− B−(xi) |δ +ωi | A+(xi)− B+(xi) |δ
+ηi | A∈(xi)− B∈(xi) |δ +ηi | A 6∈(xi)− B 6∈(xi) |δ

+ξi | λ(xi)− µ(xi) |δ)]
1
δ .

(Octahedron similarity measure corresponding to dWH)

sWH(A,B) = 1− dWH(A,B). (9)

In fact,

sWH(A,B) = 1
n Σn

i=1[1−
1
5 (ωi | A−(xi)− B−(xi) | +ωi | A+(xi)− B+(xi) |

+ηi | A∈(xi)− B∈(xi) | +ηi | A 6∈(xi)− B 6∈(xi) |
+ξi | λ(xi)− µ(xi) |)].

(Octahedron similarity measure corresponding to dWE)

sWE(A,B) = 1− dWE(A,B). (10)

In fact,

sWE(A,B) = 1− [ 1
5n Σn

i=1(ωi | A−(xi)− B−(xi) |2 +ωi | A+(xi)− B+(xi) |2
+ηi | A∈(xi)− B∈(xi) |2 +ηi | A 6∈(xi)− B 6∈(xi) |2

+ξi | λ(xi)− µ(xi) |2)]
1
2 .

(4) (Generalized octahedron similarity measure corresponding to dGWH)

sGWH(A,B) = 1− dGWH(A,B). (11)

In fact,

sGWH(A,B) = 1− [ 1
n Σn

i=1max(ωi | A−(xi)− B−(xi) |δ, ωi | A+(xi)− B+(xi) |δ,
ηi | A∈(xi)− B∈(xi) |δ, ηi | A 6∈(xi)− B 6∈(xi) |δ,
ξi | λ(xi)− µ(xi) |δ)]

1
δ .

(Octahedron similarity measure corresponding to dWHH)

sWHH(A,B) = 1− dWHH(A,B). (12)

In fact,

sWHH(A,B) = 1
n Σn

i=1[1−max(ωi | A−(xi)− B−(xi) |, ωi | A+(xi)− B+(xi) |,
ηi | A∈(xi)− B∈(xi) |, ηi | A 6∈(xi)− B 6∈(xi) |,
ξi | λ(xi)− µ(xi) |)].

(Octahedron similarity measure corresponding to dWEH)

sWEH(A,B) = 1− dWEH(A,B). (13)
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In fact,

sWEH(A,B) = 1− [ 1
n Σn

i=1max(ωi | A−(xi)− B−(xi) |2, ωi | A+(xi)− B+(xi) |2,
ηi | A∈(xi)− B∈(xi) |2, ηi | A 6∈(xi)− B 6∈(xi) |2,
ξi | λ(xi)− µ(xi) |2)]

1
2 .

From Propositions 1–4, and the duality between distance measures and similarity measures,
we can prove that (2)–(13) are similarity measures. But, we will show directly that (3) satisfies the
conditions that are defined in Definition 8.

Proposition 5. sNH is a similarity measure for two octahedron sets A and B.

Proof. Let A, B ∈ O(X), and, for each i = 1, 2, · · · , n, let

Di = (| A−(xi)− B−(xi) | + | A+(xi)− B+(xi) | + | A∈(xi)− B∈(xi) | .

(i) 0 ≤ sNH(A,B) ≤ 1.

Case 1. Suppose Di = 0 or Di = 5. Then, clearly, we have

sNH(A,B) = 1 or sNH(A,B) = 0. (14)

Case 2. Suppose 0 < Di < 5. Then, clearly, 0 < Di
5 < 1. Thus, 0 < 1− Di

5 < 1. So,

0 =
1
n

Σn
i=10 <

1
n

Σn
i=1(1−

Di
5
) <

1
n

Σn
i=11 = 1.

Hence,
0 < sNH(A,B) < 1. (15)

Therefore, from (14) and (15), we get 0 ≤ sNH(A,B) ≤ 1.
(ii) sNH(A,B) = 1 iff A = B.

sNH(A,B) = 1

⇔ 1
n Σn

i=1(1−
Di
5 ) = 1

⇔ Di = 0

⇔ | A−(xi)− B−(xi) |= 0, | A+(xi)− B+(xi) |= 0,

⇔ | A∈(xi)− B∈(xi) |= 0, | A 6∈(xi)− B 6∈(xi) |= 0, | λ(xi)− µ(xi) |= 0

⇔A = B.
(iii) sNH(A,B) = sNH(B,A). The proof is obvious from the property of “| |".
(iv) Let A, B, B ∈ O(X) such that A ⊂1 B ⊂1 C. Then,

sNH(A, C) ≤ sNH(A,B) and sNH(A, C) ≤ sNH(B, C).

For each i = 1, 2, · · · , n, let xi ∈ X. Since A ⊂1 B ⊂1 C, we have

A−(xi) ≤ B−(xi) ≤ C−(xi), A+(xi) ≤ B+(xi) ≤ C+(xi),
A∈(xi) ≤ B∈(xi) ≤ C∈(xi), A 6∈(xi) ≥ B 6∈(xi) ≥ C 6∈(xi),
λ(xi) ≤ µ(xi) ≤ ν((xi)).
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Then, we get Di(A, C) ≥ Di(A,B),
where

Di(A,B) = (| A−(xi)− B−(xi) | + | A+(xi)− B+(xi) |
+ | A∈(xi)− B∈(xi) | + | A 6∈(xi)− B 6∈(xi) | + | λ(xi)− µ(xi) |)

and

Di(A, C) = (| A−(xi)− C−(xi) | + | A+(xi)− C+(xi) |
+ | A∈(xi)− C∈(xi) | + | A 6∈(xi)− C 6∈(xi) | + | λ(xi)− ν(xi) |).

Then, clearly we can easily see that Di(A, C) ≥ Di(A,B). Thus, we have

1− 1
5

Di(A, C) ≤ 1− 1
5

Di(A,B).

So, we get 1
n Σn

i=1[1−
1
5 Di(A, C)] ≤ 1

n Σn
i=1[1−

1
5 Di(A,B)]. Hence, we get

sNH(A, C) ≤ sNH(A,B).

Similarly, we can prove that sNH(A, C) ≤ sNH(B, C). Therefore, sNH a similarity measure on
O(X).

4. MCGDM Method Based on Similarity Measure in Octahedron Set Environment

In this section, we give a new method based on similarity measure in octahedron set environment.
Assume that α = {α1, α2, · · · , αn} is a set of n alternatives with criteria β = {β1, β2, · · · , βm}, and
let γ = {γ1, γ2, · · · , γr} be the r decision-makers. Let δ = {δ1, δ2, · · · , δr} be the weight vector of
decision-makers such that δk > 0 and Σr

k=1δk = 1. We propose MCGDM method presented using the
following steps.

Step 1. Formation of ideal octahedron set decision matrix. Ideal octahedron set decision matrix
is an important matrix for similarity measure of MCGDM given in the following form:

β1 β2 · · · βm

α1 A11 A12 · · · A1m
α2 A21 A22 · · · A2m
· · · · · · ·

αn An1 An2 · · · Anm

 , (16)

where Aij =
〈
Aij, Aij, λij

〉
, i = 1, 2, · · · , n, j = 1, 2, · · · , m.

Step 2. Construction of octahedron set decision matrix. Since r decision-makers are involved
in the decision-making process, the k-th (k = 1, 2, · · · , r) decision-maker gives the evaluation
information of the alternative αi (i = 1, 2, · · · , n) with respect to criteria β j (j = 1, 2, · · · , m) in terms
of octahedron set. The k-th decision matrix, denoted by Mk, is constructed by the following matrix:

Mk =
〈
Ak

ij

〉
=


β1 β2 · · · βm

α1 Ak
11 Ak

12 · · · Ak
1m

α2 Ak
21 Ak

22 · · · Ak
2m

· · · · · · ·
αk

n Ak
n1 Ak

n2 · · · Ak
nm

 , (17)

where k = 1, 2, · · · , r, i = 1, 2, · · · , n and j = 1, 2, · · · , m.



Mathematics 2020, 8, 1690 13 of 16

Step 3. Determination of attribute weight. All attributes are not equally important in a
decision-making situation. Every decision-maker provides their own opinion regarding to the attribute
weight in terms of linguistic variables that can be converted into octahedron set. Let wk(β j) denote
the attribute weight for the attribute β j given by the k-th decision-maker in terms of octahedron set.
We convert into wk(β j) into fuzzy number as follows:

wF
k (β j) =

{
[1− (

Vkj
5 )

1
2 ] if β j ∈ β

0 otherwise,
(18)

where
Vkj = [(1− A−(β j))

2 + (1− A+(β j))
2 + (1− A∈(β j))

2 + (A 6∈((β j))
2

+(1− λ(β j))
2]

1
2

,

and each of the above values denote the value of the octahedron set corresponding to (k, β j).
Then, aggregate weight for the criteria β j can be determined as follows:

Wj =
[1−Πr

k=1(1− wF
k (β j))]

Σr
k=1[1−Πr

k=1(1− wF
k (β j))]

, (19)

where Σr
k=1Wj = 1.

Step 4. Calculation of weighted similarity measure. We calculate weighted similarity measure
between the ideal matrix M and the k-th decision matrix Mk as follows:

sW
NH(M, Mk) =

〈
λk

i

〉
= (λk

1, λk
2, · · · , λk

n)
T =

[
1
m Σm

j=1(1−
Dk

ij
5 )Wj

]n

i=1
, (20)

where Dk
ij =| A−ij (xr)− Ak,−

ij (xr) | + | A+
ij (xr)− Ak,+

ij (xr) | + | A∈ij (xr)− Ak,∈
ij (xr) |

+ | A 6∈ij (xr)− Ak, 6∈
ij (xr) | + | λ(xr)− λ(xr) | for each xr ∈ X and k = 1, 2, · · · , r.

Step 5. Ranking of alternatives. In order to rank alternatives, we give the following formula:

ρi = Σr
k=1δkλk

i , (21)

where i = 1, 2, · · · , n.
We can arrange alternatives according to the descending order values of ρi. The highest value of

ρi reflects the best alternative.

Example 4 (Numerical example). In order to solve a MCGDM problem, we adapt “Illustrative example"
given by Ye [11] to demonstrate the applicablility and effectiveness of the proposed method. Assume that
an investment company wants to invest a sum of money in the best option. The investment company is
composed of a decision-making committee comprised of three members, say k1, k2, k3 to make a panel of four
alternatives to invest money. The alternatives Car company (α1), Food company (α2), Computer company (α3),
and Arm company (α4). Decision-makers take decision based on the criteria, namely risk analysis (β1), growth
analysis (β2), environment impact (β3), and criteria weights, which are given by the decision-makers in terms of
linguistic variables that can be converted into octahedron set (see Table 1).

Table 1. Linguistic term for rating of attribute/criterion.

Linguistic Terms Octahedron Set

Very important (VI) 〈[0.7, 0.9], (0.7, 0.2), 0.9〉
Important (I) 〈[0.6, 0.8], (0.6, 0.3), 0.6〉
Medium (M) 〈[0.4, 0.5], (0.5, 0.4), 0.5〉

Unimportant (UI) 〈[0.2, 0.4], (0.3, 0.6), 0.4〉
Very unimportant (VUI) 〈[0.1, 0.2], (0.2, 0.7), 0.2〉
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Step 1. Formation of ideal octahedron set decision matrix. Ideal octahedron set decision matrix M
is given as follows:

M =


β1 β2 β3

α1 〈[1, 1], (1, 0), 1〉 〈[1, 1], (1, 0), 1〉 〈[1, 1], (1, 0), 1〉
α2 〈[1, 1], (1, 0), 1〉 〈[1, 1], (1, 0), 1〉 〈[1, 1], (1, 0), 1〉
α3 〈[1, 1], (1, 0), 1〉 〈[1, 1], (1, 0), 1〉 〈[1, 1], (1, 0), 1〉
α4 〈[1, 1], (1, 0), 1〉 〈[1, 1], (1, 0), 1〉 〈[1, 1], (1, 0), 1〉

 (22)

Step 2. Construction of octahedron set decision matrix. The ki-th decision matrix Mki (i = 1, 2, 3)
in octahedron set form is constructed for four alternatives with respect to the three criteria by the following matrix:

Mk1 =


β1 β2 β3

α1 〈[0.7, 0.9], (0.7, 0.2), 0.9〉 〈[0.7, 0.9], (0.7, 0.2), 0.9〉 〈[0.4, 0.5], (0.5, 0.4), 0.5〉
α2 〈[0.6, 0.8], (0.6, 0.3), 0.8〉 〈[0.4, 0.5], (0.5, 0.4), 0.5〉 〈[0.7, 0.9], (0.7, 0.2), 0.9〉
α3 〈[0.4, 0.5], (0.5, 0.4), 0.5〉 〈[0.6, 0.8], (0.6, 0.3), 0.8〉 〈[0.4, 0.5], (0.5, 0.4), 0.5〉
α4 〈[0.3, 0.4], (0.4, 0.5), 0.4〉 〈[0.4, 0.5], (0.5, 0.4), 0.5〉 〈[0.7, 0.9], (0.7, 0.2), 0.9〉

 ,

Mk2 =


β1 β2 β3

α1 〈[0.3, 0.4], (0.4, 0.5), 0.4〉 〈[0.4, 0.5], (0.5, 0.4), 0.5〉 〈[0.7, 0.9], (0.7, 0.2), 0.9〉
α2 〈[0.4, 0.5], (0.5, 0.4), 0.5〉 〈[0.4, 0.5], (0.5, 0.4), 0.5〉 〈[0.7, 0.9], (0.7, 0.2), 0.9〉
α3 〈[0.7, 0.9], (0.7, 0.2), 0.9〉 〈[0.7, 0.9], (0.7, 0.2), 0.9〉 〈[0.4, 0.5], (0.5, 0.4), 0.5〉
α4 〈[0.6, 0.8], (0.6, 0.3), 0.8〉 〈[0.4, 0.5], (0.5, 0.4), 0.5〉 〈[0.7, 0.9], (0.7, 0.2), 0.9〉

 ,

Mk3 =


β1 β2 β3

α1 〈[0.4, 0.5], (0.5, 0.4), 0.5〉 〈[0.4, 0.5], (.5, .4), 0.5〉 〈[0.7, 0.9], (0.7, 0.2), 0.9〉
α2 〈[0.4, 0.5], (0.5, 0.4), 0.5〉 〈[0.7, 0.9], (.7, .2), 0.9〉 〈[0.4, 0.5], (0.5, 0.4), 0.5〉
α3 〈[0.7, 0.9], (0.7, 0.2), 0.9〉 〈[0.6, 0.8], (0.6, 0.3), 0.8〉 〈[0.6, 0.8], (0.6, 0.3), 0.8〉
α4 〈[0.7, 0.9], (0.7, 0.2), 0.9〉 〈[0.4, 0.5], (0.5, 0.4), 0.5〉 〈[0.3, 0.4], (0.4, 0.5), 0.4〉

 .

Step 3. Determination of attribute weight. Linguistic terms given in Table 1 are used to evaluate each
attribute. The importance of each attribute for every decision-maker is rated with linguistic terms (see Table 2).
Moreover, each linguistic term is converted into octahedron set (see Table 3).

Table 2. Attribute rating linguistic variables.

β1 β2 β3

k1 VI M I
k2 VI VI M
k3 M VI M

Table 3. Attribute rating in octahedron set.

β1 β2 β3

k1 〈[0.7, 0.9], (0.7, 0.2), 0.9〉 〈[0.4, 0.5], (0.5, 0.4), 0.5〉 〈[0.6, 0.8], (0.6, 0.3), 0.8〉
k2 〈[0.7, 0.9], (0.7, 0.2), 0.9〉 〈[0.7, 0.9], (0.7, 0.2), 0.9〉 〈[0.4, 0.5], (0.5, 0.4), 0.5〉
k3 〈[0.4, 0.5], (0.5, 0.4), 0.5〉 〈[0.7, 0.9], (0.7, 0.2), 0.9〉 〈[0.4, 0.5], (0.5, 0.4), 0.5〉

By using Equations (18) and (19), we get the following attribute weights:

W1 = W2 = W3 = 0.33. (23)
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Step 4. Calculation of weighted similarity measures. By using Formula (20), we obtain weighted
similarity measures between the ideal matrix M and the ks-th decision matrix Mks (s = 1, 2, 3) as follows:

sW
NH(M, Mk1) =


0.205
0.207
0.187
0.178

 , sW
NH(M, Mk2) =


0.178
0.185
0.218
0.220

 , sW
NH(M, Mk3) =


0.211
0.211
0.229
0.187

 , (24)

Step 5. Ranking of alternatives. In order to rank the alternatives according to the descending value
of ρi, by using Equations (22)–(24), we obtain ρi (i = 1, 2, 3, 4):

ρ1 = 0.196, ρ2 = 0.199, ρ3 = 0.232, ρ4 = 0.193.

Then, ρ3 > ρ2 > ρ1 > ρ4. Thus, the ranking order is as follows:

α3 > α2 > α1 > α4.

So, we can see that Computer company (α3) is the best alternative for money investment.

5. Conclusions

With this paper, we wished to renew an interest in the systematic study of the relationships
between multi-criteria group decision-making (MCGDM) method with respect to octahedron set theory.
For this purpose, various distance and similarity measures for octahedron sets were defined, and some
of their properties were proved. The usefulness and interest of this correspondence of new defined
distance and similarity measures will of course be enhanced if there is a way of returning from the
transforms, that is to say, if there is a new method that characterize our proposed similarity measure.
In Section 4, all the studies came to fruition, and we took up a result, MCGDM method based on a
similarity measure for octahedron sets environments, which plays a pivotal role for demonstrating the
usefulness of giving numerical examples. The detailed application of MCGDM method was carried out
by introducing a a numerical example in the closing of Section 4. It considered some of the new results
and consequences, which could be useful from the point of view of octahedron set theory, which were
not studied at all. All these findings will provide a base to researchers who want to work in the field of
the application of octahedron sets and will help to strengthen the foundations of the other MCGDM
problems in octahedron set environment, such as economic policy, foreign policy between countries,
trade policy, financial policy, etc., by using big data.
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