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Abstract: A nonlinear inhomogeneous system of fractional differential equations is investigated.
Namely, sufficient criteria are obtained so that the considered system has no global solutions.
Furthermore, an example is provided to show the effect of the inhomogeneous terms on the
blow-up of solutions. Our results are extensions of those obtained by Furati and Kirane (2008)
in the homogeneous case.
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1. Introduction

The theory of fractional calculus provides useful mathematical tools for modeling several
phenomena from Science and Engineering (see e.g., [1–7]). This fact has motivated researchers to
investigate fractional differential equations in various directions including theory (existence and
uniqueness of solutions [8–10], comparison principles [11,12], blow-up profile of solutions [13,14]),
and numerical methods (see e.g., [15–19]).

In this paper, we study the inhomogeneous system of fractional differential equations
dx
dt

(t) +
dx
dtα

(t) = |y(t)|q + z1(t),

dy
dt

(t) +
dy
dtβ

(t) = |x(t)|p + z2(t),

(x(0), y(0)) = (x0, y0),

(1)

where t > 0, p, q > 1, z1, z2 ∈ C([0, ∞)), z1, z2 ≥ 0, 0 < α, β < 1, and d
dtτ , τ ∈ {α, β}, is the derivative

of order τ in the sense of Caputo. Namely, we obtain sufficient criteria for which global solutions for
Equation (1) do not exist, i.e., a finite time blow-up occurs.

The study of the absence of global solutions for differential equations (or fractional differential
equations) furnishes important indications on limiting behaviors of many physical systems. In industry,
the knowledge of the finite time blow-up can prevent accidents and malfunctions. It can also be useful
for the improvement of the performance of machines and the extension of their life-span.
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In [20], Furati and Kirane investigated the system
dx
dt

(t) +
dx
dtα

(t) = |y(t)|q,

dy
dt

(t) +
dy
dtβ

(t) = |x(t)|p,

(x(0), y(0)) = (x0, y0),

(2)

which is a special case of Equation (1) with zi ≡ 0, i = 1, 2. They proved that, if x0, y0 > 0 and

1− 1
pq
≤ max

{
α +

β

p
, β +

α

q

}
,

then Equation (2) has no global solutions. Next, Kirane and Malik [14] studied the profile of the
blowing up solutions of Equation (2).

Let us mention that several results related to the finite time blow-up of solutions of fractional
differential equations were obtained in previous contributions (see e.g., [13,21–25] and references
therein). However, systems of the type seen in Equation (1) were not studied previously. Here, our
aim is to study the effect of the inhomogenous terms zi(t), i = 1, 2, on the blow-up of solutions of
Equation (2).

Before presenting the main results, we first recall briefly certain standard notions on fractional
calculus that will be used throughout this paper. For more details, see e.g., [9].

Let ξ > 0. The fractional integrals of order ξ of a function η ∈ C([0, µ]), µ > 0, are given by

Iξ
0 η(t) =

1
Γ(ξ)

∫ t

0
(t− τ)ξ−1η(τ) dτ (left-sided fractional integral)

and
Iξ

µη(t) =
1

Γ(ξ)

∫ µ

t
(τ − t)ξ−1η(τ) dτ (right-sided fractional integral),

for all t ∈ [0, µ].
For all η, λ ∈ C([0, µ]), one has∫ µ

0
λ(t)Iξ

0 η(t) dt =
∫ µ

0
η(t)Iξ

µλ(t) dt. (3)

Let

ψ(t) =
(

1− t
µ

)κ

, for all t ∈ [0, µ],

where κ ≥ 0. Then

Iξ
µψ(t) =

Γ(κ + 1)
Γ(κ + ξ + 1)

µ−κ(µ− t)ξ+κ , for all t ∈ [0, µ]. (4)

Suppose now that 0 < ξ < 1. The derivative of order ξ of a function η ∈ C1([0, µ]) in the Caputo
sense, is given by

dη

dxξ
(t) = I1−ξ

0

(
dη

dt

)
(t), for all t ∈ [0, µ]. (5)

The pair of functions (x, y), where x, y ∈ C1([0, ∞)), is a global solution of Equation (1), if it
satisfies Equation (1) for all t > 0. Let us recall that the system of Equation (1) is investigated under
the assumptions:

(A1) p, q > 1 and 0 < α, β < 1.
(A2) zi ∈ C([0, ∞)), zi ≥ 0, i = 1, 2.
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Now, we present our results.

Theorem 1. Let x0, y0 ≥ 0. If

lim sup
T→+∞

T
(α−1)pq+βq+1

pq−1

∫ T

0
z1(s) ds = +∞ or lim sup

T→+∞
T

(β−1)pq+αp+1
pq−1

∫ T

0
z2(s) ds = +∞, (6)

then Equation (1) has no global solutions.

Consider now the case of a single equation
dx
dt

(t) +
dx
dtα

(t) = |x(t)|p + z(t),

x(0) = x0,
(7)

where 0 < α < 1, p > 1 and z ∈ C([0, ∞)), z ≥ 0. From Theorem 1, we deduce

Corollary 1. Let x0 ≥ 0. If

lim sup
T→+∞

T
αp

p−1−1
∫ T

0
z(s) ds = +∞,

then Equation (7) has no global solutions.

The following example shows the effect of the inhomogeneous terms zi(t), i = 1, 2, on the blow-up
of solutions of Equation (2)

Example 1. Consider the system
dx
dt

(t) +
dx
dtα

(t) = |y(t)|q + (t + 1)ρ,

dy
dt

(t) +
dy
dtβ

(t) = |x(t)|p,

(x(0), y(0)) = (x0, y0),

(8)

where t > 0, x0 ≥ 0,y0 ≥ 0, p > 1, q > 1 and

ρ > −min
{

1,
q(αp + β)

pq− 1

}
. (9)

System Equation (8) is a special case of Equation (1) with

z1(t) = (t + 1)ρ and z2(t) = 0,

for all t ≥ 0. One observes easily that

T
(α−1)pq+βq+1

pq−1

∫ T

0
z1(s) ds ∼ T

(α−1)pq+βq+1
pq−1 +ρ+1, as T → +∞.

Furthermore, it follows from Equation (9) that

(α− 1)pq + βq + 1
pq− 1

+ ρ + 1 > 0,

which yields

lim
T→+∞

T
(α−1)pq+βq+1

pq−1

∫ T

0
z1(s) ds = +∞.
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Hence by Theorem 1, one deduces that under condition Equation (9), for all p, q > 1, Equation (8) has no
global solutions.

2. Proof of the Main Result

The proof is based on the nonlinear capacity method (see e.g., [26]). More precisely, we first
suppose that (x, y) is a global solution of Equation (1). Next, we multiply both equations in Equation (1)
by an adequate test function that depends of a parameter T � 1, and we integrate by parts over the
interval (0, T). Using standard integral inequalities, the condition in Equation (6) and passing to the
limit as T → ∞, a contradiction follows.

The detailed proof of Theorem 1 is given below.

Proof. We follow the steps mentioned previously.
Step 1 (Multiplication of both equations in Equation (1) by an adequate test function that depends of a
parameter T � 1):

Suppose (x, y) is solution of (1) which is global. For κ, T � 1, let

ν(t) = T−κ(T − t)κ , for all 0 ≤ t ≤ T. (10)

After multiplication of the first equation in Equation (1) by ν(t) and integration over (0, T),
we obtain ∫ T

0

dx
dt

ν dt +
∫ T

0

dx
dtα

ν dt =
∫ T

0
|y|qν dt +

∫ T

0
z1ν dt. (11)

Integrating by parts, we have

∫ T

0

dx
dt

ν dt = x(T)ν(T)− x(0)ν(0)−
∫ T

0
x

dν

dt
dt.

Since ν(T) = 0 and ν(0) = 1, we get

∫ T

0

dx
dt

ν dt = −x(0)−
∫ T

0
x

dν

dt
dt. (12)

Using Equations (5) and (3), we have

∫ T

0

dx
dtα

ν dt =
∫ T

0
I1−α

0

(
dx
dt

)
ν dt =

∫ T

0

dx
dt
I1−α

T ν dt.

Again, we integrate by parts, we obtain

∫ T

0

dx
dtα

ν dt = x(T)
(
I1−α

T ν
)
(T)− x(0)

(
I1−α

T ν
)
(0)−

∫ T

0
x

dI1−α
T ν

dt
dt.

On the other hand, by Equation (4), one has
(
I1−α

T ν
)
(T) = 0. Therefore, it holds that

∫ T

0

dx
dtα

ν dt = −x(0)
(
I1−α

T ν
)
(0)−

∫ T

0
x

dI1−α
T ν

dt
dt. (13)

Further, using Equation (11)–(13), we deduce that

x(0)
(

1 +
(
I1−α

T ν
)
(0)
)
+
∫ T

0
|y|qν dt +

∫ T

0
z1ν dt ≤

∫ T

0
|x|
∣∣∣∣dν

dt

∣∣∣∣ dt +
∫ T

0
|x|
∣∣∣∣∣dI1−α

T ν

dt

∣∣∣∣∣ dt.
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Since x(0) ≥ 0 and
(
I1−α

T ν
)
(0) ≥ 0 by Equation (4), it holds that

∫ T

0
|y|qν dt +

∫ T

0
z1ν dt ≤

∫ T

0
|x|
∣∣∣∣dν

dt

∣∣∣∣ dt +
∫ T

0
|x|
∣∣∣∣∣dI1−α

T ν

dt

∣∣∣∣∣ dt. (14)

Similarly, after multiplication of the second equation in Equation (1) by ν(t) and integration over
(0, T), using that y(0) ≥ 0 and

(
I1−β

T ν
)
(0) ≥ 0, we obtain

∫ T

0
|x|pν dt +

∫ T

0
z2ν dt ≤

∫ T

0
|y|
∣∣∣∣dν

dt

∣∣∣∣ dt +
∫ T

0
|y|
∣∣∣∣∣dI

1−β
T ν

dt

∣∣∣∣∣ dt. (15)

Next, we set

I =
∫ T

0
|x|pν dt and J =

∫ T

0
|y|qν dt.

We use Hölder’s inequality to get

∫ T

0
|x|
∣∣∣∣dν

dt

∣∣∣∣ dt =
∫ T

0
|x|ν

1
p ν
−1
p

∣∣∣∣dν

dt

∣∣∣∣ dt ≤ I
1
p

(∫ T

0
ν
−1
p−1

∣∣∣∣dν

dt

∣∣∣∣
p

p−1
dt

) p−1
p

(16)

and ∫ T

0
|x|
∣∣∣∣∣dI1−α

T ν

dt

∣∣∣∣∣ dt ≤ I
1
p

∫ T

0
ν
−1
p−1

∣∣∣∣∣dI1−α
T ν

dt

∣∣∣∣∣
p

p−1

dt


p−1

p

. (17)

Similarly, one has ∫ T

0
|y|
∣∣∣∣dν

dt

∣∣∣∣ dt ≤ J
1
q

(∫ T

0
ν
−1
q−1

∣∣∣∣dν

dt

∣∣∣∣
q

q−1
dt

) q−1
q

(18)

and ∫ T

0
|y|
∣∣∣∣∣dI

1−β
T ν

dt

∣∣∣∣∣ dt ≤ J
1
q

∫ T

0
ν
−1
q−1

∣∣∣∣∣dI
1−β
T ν

dt

∣∣∣∣∣
q

q−1

dt


q−1

q

. (19)

Next, setting

A1 =
∫ T

0
ν
−1
p−1

∣∣∣∣dν

dt

∣∣∣∣
p

p−1
dt and A2 =

∫ T

0
ν
−1
p−1

∣∣∣∣∣dI1−α
T ν

dt

∣∣∣∣∣
p

p−1

dt,

using Equations (14), (16), and (17), one deduces that

J+
∫ T

0
z1ν dt ≤ I

1
p

(
A

p−1
p

1 +A
p−1

p
2

)
. (20)

Similarly, setting

B1 =
∫ T

0
ν
−1
q−1

∣∣∣∣dν

dt

∣∣∣∣
q

q−1
dt and B2 =

∫ T

0
ν
−1
q−1

∣∣∣∣∣dI
1−β
T ν

dt

∣∣∣∣∣
q

q−1

dt,
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using Equations (15), (18), and (19), one deduces that

I+
∫ T

0
z2ν dt ≤ J

1
q

(
B

q−1
q

1 +B
q−1

q
2

)
. (21)

Consider now the case

lim sup
T→+∞

T
(α−1)pq+βq+1

pq−1

∫ T

0
z1(s) ds = +∞. (22)

Since ∫ T

0
z2ν dt ≥ 0,

it follows from Equation (21) that

I ≤ J
1
q

(
B

q−1
q

1 +B
q−1

q
2

)
.

The above inequality with Equation (20) yields

J+
∫ T

0
z1ν dt ≤ J

1
pq

(
B

q−1
q

1 +B
q−1

q
2

) 1
p
(
A

p−1
p

1 +A
p−1

p
2

)
. (23)

Step 2 (Estimates and conclusion):
Further, we shall estimate the term in right-hand side of the above inequality. Using the inequality

(a1 + a2)
γ ≤ 2γ(aγ

1 + aγ
2 ), 0 < γ < 1, a1, a2 > 0,

one obtains(
B

q−1
q

1 +B
q−1

q
2

) 1
p
(
A

p−1
p

1 +A
p−1

p
2

)
≤ 2

1
p

(
A

p−1
p

1 B
q−1
pq

1 +A
p−1

p
2 B

q−1
pq

1 +A
p−1

p
1 B

q−1
pq

2 +A
p−1

p
2 B

q−1
pq

2

)
. (24)

On the other hand, using Equation (10), elementary calculations yield

A1 =
1

κ − 1
p−1

T
−1
p−1 and B1 =

1
κ − 1

q−1
T
−1
q−1 . (25)

Similarly, using Equations (4) and (10), we obtain

A2 =

[
Γ(κ + 1)

Γ(κ + 1− α)

] p
p−1 T1− αp

p−1

κ − αp
p−1 + 1

and B2 =

[
Γ(κ + 1)

Γ(κ + 1− β)

] q
q−1 T1− βq

q−1

κ − βq
q−1 + 1

. (26)

Hence, using Equations (24)–(26), one deduces easily that

(
B

q−1
q

1 +B
q−1

q
2

) 1
p
(
A

p−1
p

1 +A
p−1

p
2

)
≤ CT1−α− β

p−
1
pq ,

where C > 0 is a constant. The above inequality with Equation (23) yield

J+
∫ T

0
z1ν dt ≤ CJ

1
pq T1−α− β

p−
1
pq . (27)
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Next, using Young’s inequality

ab ≤ 1
pq

apq +
pq− 1

pq
b

pq
pq−1 , a, b > 0,

we get

CJ
1
pq T1−α− β

p−
1
pq ≤ 1

pq
J+

(
pq− 1

pq

)
C

pq
pq−1 T

pq
pq−1

(
1−α− β

p−
1
pq

)
,

together with Equation (27) implies

∫ T

0
z1ν dt ≤ C̃T

pq
pq−1

(
1−α− β

p−
1
pq

)
, (28)

where C̃ =
(

pq−1
pq

)
C

pq
pq−1 . On the other hand, by Equation (10), one has

∫ T

0
z1ν dt = T−κ

∫ T

0
z1(t)(T − t)κ dt ≥ 1

2κ

∫ T
2

0
z1(t) dt.

The above inequality with (28) yields

1
2κ

T
(α−1)pq+βq+1

pq−1

∫ T
2

0
z1(t) dt ≤ C̃,

which contradicts Equation (22).
Next, consider the case

lim sup
T→+∞

T
(β−1)pq+αp+1

pq−1

∫ T

0
z2(s) ds = +∞. (29)

Using similar argument as above, one obtains

1
2κ

T
(β−1)pq+αp+1

pq−1

∫ T
2

0
z2(t) dt ≤ C̃′,

for some constant C̃′ > 0, which contradicts (29).
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