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Abstract: In this manuscript we provide an exact solution to the maxmin problem max ‖Ax‖ subject
to ‖Bx‖ ≤ 1, where A and B are real matrices. This problem comes from a remodeling of max ‖Ax‖
subject to min ‖Bx‖, because the latter problem has no solution. Our mathematical method comes
from the Abstract Operator Theory, whose strong machinery allows us to reduce the first problem
to max ‖Cx‖ subject to ‖x‖ ≤ 1, which can be solved exactly by relying on supporting vectors.
Finally, as appendices, we provide two applications of our solution: first, we construct a truly
optimal minimum stored-energy Transcranian Magnetic Stimulation (TMS) coil, and second, we find
an optimal geolocation involving statistical variables.
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1. Introduction

1.1. Scope

Different scientific fields, such as Physics, Statistics, Economics, or Engineering, deal with real-life
problems that are usually modelled by the experts on those fields using matrices and their norms
(see [1–6]). A typical modelling is the following original maxmin problem{

max ‖Ax‖
min ‖Bx‖.

One of the most iconic results in this manuscript (Theorem 2) shows that the previous problem,
regarded strictly as a multiple optimization problem, has no solutions. To save this obstacle we provide
a different model, such as {

max ‖Ax‖
‖Bx‖ ≤ 1.

Here in this article we justify the remodelling of the original maxmin problem and we solve it by
making use of supporting vectors. This concept comes from the Theory of Banach Spaces and Operator
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Theory. Given a matrix A, a supporting vector is a unit vector x such that A attains its norm at x, that
is, x is a solution of the following single optimization problem:{

max ‖Ax‖
‖x‖ = 1.

The geometric and topological structure of supporting vectors can be consulted in [7–9]. On the
other hand, generalized supporting vectors are defined and studied in [7,8]. The generalized
supporting vectors of a finite sequence of matrices A1, . . . , An, for the Euclidean norm ‖ • ‖2, are
the solutions of {

max ‖A1x‖2
2 + · · ·+ ‖Anx‖2

2
‖x‖2 = 1.

This optimization problem clearly generalizes the previous one.
Supporting vectors were originally applied in [10] to truly optimally design a TMS coil, because

until that moment TMS coils had only been designed by means of heuristic methods, which were
never proved to be convergent. In [10] a three-component TMS coil problem is posed but only the
one-component case was resolved. The three-component case was stated and solved by means of
the generalized supporting vectors in [8]. In this manuscript, we model a TMS coil with a maxmin
problem and solve it exactly with our method.

A second application of supporting vectors was given in [8], where an optimal location situation
using Principal Component Analysis (PCA) was solved. In this manuscript, we model a more complex
PCA problem as an optimal maxmin geolocation involving statistical variables.

For other perspective on supporting vectors and generalized supporting vectors, we refer the
reader to [9].

1.2. Background

In the first place, we refer the reader to [8] (Preliminaries) for a general review of multiobjective
optimization problems and their reformulations to avoid the lack of solutions (generally caused by the
existence of many objective functions).

The original maxmin optimization problem has the form

M :=

{
max g(x)
min f (x)

where f , g : X → (0, ∞) are real-valued functions and X is a nonempty set. Notice that

sol(M) = arg max g(x) ∩ arg min f (x).

Many real-life problems can be mathematically model, such as a maxmin. However, this kind of
multiobjective optimization problems may have the inconvenience of lacking a solution. If this occurs,
then we are in need of remodeling the real-life problem with another mathematical optimization
problem that has a solution and still models the real-life problem very accurately.

According to [10] (Theorem 5.1), one can realize that, in case sol(M) = ∅, the following
optimization problems are good alternatives to keep modeling the real-life problem accurately:

•

{
max g(x)
min f (x)

reform−→
{

min f (x)
g(x)

g(x) 6= 0
.

•

{
max g(x)
min f (x)

reform−→
{

max g(x)
f (x)

f (x) 6= 0
.
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•

{
max g(x)
min f (x)

reform−→
{

max g(x)
f (x) ≤ a

.

•

{
max g(x)
min f (x)

reform−→
{

min f (x)
g(x) ≥ b

.

We will prove in the third section that all four previous reformulations are equivalent for the

original maxmin

{
max ‖Ax‖
min ‖Bx‖ . In the fourth section, we will solve the reformulation

{
max ‖Ax‖
‖Bx‖ ≤ 1

.

2. Characterizations of Operators with Null Kernel

Kernels will play a fundamental role towards solving the general reformulated maxmin (2) as
shown in the next section. This is why we first study the operators with null kernel.

Throughout this section, all monoid actions considered will be left, all rings will be associative,
all rings will be unitary rngs, all absolute semi-values and all semi-norms will be non-zero, all modules
over rings will be unital, all normed spaces will be real or complex and all algebras will be unitary
and complex.

Given a rng R and an element s ∈ R, we will denote by `d(s) to the set of left divisors of s, that is,

`d(s) := {r ∈ R : ∃ t ∈ R \ {0} with rt = s}.

Similarly, rd(s) stands for the set of right divisors of s. If R is a ring, then the set of its invertibles
is usually denoted by U (R). Notice that `d(1) (rd(1)) is precisely the subset of elements of R which are
right-(left) invertible. As a consequence, U (R) = `d(1) ∩ rd(1). Observe also that `d(0) ∩ rd(1) = ∅ =

rd(0) ∩ `d(1). In general we have that `d(0) ∩ `d(1) 6= ∅ and rd(0) ∩ rd(1) 6= ∅. Later on in Example 1
we will provide an example of a ring where rd(0) ∩ rd(1) 6= ∅.

Recall that an element p of a monoid is called involutive if p2 = 1. Given a rng R, an involution
is an additive, antimultiplicative, composition-involutive map ∗ : R→ R. A ∗-rng is a rng endowed
with an involution.

The categorical concept of monomorphism will play an important role in this manuscript.
A morphism f ∈ homC(A, B) between objects A and B in a category C is said to be a monomorphism
provided that f ◦ g = f ◦ h implies g = h for all C ∈ ob(C) and all g, h ∈ homC(C, A). Once can
check that if f ∈ homC(A, B) and there exist C0 ∈ ob(C) and g0 ∈ homC(B, C0) such that g0 ◦ f is
a monomorphism, then f is also a monomorphism. In particular, if f ∈ homC(A, B) is a section,
that is, exists g ∈ homC(B, A) such that g ◦ f = IA, then f is a monomorphism. As a consequence,
the elements of homC(A, A) that have a left inverse are monomorphisms. In some categories, the last
condition suffices to characterize monomorphisms. This is the case, for instance, of the category of
vector spaces over a division ring.

Recall that CL(X, Y) denotes the space of continuous linear operators from a topological vector
space X to another topological vector space Y.

Proposition 1. A continuous linear operator T : X → Y between locally convex Hausdorff topological
vector spaces X and Y verifies that ker(T) 6= {0} if and only if exists S ∈ CL(Y, X) \ {0} with T ◦ S = 0.
In particular, if X = Y, then ker(T) 6= {0} if and only if T ∈ `d(0) in CL(X).

Proof. Let S ∈ CL(Y, X) \ {0} such that T ◦ S = 0. Fix any y ∈ Y \ ker(S), then S(y) 6= 0 and
T(S(y)) = 0 so S(y) ∈ ker(T) \ {0}. Conversely, if ker(T) 6= {0}, then fix x0 ∈ ker(T) \ {0} and
y∗0 ∈ Y∗ \ {0} (the existence of y∗ is guaranteed by the Hahn-Banach Theorem on the Hausdorff locally
convex topological vector space Y). Next, consider

S : Y → X
y 7→ S(y) := y∗0(y)x0.



Mathematics 2020, 8, 85 4 of 25

Notice that S ∈ CL(Y, X) \ {0} and T ◦ S = 0.

Theorem 1. Let T : X → Y be a continuous linear operator between locally convex Hausdorff topological
vector spaces X and Y. Then:

1. If T is a section, then ker(T) = {0}
2. In case X and Y are Banach spaces, T(X) is topologically complemented in Y and ker(T) = {0}, then T

is a section.

Proof.

1. Trivial since sections are monomorphisms.
2. Consider T : X → T(X). Since T(X) is topologically complemented in Y we have that T(X)

is closed in Y, thus it is a Banach space. Therefore, the Open Mapping Theorem assures that
T : X → T(X) is an isomorphism. Let T−1 : T(X) → X be the inverse of T : X → T(X). Now
consider P : Y → Y to be a continuous linear projection such that P(Y) = T(X). Finally, it suffices
to define S := T−1 ◦ P since S ◦ T = IX .

We will finalize this section with a trivial example of a matrix A ∈ R3×2 such that
A ∈ rd(I) ∩ rd(0).

Example 1. Consider

A =

 1 0
0 1
0 0

 .

It is not hard to check that ker(A) = {(0, 0)} thus A is left-invertible by Theorem 1(2) and so A ∈ rd(I).
In fact, (

1 0 0
0 1 0

) 1 0
0 1
0 0

 =

(
1 0
0 1

)
.

Finally, (
0 0 1
0 0 1

) 1 0
0 1
0 0

 =

(
0 0
0 0

)
.

3. Remodeling the Original Maxmin Problem max‖T(x)‖ Subject to min‖S(x)‖

3.1. The Original Maxmin Problem Has No Solutions

This subsection begins with the following theorem:

Theorem 2. Let T, S : X → Y be nonzero continuous linear operators between Banach spaces X and Y. Then
the original maxmin problem {

max ‖T(x)‖
min ‖S(x)‖ (1)

has trivially no solution.
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Proof. Observe that arg min ‖S(x)‖ = ker(S) and arg max ‖T(x)‖ = ∅ because T 6= {0}. Then the
set of solutions of Problem (1) is

arg min ‖S(x)‖ ∩ arg max ‖T(x)‖ = ker(S) ∩∅ = ∅.

As a consequence, Problem (1) must be reformulated or remodeled.

3.2. Equivalent Reformulations for the Original Maxmin Problem

According to the Background section, we begin with the following reformulation:{
max ‖T(x)‖
‖S(x)‖ ≤ 1

(2)

Please note that arg max
‖S(x)‖≤1

‖T(x)‖ is a K-symmetric set, where K := R or C, in other words,

if λ ∈ K and |λ| = 1, then λx ∈ arg max
‖S(x)‖≤1

‖T(x)‖ for every x ∈ arg max
‖S(x)‖≤1

‖T(x)‖. The finite

dimensional version of the previous reformulation is{
max ‖Ax‖
‖Bx‖ ≤ 1

(3)

where A, B ∈ Rm×n.
Recall that B(X, Y) denotes the space of bounded operators from X to Y.

Lemma 1. Let T, S ∈ B(X, Y) where X and Y are Banach spaces. If the general reformulated maxmin problem{
max ‖T(x)‖
‖S(x)‖ ≤ 1

has a solution, then ker(S) ⊆ ker(T).

Proof. If ker(S) \ ker(T) 6= ∅, then it suffices to consider the sequence (nx0)n∈N for x0 ∈ ker(S) \
ker(T), since ‖S(nx0)‖ = 0 ≤ 1 for all n ∈ N and ‖T(nx0)‖ = n‖T(x0)‖ → ∞ as n→ ∞.

The general maxmin (1) can also be reformulated as{
max ‖T(x)‖
min ‖S(x)‖

reform−→
{

max ‖T(x)‖
‖S(x)‖

‖S(x)‖ 6= 0

Lemma 2. Let T, S ∈ B(X, Y) where X and Y are Banach spaces. If the second general reformulated
maxmin problem {

max ‖T(x)‖
‖S(x)‖

‖S(x)‖ 6= 0

has a solution, then ker(S) ⊆ ker(T).

Proof. Suppose there exists x0 ∈ ker(S) \ ker(T). Then fix an arbitrary x1 ∈ X \ ker(S). Notice that

‖T(nx0 + x1)‖
‖S(nx0 + x1)‖

≥ n‖T(x0)‖ − ‖T(x1)‖
‖S(x1)‖

→ ∞

as n→ ∞.
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The next theorem shows that the previous two reformulations are in fact equivalent.

Theorem 3. Let T, S ∈ B(X, Y) where X and Y are Banach spaces. Then

⋃
t>0

targ max
‖S(x)‖≤1

‖T(x)‖ = arg max
‖S(x)‖6=0

‖T(x)‖
‖S(x)‖ .

Proof. Let x0 ∈ arg max‖S(x)‖≤1 ‖T(x)‖ and t0 > 0. Fix an arbitrary y ∈ X \ ker(S). Notice that
x0 /∈ ker(S) in virtue of Theorem 1. Then

‖T(x0)‖ ≥
∥∥∥∥T
(

y
‖S(y)‖

)∥∥∥∥ ,

therefore
‖T(tx0)‖
‖S(tx0)‖

=
‖T(x0)‖
‖S(x0)‖

≥ ‖T(x0)‖ ≥
∥∥∥∥T
(

y
‖S(y)‖

)∥∥∥∥ .

Conversely, let x0 ∈ arg max‖S(x)‖6=0
‖T(x)‖
‖S(x)‖ . Fix an arbitrary y ∈ X with ‖S(y)‖ ≤ 1. Then∥∥∥∥T

(
x0

‖S(x0)‖

)∥∥∥∥ =
‖T(x0)‖
‖S(x0)‖

≥ ‖T(y)‖‖S(y)‖ ≥ ‖T(y)‖

which means that
x0

‖S(x0)‖
∈ arg max

‖S(x)‖≤1
‖T(x)‖

and thus
x0 ∈ ‖S(x0)‖arg max

‖S(x)‖≤1
‖T(x)‖ ⊆

⋃
t>0

targ max
‖S(x)‖≤1

‖T(x)‖.

The reformulation {
min ‖S(x)‖

‖T(x)‖
‖T(x)‖ 6= 0

is slightly different from the previous two reformulations. In fact, if ker(S) \ ker(T) 6= ∅, then
arg min‖T(x)‖6=0

‖S(x)‖
‖T(x)‖ = ker(S) \ ker(T). The previous reformulation is equivalent to the following

one as shown in the next theorem: {
min ‖S(x)‖
‖T(x)‖ ≥ 1

Theorem 4. Let T, S ∈ B(X, Y) where X and Y are Banach spaces. Then

⋃
t>0

targ min
‖T(x)‖≥1

‖S(x)‖ = arg min
‖T(x)‖6=0

‖S(x)‖
‖T(x)‖ .

We spare of the details of the proof of the previous theorem to the reader. Notice that if ker(S) \
ker(T) 6= ∅, then arg min‖T(x)‖≥1 ‖S(x)‖ = ker(S) \ {x ∈: ‖T(x)‖ < 1}. However, if ker(S) ⊆ ker(T),
then all four reformulations are equivalent, as shown in the next theorem, whose proof’s details we
spare again to the reader.

Theorem 5. Let T, S ∈ B(X, Y) where X and Y are Banach spaces. If ker(S) ⊆ ker(T), then

arg max
‖S(x)‖6=0

‖T(x)‖
‖S(x)‖ = arg min

‖T(x)‖6=0

‖S(x)‖
‖T(x)‖ .
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4. Solving the Maxmin Problem max‖T(x)‖ Subject to ‖S(x)‖ ≤ 1

We will distinguish between two cases.

4.1. First Case: S Is an Isomorphism Over Its Image

By bearing in mind Theorem 5, we can focus on the first reformulation proposed at the beginning
of the previous section: {

max ‖T(x)‖
min ‖S(x)‖

reform−→
{

max ‖T(x)‖
‖S(x)‖ ≤ 1

The idea we propose to solve the previous reformulation is to make use of supporting vectors
(see [7–10]). Recall that if R : X → Y is a continuous linear operator between Banach spaces, then the
set of supporting vectors of R is defined by

suppv(R) := arg max
‖x‖≤1

‖R(x)‖.

The idea of using supporting vectors is that the optimization problem{
max ‖R(x)‖
‖x‖ ≤ 1

whose solutions are by definition the supporting vectors of R, can be easily solved theoretically and
computationally (see [8]).

Our first result towards this direction considers the case where S is an isomorphism over its image.

Theorem 6. Let T, S ∈ B(X, Y) where X and Y are Banach spaces. Suppose that S is an isomorphism over
its image and S−1 : S(X) → X denotes its inverse. Suppose also that S(X) is complemented in Y, being
p : Y → Y a continuous linear projection onto S(X). Then

S−1

(
S(X) ∩ arg max

‖y‖≤1

∥∥∥(T ◦ S−1 ◦ p
)
(y)
∥∥∥) ⊆ arg max

‖S(x)‖≤1
‖T(x)‖.

If, in addition, ‖p‖ = 1, then

arg max
‖S(x)‖≤1

‖T(x)‖ = S−1

(
S(X) ∩ arg max

‖y‖≤1

∥∥∥(T ◦ S−1 ◦ p
)
(y)
∥∥∥) .

Proof. We will show first that

S(X) ∩ arg max
‖y‖≤1

∥∥∥(T ◦ S−1 ◦ p
)
(y)
∥∥∥ ⊆ S

(
arg max

‖S(x)‖≤1
‖T(x)‖

)
.

Let y0 = S(x0) ∈ arg max
‖y‖≤1

∥∥∥(T ◦ S−1 ◦ p
)
(y)
∥∥∥. We will show that x0 ∈ arg max

‖S(x)‖≤1
‖T(x)‖.

Indeed, let x ∈ X with ‖S(x)‖ ≤ 1. Since ‖S(x0)‖ = ‖y0‖ ≤ 1, by assumption we obtain

‖T(x)‖ =
∥∥∥(T ◦ S−1 ◦ p

)
(S(x))

∥∥∥
≤

∥∥∥(T ◦ S−1 ◦ p
)
(y0)

∥∥∥
=

∥∥∥(T ◦ S−1 ◦ p
)
(S(x0))

∥∥∥
= ‖T(x0)‖ .
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Now assume that ‖p‖ = 1. We will show that

S
(

arg max
‖S(x)‖≤1

‖T(x)‖
)
⊆ S(X) ∩ arg max

‖y‖≤1

∥∥∥(T ◦ S−1 ◦ p
)
(y)
∥∥∥ .

Let x0 ∈ arg max
‖S(x)‖≤1

‖T(x)‖, we will show that S(x0) ∈ arg max
‖y‖≤1

∥∥∥(T ◦ S−1 ◦ p
)
(y)
∥∥∥. Indeed, let

y ∈ BY. Observe that ∥∥∥S
(

S−1(p(y))
)∥∥∥ = ‖p(y)‖ ≤ ‖y‖ ≤ 1

so by assumption ∥∥∥(T ◦ S−1 ◦ p
)
(y)
∥∥∥ =

∥∥∥T
(

S−1(p(y))
)∥∥∥

≤ ‖T(x0)‖

=
∥∥∥T
(

S−1(p(S(x0)))
)∥∥∥

=
∥∥∥(T ◦ S−1 ◦ p

)
(S(x0))

∥∥∥ .

Notice that, in the settings of Theorem 6, S−1 ◦ p is a left-inverse of S, in other words, S is a section,
as in Theorem 1(2).

Taking into consideration that every closed subspace of a Hilbert space is 1-complemented
(see [11,12] to realize that this fact characterizes Hilbert spaces of dimension ≥ 3), we directly obtain
the following corollary.

Corollary 1. Let T, S ∈ B(X, Y) where X is a Banach space and Y a Hilbert space. Suppose that S is
an isomorphism over its image and let S−1 : S(X)→ X be its inverse. Then

arg max
‖S(x)‖≤1

‖T(x)‖ = S−1

(
S(X) ∩ arg max

‖y‖≤1

∥∥∥(T ◦ S−1 ◦ p
)
(y)
∥∥∥)

= S−1
(

S(X) ∩ suppv
(

T ◦ S−1 ◦ p
))

where p : Y → Y is the orthogonal projection on S(X).

4.2. The Moore–Penrose Inverse

If B ∈ Km×n, then the Moore–Penrose inverse of B, denoted by B+, is the only matrix B+ ∈ Kn×m

which verifies the following:

• B = BB+B.
• B+ = B+BB+.
• BB+ = (BB+)∗.
• B+B = (B+B)∗.

If ker(B) = 0, then B+ is a left-inverse of B. Even more, BB+ is the orthogonal projection onto the
range of B, thus we have the following result from Corollary 1.

Corollary 2. Let A, B ∈ Rm×n such that ker(B) = {0}. Then

B
(

arg max
‖Bx‖2≤1

‖Ax‖2

)
= BRn ∩ arg max

‖y‖2≤1

∥∥AB+y
∥∥

2

= BRn ∩ suppv
(

AB+
)
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According to the previous Corollary, in its settings, if y0 ∈ arg max‖y‖2≤1 ‖AB+y‖2 and there
exists x0 ∈ Rn such that y0 = Bx0, then x0 ∈ arg max‖Bx‖2≤1 ‖Ax‖2 and x0 can be computed as

x0 = B+Bx0 = B+y0.

4.3. Second Case: S Is Not an Isomorphism Over Its Image

What happens if S is not an isomorphism over its image? Next theorem answers this question.

Theorem 7. Let T, S ∈ B(X, Y) where X and Y are Banach spaces. Suppose that ker(S) ⊆ ker(T). If

π : X → X/ ker(S)
x 7→ π(x) := x + ker(S)

denotes the quotient map, then

arg max
‖S(x)‖≤1

‖T(x)‖ = π−1

(
arg max

‖S(π(x))‖≤1
‖T(π(x))‖

)
,

where
T : X

ker(S) → Y
π(x) 7→ T(π(x)) := T(x)

and
S : X

ker(S) → Y
π(x) 7→ S(π(x)) := S(x).

Proof. Let x0 ∈ arg max‖S(x)‖≤1 ‖T(x)‖. Fix an arbitrary y ∈ X with ‖S(π(y))‖ ≤ 1. Then ‖S(y)‖ =
‖S(π(y))‖ ≤ 1 therefore

‖T(π(x0)‖ = ‖T(x0)‖ ≥ ‖T(y)‖ = ‖T(π(y))‖.

This shows that π(x0) ∈ arg max‖S(π(x))‖≤1 ‖T(π(x))‖. Conversely, let

π(x0) ∈ arg max
‖S(π(x))‖≤1

‖T(π(x))‖.

Fix an arbitrary y ∈ X with ‖S(y)‖ ≤ 1. Then ‖S(π(y))‖ = ‖S(y)‖ ≤ 1 therefore

‖T(x0)‖ = ‖T(π(x0))‖ ≥ ‖T(π(y))‖ = ‖T(y)‖.

This shows that x0 ∈ arg max‖S(x)‖≤1 ‖T(x)‖.

Please note that in the settings of Theorem 7, if S(X) is closed in Y, then S is an isomorphism over
its image S(X), and thus in this case Theorem 7 reduces the reformulated maxmin to Theorem 6.

4.4. Characterizing When the Finite Dimensional Reformulated Maxmin Has a Solution

The final part of this section is aimed at characterizing when the finite dimensional reformulated
maxmin has a solution.

Lemma 3. Let S : X → Y be a bounded operator between finite dimensional Banach spaces X and Y. If (xn)n∈N
is a sequence in {x ∈ X : ‖S(x)‖ ≤ 1}, then there is a sequence (zn)n∈N in ker(S) so that (xn + zn)n∈N
is bounded.
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Proof. Consider the linear operator

S : X
ker(S) → Y

x + ker(S) 7→ S(x + ker(S)) = S(x).

Please note that ∥∥S(xn + ker(S))
∥∥ = ‖S(xn)‖ ≤ 1

for all n ∈ N, therefore the sequence (xn + ker(S))n∈N is bounded in X
ker(S) because X

ker(S) is finite

dimensional and S has null kernel so its inverse is continuous. Finally, choose zn ∈ ker(S) such that
‖xn + zn‖ < ‖xn + ker(S)‖+ 1

n for all n ∈ N.

Lemma 4. Let A, B ∈ Rm×n. If ker(B) ⊆ ker(A), then A is bounded on {x ∈ Rn : ‖Bx‖ ≤ 1} and attains
its maximum on that set.

Proof. Let (xn)n∈N be a sequence in {x ∈ Rn : ‖Bx‖ ≤ 1}. In accordance with Lemma 3, there
exists a sequence (zn)n∈N in ker(B) such that (xn + zn)n∈N is bounded. Since A(xn) = A(xn + zn) by
hypothesis (recall that ker(B) ⊆ ker(A)), we conclude that A is bounded on {x ∈ Rn : ‖Bx‖ ≤ 1}.
Finally, let (xn)n∈N be a sequence in {x ∈ Rn : ‖Bx‖ ≤ 1} such that ‖Axn‖ → max

‖Bx‖≤1
‖Ax‖ as n→ ∞.

Please note that
∥∥A(xn + ker(B))

∥∥ = ‖Axn‖ for all n ∈ N, so
(

A(xn + ker(B))
)

n∈N is bounded in Rm

and so is
(

A(xn + ker(B))
)

n∈N in Rn

ker(B) . Fix bn ∈ ker(B) such that ‖xn + bn‖ < ‖xn + ker(B)‖+ 1
n for

all n ∈ N. This means that (xn + bn)n∈N is a bounded sequence in Rn so we can extract a convergent
subsequence

(
xnk + bnk

)
k∈N to some x0 ∈ X. At this stage, notice that

∥∥B
(
xnk + bnk

)∥∥ =
∥∥Bxnk

∥∥ ≤ 1
for all k ∈ N and

(
B
(

xnk + bnk

))
k∈N converges to Bx0, so ‖Bx0‖ ≤ 1. Note also that, since ker(B) ⊆

ker(A),
(∥∥Axnk

∥∥)
n∈N converges to ‖Ax0‖, which implies that

x0 ∈ arg max
‖Bx‖≤1

‖Ax‖.

Theorem 8. Let A, B ∈ Rm×n. The reformulated maxmin problem{
max ‖Ax‖
‖Bx‖ ≤ 1

has a solution if and only if ker(B) ⊆ ker(A).

Proof. If ker(B) ⊆ ker(A), then we just need to call on Lemma 4. Conversely, if ker(B) \ ker(A) 6= ∅,
then it suffices to consider the sequence (nx0)n∈N for x0 ∈ ker(B) \ ker(A), since ‖B(nx0)‖ = 0 ≤ 1
for all n ∈ N and ‖A(nx0)‖ = n‖A(x0)‖ → ∞ as n→ ∞.

4.5. Matrices on Quotient Spaces

Consider the maxmin {
max ‖T(x)‖
‖S(x)‖ ≤ 1

being X and Y Banach spaces and T, S ∈ B(X, Y) with ker(S) ⊆ ker(T). Notice that if (ei)i∈I is
a Hamel basis of X, then (ei + ker(S))i∈I is a generator system of X

ker(S) . By making use of the Zorn’s

Lemma, it can be shown that (ei + ker(S))i∈I contains a Hamel basis of X
ker(S) . Observe that a subset C

of X
ker(S) is linearly independent if and only if S(C) is a linearly independent subset of Y.
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In the finite dimensional case, we have

B : Rn

ker(B) → Rm

x + ker(B) 7→ B(x + ker(B)) := Bx.

and
A : Rn

ker(B) → Rm

x + ker(B) 7→ A(x + ker(B)) := Ax.

If {e1, . . . , en} denotes the canonical basis of Rn, then {e1 + ker(B), . . . , en + ker(B)} is a generator
system of Rn

ker(B) . This generator system contains a basis of Rn

ker(B) so let {ej1 + ker(B), . . . , ejl + ker(B)}
be a basis of Rn

ker(B) . Please note that A
(
ejk + ker(B)

)
= Aejk and B

(
ejk + ker(B)

)
= Bejk for every

k ∈ {1, . . . , l}. Therefore, the matrix associated with the linear map defined by B can be obtained from
the matrix B by removing the columns corresponding to the indices {1, . . . , n} \ {j1, . . . , jl}, in other
words, the matrix associated with B is

[
Bej1 | · · · |Bejl

]
. Similarly, the matrix associated with the linear

map defined by A is
[
Aej1 | · · · |Aejl

]
. As we mentioned above, recall that a subset C of Rn

ker(B) is linearly
independent if and only if B(C) is a linearly independent subset of Rm. As a consequence, in order
to obtain the basis {ej1 + ker(B), . . . , ejl + ker(B)}, it suffices to look at the rank of B and consider the
columns of B that allow such rank, which automatically gives us the matrix associated with B, that is,[
Bej1 | · · · |Bejl

]
.

Finally, let
π : Rn → Rn

ker(B)
x 7→ π(x) : x + ker(B)

denote the quotient map. Let l := rank(B) = dim
(

Rn

ker(B)

)
. If x = (x1, . . . , xl) ∈ Rl , then

∑l
k=1 xk

(
ejk + ker(B)

)
∈ Rn

ker(B) . The vector z ∈ Rn defined by

zp :=

{
xk p = jk
0 p /∈ {j1, . . . , jl}

verifies that

p(z) =
l

∑
k=1

xk
(
ejk + ker(B)

)
.

To simplify the notation, we can define the map

α : Rl → Rn

x 7→ α(x) := z

where z is the vector described right above.

5. Discussion

Here we compile all the results from the previous subsections and define the structure of the
algorithm that solves the maxmin (3).

Let A, B ∈ Rm×n with ker(B) ⊆ ker(A). Then{
max ‖Ax‖2

min ‖Bx‖2

reform−→
{

max ‖Ax‖2

‖Bx‖2 ≤ 1
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Case 1: ker(B) = {0}. B+ denotes the Moore–Penrose inverse of B.

 max ‖Ax‖2

‖Bx‖2 ≤ 1

supp. vec.−→

 max ‖AB+y‖2

‖y‖2 ≤ 1
solution−→

 y0 ∈ arg max
‖y‖2≤1

‖AB+y‖2

rank(B) = rank([B|y0])

final sol.−→ x0 := B+y0

Case 2: ker(B) 6= {0}. B =
[
Bej1 | · · · |Bejl

]
where rank(B) = l = rank

(
B
)

and A =[
Aej1 | · · · |Aejl

]
.{

max ‖Ax‖2

‖Bx‖2 ≤ 1
case 1−→

{
max ‖Ay‖2

‖By‖2 ≤ 1
solution−→ y0

final sol.−→ x0 := α(y0)

In case a real-life problem is modeled like a maxmin involving more operators, we proceed as the
following remark establishes in accordance with the preliminaries of this manuscript (reducing the
number of multiobjective functions to avoid the lack of solutions):

Remark 1. Let (Tn)n∈N and (Sn)n∈N be sequences of continuous linear operators between Banach spaces X
and Y. The maxmin {

max ‖Tn(x)‖ n ∈ N
min ‖Sn(x)‖ n ∈ N

(4)

can be reformulated as (recall the second typical reformulation){
max ∑∞

n=1 ‖Tn(x)‖2

min ∑∞
n=1 ‖Sn(x)‖2 (5)

which can be transformed into a regular maxmin as in (1) by considering the operators

T : X → `2(Y)
x 7→ T(x) := (Tn(x))n∈N

and
S : X → `2(Y)

x 7→ S(x) := (Sn(x))n∈N

obtaining then {
max ‖T(x)‖2

min ‖S(x)‖2

which is equivalent to {
max ‖T(x)‖
min ‖S(x)‖

Observe that for the operators T and S to be well defined it is sufficient that (‖Tn‖)n∈N and (‖Sn‖)n∈N be
in `2.

6. Materials and Methods

The initial methodology employed in this research work is the Mathematical Modelling of real-life
problems. The subsequent methodology followed is given by the Axiomatic-Deductive Method
framed in the First-Order Mathematical language. Inside this framework, we deal with the Category
Theory (the main category involved is the Category of Banach spaces with the Bounded Operators).
The final methodology used is the implementation of our mathematical results in the MATLAB
programming language.
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7. Conclusions

We finally enumerate the novelties provided in this work, which serve as conclusions for
our research:

1. We prove that the original maxmin problem{
max ‖Ax‖
min ‖Bx‖ (6)

has no solution (Theorem 2).
2. We then rewrite (6) as {

max ‖Ax‖
‖Bx‖ ≤ 1

(7)

which still models the real-life problem very accurately and has a solution if and only if ker(B) ⊆
ker(A) (Theorem 8).

3. We provide an exact solution of (7) assuming ker(B) ⊆ ker(A), not an heuristic method for
approaching it. See Section 5.

4. A MATLAB code is provided for computing the solution to the maxmin problem. See Appendix C.
5. Our solution applies to design truly optimal minimum stored-energy TMS coils and to find more

complex optimal geolocations involving statistical variables. See Appendixes A and B.
6. This article represents an interdisciplinary work involving pure abstract nontrivial proven

theorems and programming codes that can be directly applied to different situations in the
real world.
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Appendix A. Applications to Optimal TMS Coils

Appendix A.1. Introduction to TMS Coils

Transcranial Magnetic Stimulation (TMS) is a non-invasive technique to stimulate the brain.
We refer the reader to [8,10,13–23] for a description on the development of TMS coils desing as
an optimization problem.

An important safety issue in TMS is the minimization of the stimulation of non-target areas.
Therefore, the development of TMS as a medical tool would be benefited with the design of TMS
stimulators capable of inducing a maximum electric field in the region of interest, while minimizing
the undesired stimulation in other prescribed regions.
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Appendix A.2. Minimum Stored-Energy TMS Coil

In the following section, in order to illustrate an application of the theoretical model developed in
this manuscript, we are going to tackle the design of a minimum stored-energy hemispherical TMS
coil of radius 9 cm, constructed to stimulate only one cerebral hemisphere. To this end, the coil must
produce an E-field which is both maximum in a spherical region of interest (ROI) and minimum in a
second region (ROI2). Both volumes of interest are of 1 cm radius and formed by 400 points, where
ROI is shifted by 5 cm in the positive z-direction and by 2 cm in the positive y-direction; and ROI2
is shifted by 5 cm in the positive z-direction and by 2 cm in the negative y-direction, as shown in
Figure A1a. In Figure A1b a simple human head made of two compartments, scalp and brain, used to
evaluate the performance of the designed stimulator is shown.

ROI

ROI2

(a)

(b)

Figure A1. (a) Description of hemispherical surface where the optimal ψ must been found along
with the spherical regions of interest ROI and ROI2 where the electric field must be maximized and
minimized respectively. (b) Description of the two compartment scalp-brain model.
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By using the formalism presented in [10] this TMS coil design problem can be posed as the
following optimization problem: 

max ‖Ex1 ψ‖2
min ‖Ex2 ψ‖2
min ψT Lψ

(A1)

where ψ is the stream function (the optimization variable), M = 400 are the number of points in
the ROI and ROI2, N = 2122 the number of mesh nodes, L ∈ RN×N is the inductance matrix, and
Ex1 ∈ RM×N and Ex2 ∈ RM×N are the E-field matrices in the prescribe x-direction.

(a)

|E| (V/m)

(b)

Figure A2. (a) Wirepaths with 18 turns of the TMS coil solution (red wires indicate reversed current
flow with respect to blue). (b) E-field modulus induced at the surface of the brain by the designed
TMS coil.
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Figure A2a shows the coil solution of problem in Equation (A1) computed by using the theoretical
model proposed in this manuscript (see Section 5 and Appendix A.3), and as expected, the wire
arrangements is remarkably concentrated over the region of stimulation.

To evaluate the stimulation of the coil, we resort to the direct BEM [24], which permits the
computation of the electric field induced by the coils in conducting systems. As can be seen in
Figure A2b, the TMS coil fulfils the initial requirements of stimulating only one hemisphere of the
brain (the one where ROI is found); whereas the electric field induced in the other cerebral hemisphere
(where ROI2 can be found) is minimum.

Appendix A.3. Reformulation of Problem (A1) to Turn it into a Maxmin

Now it is time to reformulate the multiobjective optimization problem given in (A1), because it
has no solution in virtue of Theorem 2. We will transform it into a maxmin problem as in (7) so that
we can apply the theoretical model described in Section 5:

max ‖Ex1 ψ‖2
min ‖Ex2 ψ‖2
min ψT Lψ

Since raising to the square is a strictly increasing function on [0, ∞), the previous problem is
trivially equivalent to the following one: 

max ‖Ex1 ψ‖2
2

min ‖Ex2 ψ‖2
2

min ψT Lψ

(A2)

Next, we apply Cholesky decomposition to L to obtain L = CTC so we have that ψT Lψ =

(Cψ)T(Cψ) = ‖Cψ‖2
2 so we obtain 

max ‖Ex1 ψ‖2
2

min ‖Ex2 ψ‖2
2

min ‖Cψ‖2
2

(A3)

Since C is an invertible square matrix, arg min ‖Cψ‖2
2 = {0} so the previous multiobjective

optimization problem has no solution. Therefore it must be reformulated. We call then on Remark 1
to obtain: {

max ‖Ex1 ψ‖2
2

min ‖Ex2 ψ‖2
2 + ‖Cψ‖2

2
(A4)

which in essence is {
max ‖Ex1 ψ‖2
min ‖Dψ‖2

(A5)

where D :=

(
Ex2

C

)
. The matrix D in this specific case has null kernel. In accordance with the

previous sections, Problem (A5) is remodeled as{
max ‖Ex1 ψ‖2
‖Dψ‖2 ≤ 1

(A6)

Finally, we can refer to Section 5 to solve the latter problem.
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Appendix B. Applications to Optimal Geolocation

Several studies involving optimal geolocation [25], multivariate statistics [26,27] and
multiobjective problems [28–30] were carried out recently. To show another application of maxmin
multiobjective problems, we consider in this work the best situation of a tourism rural inn considering
several measured climate variables. Locations with low highest temperature m1, radiation m2

and evapotranspiration m3 in summer time and high values in winter time are sites with climatic
characteristics desirable for potential visitors. To solve this problem, we choose 11 locations in the
Andalusian coastline and 2 in the inner, near the mountains. We have collected the data from the
official Andalusian government webpage [31] evaluating the mean values of these variables on the last
5 years 2013–2019. The referred months of the study were January and July.

Table A1. Mean values of high temperature (T) in Celsius Degrees, radiation (R) in MJ/m2, and
evapotranspiration (E) in mm/day, measures in January (winter time) and July (summer time) between
2013 and 2018.

T-Winter R-Winter E-Winter T-Summer R-Summer E-Summer

Sanlúcar 15.959 9.572 1.520 30.086 27.758 6.103
Moguer 16.698 9.272 0.925 30.424 27.751 5.222

Lepe 16.659 9.503 1.242 30.610 28.297 6.836
Conil 16.322 9.940 1.331 28.913 26.669 5.596

El Puerto 16.504 9.767 1.625 31.052 28.216 6.829
Estepona 16.908 10.194 1.773 31.233 27.298 6.246
Málaga 17.663 9.968 1.606 32.358 27.528 6.378
Vélez 18.204 9.819 1.905 31.912 26.534 5.911

Almuñécar 17.733 10.247 1.404 29.684 25.370 4.952
Adra 17.784 10.198 1.637 28.929 26.463 5.143

Almería 17.468 10.068 1.561 30.342 27.335 5.793
Aroche 16.477 9.797 1.434 34.616 27.806 6.270

Córdoba 14.871 8.952 1.149 36.375 28.503 7.615
Baza 13.386 8.303 3.054 35.754 27.824 1.673

Bélmez 13.150 8.216 1.215 35.272 28.478 7.400
S. Yeguas 13.656 9.155 1.247 33.660 28.727 7.825

To find the optimal location, let us evaluate the site where the variables mean values are maximum
in January and minimum in July. Here we have a typical multiobjective problem with two data matrices
that can be formulated as follows: 

max ‖Ax‖2

min ‖Bx‖2

min ‖x‖2

(A7)

where A and B are real 16 × 3 matrices with the values of the three variables (m1, m2, m3) taking into
account (highest temperature, radiation and evapotranspiration) in January and July respectively.
To avoid unit effects, we standarized the variables (µ = 0 and σ = 1). The vector x is the solution of
the multiobjective problem.

Since (A7) lacks any solution in view of Theorem 2, we reformulate it as we showed in Remark 1
by the following: {

max ‖Ax‖2
min ‖Dx‖2

(A8)

with matrix D :=

(
B
In

)
, where In is the identity matrix with n = 3. Notice that it also verifies that

ker(D) = {0}. Observe that, according to the previous sections, (A8) can be remodeled into
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{
max ‖Ax‖2
‖Dx‖2 ≤ 1

(A9)

and solved accordingly.

Figure A3. Geographic distribution of the sites considered in the study. 11 places are in the coastline of
the region and 5 in the inner.

Figure A4. Locations considering Ax and Bx axes. Group named A represents the best places for the
tourism rural inn, near Costa Tropical (Granada province). Sites on B are also in the coastline of the
region. Sites on C are the worst locations considering the multiobjective problem, they are situated
inside the region.
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Figure A5. (left) Sites considering Ax and Bx and the function y = −x. The places with high values
of Ax (max) and low values of Bx (min) are the best locations for the solution of the multiobjective
problem (round). (right) Multiobjective scores values obtained for each site projecting the point in the
function y = −x. High values of this score indicate better places to locate the tourism rural inn.

Figure A6. Distribution of the three areas described in Figure A4. A and B areas are in the coastline
and C in the inner.

The solution of (A9) allow us to draw the sites with a 2D plot considering the X axe as Ax and
the Y axe as Bx. We observe that better places have high values of Ax and low values of Bx. Hence,
we can sort the sites in order to achieve the objectives in a similar way as factorial analysis works
(two factors, the maximum and the minimum, instead of m variables).

Appendix C. Algorithms

To solve the real problems posed in this work, the algorithms were developed in MATLAB. As
pointed out in Section 5, our method relies on finding the generalized supporting vectors. Thus,
we refer the reader to [8] (Appendix A.1) for the MATLAB code “sol_1.m” to compute a basis of
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generalized supporting vectors of a finite number of matrices A1, . . . , Ak, in other words, a solution of
Problem (A10), which was originally posed and solved in [7]: max

k

∑
i=1
‖Aix‖2

2

‖x‖2 = 1
(A10)

The solution of the previous problem (see [7] (Theorem 3.3)) is given by

max
‖x‖2=1

k

∑
i=1
‖Aix‖2

2 = λmax

(
k

∑
i=1

AT
i Ai

)

and

arg max
‖x‖2=1

k

∑
i=1
‖Aix‖2

2 = V

(
λmax

(
k

∑
i=1

AT
i Ai

))
∩ S`n

2

where λmax denotes the greatest eigenvalue and V denotes the associated eigenvector space. We refer
the reader to [8] (Theorem 4.2) for a generalization of [7] (Theorem 3.3) to a infinite number of operators
on an infinite dimensional Hilbert space.

As we pointed out in Theorem 8, the solution of the problem{
max ‖Ax‖
‖Bx‖ ≤ 1

exists if and only if ker(B) ⊆ ker(A). Here is a simple code to check this.

function p=existence_sol(A,B)
%%%%
%%%% This function checks the existence of the solution of the
%%%% problem
%%%%
%%%% max ||Ax||
%%%% ||Bx||<=1
%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%
%%%% INPUT:
%%%%
%%%% A, B - the matrices involved in the problem
%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%
%%%% OUTPUT:
%%%%
%%%% p - true if the problem has solution or false on the contrary
%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
KerB = null(B);
dimKerB = size(KerB,2);
KerA = null(A);
dimKerA = size(KerA,2);
if (dimKerB<=dimKerA) & (rank([KerB KerA])==dimKerA)

p = true;
else
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p = false;
end

end

Now we present the code to solve the first case of the previous maxmin problem, that is, the case
where ker(B) = {0}. We refer the reader to Section 5 on which this code is based.

function x = case_1(A, B)
%%%%
%%%% This function computes the solution of the problem
%%%%
%%%% max ||Ax||_2
%%%% ||Bx||_2<=1
%%%%
%%%% in the case KerB={0}.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%
%%%% INPUT:
%%%%
%%%% A, B - the matrices involved in the problem
%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%
%%%% OUTPUT:
%%%%
%%%% x - basis of unit eigenvectors associated to lambda_max
%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%
KerB = null(B);
dimKerB = size(KerB,2);
if (dimKerB ~= 0)

display(’KerB~={0}’)
x=[];

else % KerB={0}
M = A*pinv(B); % M = A*B^+

% B^+ is the pseudoinverse matrix
[lambda_max, y] = sol_1({M}); % where sol_1 is the algorithm in [5, Appendix A.1]
[nrows_y ncols_y] = size(y);
r_B = rank(B);
counter = 0;
for i=1:ncols_y

r = rank([B y(:,i)]);
if (abs(r_B - r)<1e-12) % Here we check if rank(B) = rank ([B y0]).

% A tolerance of 1e-12 is needed in
% order to compare these two ranks.

counter = counter +1;
y0(:,counter) = y(:,i);

end
end
x = pinv(B)*y0; % This is a basis of solutions of our problem

end

Next, we can compute the global solution of the maxmin problem by means of the following code.
Again, we refer the reader to Section 5 on which this code is based.
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function x = sol_2(A, B)
%%%%
%%%% This function computes the solution of the problem
%%%%
%%%% max ||Ax||_2
%%%% ||Bx||_2<=1
%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%
%%%% INPUT:
%%%%
%%%% A, B - the matrices involved in the problem
%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%
%%%% OUTPUT:
%%%%
%%%% x - Supporting vector which is the solution of the problem
%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%
p=existence_sol(A,B);
if p==true

n = size(B,2);
KerB = null(B);
dimKerB = size(KerB,2);
if (dimKerB == 0) % KerB = {0} This is the case 1

x = case_1(A,B); % x is the solution of our problem
else % KerB~={0}

[Br indices] = colsindep(B); %%% First we extract the
%%% independent columns in B

Ar = A(indices); %%% We extract the same columns of A
%%% Now, Ker(Br)={0} so this is the case 1 treated above:

xr = case_1(Ar,Br);
[nrows_xr,ncols_xr] = size(xr);
%%% Now we compute the matrix solutions x of the problem
counter = 0;
for j = 1:ncols_xr

for i=1:n
if ismember(i,indices)==1 %%% i is an index of the ones

%%% defined above
counter = counter + 1;
x(i,j) = xr(counter,j);

else
x(i,j) = 0;

end
end

end
end

else
display(’This problem has no solution’);
x=[];

end
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end

Notice that we use the case_1 function described above and a new function named colsindep.We
include the code to implement this new function below.

function [Dcolsind, indices]=colsindep(D)
%%%%
%%%% This function extracts r = rank(D) independent columns of the
%%%% matrix D and the indices of the columns in D which are independent
%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%
%%%% INPUT:
%%%%
%%%% D - a matrix with rank r
%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%
%%%% OUTPUT:
%%%%
%%%% Dcolsind - r independent columns in D
%%%% indices - the indices of independent columns extracted from D
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
r=rank(D); %%% Compute the rank
[Q R p]=qr(D,0); %%% p is a permutation vector such that A(:,p)=Q*R
indices=sort(p(1:r)); %%% The first r elements in p are the indices of the

%%% columns linearly independent in D
Dcolsind=D(:,indices);%%% Extract these columns

end

The MATLAB code to compute the solution of the TMS coil problem (A6):{
max ‖Ex1 ψ‖2
‖Dψ‖2 ≤ 1

with the matrix D :=

(
Ex2

C

)
, where C is the Cholesky matrix of L, and in this case it verifies that

ker(D) = {0}. Recall that (A6) comes from (A1):
max ‖Ex1 ψ‖2
min ‖Ex2 ψ‖2
min ψT Lψ

function psi = sol2_psi(Ex1, Ex2, L)

C = chol(L); % Cholesky’s decomposition of matrix L = C’ * C

A = Ex1;
B = [Ex2;C];

psi = case_1(A,B); % We apply the algorithm to obtain the solutions
end

Finally, we provide the code to compute the solution of the optimal geolocation problem (A9):
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{
max ‖Ax‖2
‖Dx‖2 ≤ 1

with matrix D :=

(
B
I3

)
. Notice that it also verifies that ker(D) = {0} and A and B are composed by

standardized variables. Recall that (A9) comes from (A7):
max ‖Ax‖2

min ‖Bx‖2

min ‖x‖2

function x = sol_2_geoloc(A, B)

[rows,cols] = size(A);
D = [B; eye(size(cols))];

x = case_1(A,D); % We apply the algorithm to obtain the solutions
end
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