
mathematics

Article

Clustering and Dispatching Rule Selection
Framework for Batch Scheduling

Gilseung Ahn and Sun Hur *

Department of Industrial and Management Engineering, Hanyang University, Ansan 15588, Korea;
ahn.kilseung@gmail.com
* Correspondence: hursun@hanyang.ac.kr; Tel.: +82-31-400-5265

Received: 3 December 2019; Accepted: 29 December 2019; Published: 3 January 2020
����������
�������

Abstract: In this study, a batch scheduling with job grouping and batch sequencing is considered.
A clustering algorithm and dispatching rule selection model is developed to minimize total tardiness.
The model and algorithm are based on the constrained k-means algorithm and neural network. We
also develop a method to generate a training dataset from historical data to train the neural network.
We use numerical examples to demonstrate that the proposed algorithm and model efficiently and
effectively solve batch scheduling problems.

Keywords: batch scheduling; dispatching rule; neural networks; constrained k-means algorithm

1. Introduction

The aim of this study involves developing a framework that schedules batch jobs with identical
machines to minimize total tardiness. The objectives of this framework include solving the problem
in a short period, solving various batch scheduling problems, and improving performance as more
problems are solved. We design a framework based on clustering and classification models because
the machine learning approach fits well with the aforementioned goals.

Typical approaches for batch scheduling problems are categorized into heuristic, meta-heuristic,
and dispatching rule approaches. The heuristic approach develops an algorithm that is problem-specific.
The meta-heuristic approach modifies a meta-heuristic algorithm (e.g., to solve problems).
The dispatching rule approach calculates the priority of each job or batch of jobs via a set of
predetermined dispatching rules. The jobs are then processed in order of descending priority.

Heuristic and meta-heuristic approaches are usually dependent on the types of problems that
are considered [1,2]. Since they are designed for a specific problem, they may yield relatively poor
results when applied to different problems, or a substantial modification to the model is necessary
before application. Additionally, a relatively long run time is sometimes necessary to yield a schedule
using these approaches.

The dispatching rule approach is suitable for the aforementioned goals because it is relatively
robust in terms of problem types, and thus can be applied to various problems without substantial
modification to yield a schedule quickly. However, this approach occasionally encounters issues in
selecting the optimal dispatching rule because it cannot outperform other rules in every scheduling
situation [3]. Thus, an optimal universal dispatching rule is absent. Additionally, the optimal rule
can change as successive jobs are completed, thereby implying that a dynamic dispatching rule can
work better. Several studies developed classification models to select dynamic dispatching rules.
For example, Mouelhi-Chibani and Pierreval [3] trained a neural network with dozens of queue state
variables to select dispatching rules for flow shop scheduling. Similarly, Shiue [4] developed a support
vector machine-based dispatching rule selection model for shop floor control system scheduling.
Meanwhile, a few studies developed machine learning model to determine scheduling parameters.

Mathematics 2020, 8, 80; doi:10.3390/math8010080 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0003-1024-8897
https://orcid.org/0000-0003-1832-046X
http://www.mdpi.com/2227-7390/8/1/80?type=check_update&version=1
http://dx.doi.org/10.3390/math8010080
http://www.mdpi.com/journal/mathematics

Mathematics 2020, 8, 80 2 of 14

Mönch et al. [5] trains a neural network and inductive decision tree to estimate the weight of the ATC
(apparent tardiness cost) rule, which consists of two dispatching rules: weighted shortest processing
time rule and the least slack rule.

However, there is a paucity of extant studies on developing a dispatching rule selection model for
the batch scheduling problem. This requires grouping jobs into batches before applying a dispatching
rule. We design a clustering algorithm to group similar jobs under machine capacity constraints and
add it to the framework.

The major contents and contributions of this study are as follows. First, we develop a clustering
algorithm based on the constrained k-means algorithm to group jobs into batches. The algorithm
uses a set of features impacting total tardiness and yields clusters that contain jobs wherein sums of
job sizes do not exceed the machine load capacity. Second, we develop a step-by-step method based
on the Monte Carlo Markov chain (MCMC) approach to create a training dataset to work with the
dispatching rule selection model. Each sample in the dataset represents the virtual queue state via
queue state variables (e.g., the number of batches in the queue and maximum processing time of the
batches). Subsequently, the samples are attached to the optimal dispatching rule for the particular state.
Third, we design a dispatching rule selection model based on neural networks for batch sequencing.
Whenever a machine is available, queue state variable values for the current queue state enter the
model to yield the optimal dispatching rule.

Section 2 introduces the batch scheduling problem including major assumptions, notations, and an
overview of the framework. Section 3 describes methods to generate the training dataset to transform
the variables to the queue status variables and to design the dispatching rule selection model. Section 4
discusses the clustering algorithm and application procedure and explains the model deployment
process. Section 5 provides illustrative examples to show the application of the proposed model.
Section 6 summarizes our conclusions and proposes future research directions.

2. Problem Statement, Notations, and Framework Overview

There are n jobs to be processed by one of m identical machines. Each job is characterized by job
characteristics, namely processing time (p), size (s), due date (d), and release time (r). Jobs are grouped
into batches, and a process sequence is determined via a dispatching rule (Figure 1). The former and
latter stages are termed as grouping jobs and sequencing batches, respectively [6]. The sum of job sizes
in each batch must be equal to or less than the load capacity of a machine. Each batch is processed by a
machine as soon as it is available.

Mathematics 2020, 8, x FOR PEER REVIEW 2 of 14

of the ATC (apparent tardiness cost) rule, which consists of two dispatching rules: weighted shortest
processing time rule and the least slack rule.

However, there is a paucity of extant studies on developing a dispatching rule selection model
for the batch scheduling problem. This requires grouping jobs into batches before applying a
dispatching rule. We design a clustering algorithm to group similar jobs under machine capacity
constraints and add it to the framework.

The major contents and contributions of this study are as follows. First, we develop a clustering
algorithm based on the constrained k-means algorithm to group jobs into batches. The algorithm uses
a set of features impacting total tardiness and yields clusters that contain jobs wherein sums of job
sizes do not exceed the machine load capacity. Second, we develop a step-by-step method based on
the Monte Carlo Markov chain (MCMC) approach to create a training dataset to work with the
dispatching rule selection model. Each sample in the dataset represents the virtual queue state via
queue state variables (e.g., the number of batches in the queue and maximum processing time of the
batches). Subsequently, the samples are attached to the optimal dispatching rule for the particular
state. Third, we design a dispatching rule selection model based on neural networks for batch
sequencing. Whenever a machine is available, queue state variable values for the current queue state
enter the model to yield the optimal dispatching rule.

Section 2 introduces the batch scheduling problem including major assumptions, notations, and
an overview of the framework. Section 3 describes methods to generate the training dataset to
transform the variables to the queue status variables and to design the dispatching rule selection
model. Section 4 discusses the clustering algorithm and application procedure and explains the
model deployment process. Section 5 provides illustrative examples to show the application of the
proposed model. Section 6 summarizes our conclusions and proposes future research directions.

2. Problem Statement, Notations, and Framework Overview

There are 𝑛 jobs to be processed by one of 𝑚 identical machines. Each job is characterized by
job characteristics, namely processing time (𝑝), size (𝑠), due date (𝑑), and release time (𝑟). Jobs are
grouped into batches, and a process sequence is determined via a dispatching rule (Figure 1). The
former and latter stages are termed as grouping jobs and sequencing batches, respectively [6]. The
sum of job sizes in each batch must be equal to or less than the load capacity of a machine. Each batch
is processed by a machine as soon as it is available.

Figure 1. Batch scheduling problem.

The batch processing time denotes the longest processing time among all jobs in the batch [7].
The objective of scheduling involves minimizing total tardiness as follows:

𝑇 = max 0, 𝑐 − 𝑑 , (1)

where 𝑇 , 𝑐 , and 𝑑 denote tardiness, completion time, and due date of job 𝑗, respectively.
The major assumptions are as follows:

 All job characteristics, 𝑝 , 𝑠 , 𝑑 , 𝑟 , of job 𝑗 are known in advance.
 Every job is ready for processing at its release time.

Figure 1. Batch scheduling problem.

The batch processing time denotes the longest processing time among all jobs in the batch [7].
The objective of scheduling involves minimizing total tardiness as follows:

n∑
j=1

T j =
n∑

j=1

max
(
0, c j − d j

)
, (1)

where T j, c j, and d j denote tardiness, completion time, and due date of job j, respectively.

Mathematics 2020, 8, 80 3 of 14

The major assumptions are as follows:

• All job characteristics,
(
p j, s j, d j, r j

)
, of job j are known in advance.

• Every job is ready for processing at its release time.
• Neither setup nor rework is assumed.
• Each machine only processes one batch at a time.
• The characteristics data of several historical jobs are available and are sufficient to create a training

dataset for the dispatching rule selection model.

Notations used in this study are as follows.

Indices

i Batch index (i = 1, 2, · · · , b)
j Job index (j = 1, 2, · · · , n)
t Time index (t = 1, 2, · · ·)
k Training sample index (k = 1, 2, · · · , K)

Job characteristics

p j Processing time of job j
s j Size of job j
d j Due date of job j
r j Release time of job j
ξ j Slack time of job j, i.e., the remaining time until due date after finishing the process, at its release

time, ξ j = d j − r j − p j

ξt
j Slack time of job j at time t, ξt

j = d j − t− p j

Batch characteristics

J(i) Set of job indices in batch i

p(i) Processing time of batch i, p(i) = max
j∈J(i)

(
p j

)
Notations for clustering

δ Load capacity of a machine

π j Vector of job j’s characteristics for grouping purposes, π j =
(
p j, d j, r j

)
Ci Centroid of batch i
Ei, j Distance between Ci and π j

Notations for dispatching rule selection

yk Dispatching rule for sample k (k = 1, 2, · · · , K)
Wk Number of batches waiting in the queue in sample k, Wk ≤Wmax for all k
tk System’s clock time with respect to sample k
fc Probability mass function of c, where c either corresponds to processing time (p), size (s), slack

time (ξ), or release time (r)
Ψq′ Candidate queue state variable (q′ = 1, 2, · · · , Q′)
Sq Selected queue state variable (q = 1, 2, · · · , Q), Q ≤ Q′

Figure 2 shows the step-by-step process that is used to obtain the set of job batches and the batch
sequence for the machines to process. The framework consists of two tracks. Track I is termed as the
model training track and is used to build a dispatching rule selection model via a training dataset of

Mathematics 2020, 8, 80 4 of 14

batches that is artificially created from historic data. Track II is termed as the scheduling track and is
used to group the actual jobs into batches and to determine the processing sequence using the model
provided by Track I.Mathematics 2020, 8, x FOR PEER REVIEW 4 of 14

Figure 2. Step-by-step process. Figure 2. Step-by-step process.

Mathematics 2020, 8, 80 5 of 14

A more detailed explanation of Track I is presented in Section 3, and Section 4 introduces Track II.
Numbers inside the circle at the upper-left corner of the blocks denote the corresponding steps and
subsections where the corresponding description are provided.

3. Model Training for Dispatching Rule Selection

3.1. Generating the Training Dataset

In this subsection, we introduce the step-by-step method used to create a dataset from historic
data of job characteristics. The probability distributions of each job characteristic are calculated, and
samples are then created to form a virtual batch dataset. This dataset is then transformed to a more
adequate format for training.

Step 3.0: Prepare the probability distributions of job characteristics.
First, the pmfs (probability mass functions) fp, fs, fξ, and fr of processing time (p), size (s), slack

time (ξ), and release time (r), respectively, are estimated from the historic data based on the relative
frequencies as follows:

fc(ĉ) = Pr(c = ĉ) =
N(c = ĉ)∑
c̃ N(c = c̃)

, (2)

where c ∈
{
p, s, ξ, r

}
and N(c = ĉ) denote the number of jobs that satisfy c = ĉ.

Step 3.1: Create batches in the queue dataset.
With the pmfs, total K samples are generated where sample k (k = 1, · · · , K) exhibits Wk batches

and each batch consists of one or more jobs characterized by job characteristics (p, s, d, r). Specifically,

Wk is arbitrarily picked in the interval [1, Wmax], where Wmax =

⌈∑n
j=1 s j

δ

⌉
. Next, the system’s clock

time tk of sample k should exceed any release times of jobs in the queue (max
j∈Sample k

(
r j
)
). It also must be

smaller than the maximum remaining processing time, and this is as follows. There are currently Wk
batches that remain in the queue, and thus it is inferred that Wmax −Wk batches are processed and the
mean processing time of existing batches in the queue corresponds to

∑
i∈Sample k

p(i)/Wk. Therefore, tk is

arbitrarily picked and satisfies max
j∈Sample k

(
r j
)
≤ tk ≤ (Wmax −Wk) ×

∑
i∈Sample k p(i)

Wk
.

Figure 3 shows a typical example of a set of K samples generated from estimated pmfs. The set of
artificial samples is termed as the queue dataset because the batches in each sample wait in the queue
to be processed.

Mathematics 2020, 8, x FOR PEER REVIEW 5 of 14

3. Model Training for Dispatching Rule Selection

3.1. Generating the Training Dataset

In this subsection, we introduce the step-by-step method used to create a dataset from historic
data of job characteristics. The probability distributions of each job characteristic are calculated, and
samples are then created to form a virtual batch dataset. This dataset is then transformed to a more
adequate format for training.

Step 3.0: Prepare the probability distributions of job characteristics.
First, the pmfs (probability mass functions) 𝑓 , 𝑓 , 𝑓 , and 𝑓 of processing time (𝑝), size (s),

slack time (𝜉), and release time (r), respectively, are estimated from the historic data based on the
relative frequencies as follows: 𝑓 (�̂�) = Pr(𝑐 = �̂�) = 𝑁(𝑐 = �̂�)∑ 𝑁(𝑐 = �̃�) ̃ , (2)

where 𝑐 ∈ 𝑝, 𝑠, 𝜉, 𝑟 and 𝑁(𝑐 = �̂�) denote the number of jobs that satisfy 𝑐 = �̂�.
Step 3.1: Create batches in the queue dataset.
With the pmfs, total 𝐾 samples are generated where sample 𝑘 (𝑘 = 1, ⋯ , 𝐾) exhibits 𝑊

batches and each batch consists of one or more jobs characterized by job characteristics (𝑝, 𝑠, 𝑑, 𝑟).

Specifically, 𝑊 is arbitrarily picked in the interval 1, 𝑊 , where 𝑊 = ∑
. Next, the

system’s clock time 𝑡 of sample 𝑘 should exceed any release times of jobs in the queue
(max∈ 𝑟). It also must be smaller than the maximum remaining processing time, and this is as

follows. There are currently 𝑊 batches that remain in the queue, and thus it is inferred that 𝑊 −𝑊 batches are processed and the mean processing time of existing batches in the queue corresponds
to ∑ 𝑝()/𝑊∈ . Therefore, 𝑡 is arbitrarily picked and satisfies max∈ 𝑟 ≤ 𝑡 ≤ (𝑊 −𝑊) × ∑ ()∈ .

Figure 3 shows a typical example of a set of 𝐾 samples generated from estimated pmfs. The set
of artificial samples is termed as the queue dataset because the batches in each sample wait in the
queue to be processed.

Figure 3. Structure of samples of batches in the queue dataset.

Note: It is necessary to exercise caution when more than one job is created in a batch. When a
job is sampled, then the next job should be “similar” in terms of its job characteristics (𝑝, 𝑠, 𝑑, 𝑟) to
that previously sampled because batches contain “similar” jobs. This is performed by using the
following conditional pmfs as follows:

Figure 3. Structure of samples of batches in the queue dataset.

Mathematics 2020, 8, 80 6 of 14

Note: It is necessary to exercise caution when more than one job is created in a batch. When a job
is sampled, then the next job should be “similar” in terms of its job characteristics (p, s, d, r) to that
previously sampled because batches contain “similar” jobs. This is performed by using the following
conditional pmfs as follows:

fc|cpre

(
ĉ
∣∣∣ĉpre

)
= Pr

(
c = ĉ

∣∣∣cpre = ĉpre
)
=

N
(
ĉ and ĉpre in clusters

)
N
(
ĉpre in clusters

) , (3)

where c denotes one of the variables
{
p, ξ, r

}
, cpre denotes the previously generated job’s characteristic,

N
(
ĉ and ĉpre in clusters

)
denotes the number of clusters containing jobs satisfying c = ĉ and c = ĉpre,

and N
(
ĉpre in clusters

)
denotes the number of clusters that contain at least one job wherein c corresponds

to ĉpre.
Algorithm 1 shows the generation process of the queue dataset explained above.

Algorithm 1. Queue dataset generation algorithm

Input K, Wmax, fp, fs, fξ, fr, fp|ppre , fξ|ξpre , fr|rpre

Procedure

For (k = 1 to K) Do {
Select Wk from {1, 2, · · · , Wmax} at random
Initialize batch i as an empty set for i = 1, 2, · · · , Wk

For (i = 1 to Wk) Do {
job_size_sum = 0
/* First job generation */
p1 ← fp , s1 ← fs , ξ1 ← fξ , r1 ← fr
d1 = r1 + p1 + ξ1

Append job 1 = (p1, s1, d1, r1) to batch i
Increase job_size_sum by s1

j = 2
/* job j ≥ 2 generation */
While (True) Do { # while capacity constraint is satisfied

p j ← fp|ppre=p j−1 , s j ← fs , ξ j ← fξ|ξpre=ξ j−1 , r j ← fr|rpre=r j−1

d j = r j + p j + ξ j
If (job_size_sum + s j > δ) Do {

break}
Increase job_size_sum by s j
Append job j = (p j, s j, d j, r j) to batch i
Increase j by 1}

Append batch i to sample k in queue dataset}

tk is randomly selected from [max
j∈Sample k

(
r j
)
, (Wmax −Wk) ×

∑
i∈Sample k p(i)

Wk
]}

Output Queue dataset

Step 3.2: Transform the variables.
Each sample of the queue dataset contains the values of system time (t) and job characteristics

(p, d, s, r). It is necessary to transform them into the values representing the status of batches in the
queue, as this facilitates improved training for the machine learning model. We introduce queue
state variables, Ψq′ (q′ = 1, · · · , Q′), with which the current status of the queue is well defined and
contributes to determining the optimal dispatching rule [3]. Queue state variables are defined by in
extant studies [3,4,8] as listed in Table 1.

Mathematics 2020, 8, 80 7 of 14

Table 1. Queue state variables.

Variable Description

Ψ1 Number of batches in the queue.

Ψ2, Ψ3, Ψ4, Ψ5
Maximum, minimum, average, and standard deviation of the number of jobs in batches in
the queue, respectively.

Ψ6, Ψ7, Ψ8, Ψ9
Maximum, minimum, average, and standard deviation of the processing time of batches in
the queue, respectively.

Ψ10, Ψ11, Ψ12, Ψ13
Maximum, minimum, average, and standard deviation of the slack time at current time of
jobs in the queue, respectively.

Ψ14, Ψ15, Ψ16, Ψ17
Maximum, minimum, average, and standard deviation of the time remaining before the
due date of the jobs, respectively.

Ψ18, Ψ19, Ψ20, Ψ21
Maximum, minimum, average, and standard deviation of waiting times of the
jobs, respectively.

Variables Ψ1 to Ψ9 represent the batch state (e.g., number of batches and processing times of the
batch) while Ψ10 to Ψ21 describe the job state (e.g., slack time of jobs). Moreover, the queue dataset
consists of 21 queue state variables along with system time.

Step 3.3: Assign the optimal dispatching rule to each training sample.
This step determines the optimal dispatching rule yk for sample k (k = 1, 2, · · · , K) of the batches

in the queue dataset. The dispatching rules in Table 2 are considered.

Table 2. Considered candidate dispatching rules.

Dispatching Rule Batch with the Highest Priority

Shortest processing time first (SPT) i∗ = argmin
i=1,2,··· ,n

p(i)

Longest processing time first (LPT) i∗ = argmax
i=1,2,··· ,n

p(i)

Earliest minimum due date first (EMIDD) i∗ = argmin
i=1,2,··· ,n

min
j∈J(i)

d j

Earliest maximum due date first (EMADD) i∗ = argmin

i=1,2,··· ,n

max
j∈J(i)

d j

Earliest minimum release time first (EMIRT) i∗ = argmin

i=1,2,··· ,n

min
j∈J(i)

r j

Earliest maximum release time first (EMART) i∗ = argmin

i=1,2,··· ,n

max
j∈J(i)

r j

Earliest minimum slack time first (EMIST) i∗ = argmin

i=1,2,··· ,n

min
j∈J(i)

ξ j

Earliest maximum slack time first (EMAST) i∗ = argmin

i=1,2,··· ,n

max
j∈J(i)

ξ j

We apply each rule to the batches in each queue dataset sample and then determine the optimal

rule to minimize total tardiness. This is appended to each queue dataset sample and is used as a class
label of the dispatching rule selection model.

Step 3.4: Select relevant queue state variables.
This step involves examining the queue state variables and removing those that are not relevant to

the dispatching rule, yk. The relevance of a queue state variable is calculated, and variables with high
relevance are selected as inputs in the training. We adopt ANOVA’s (analysis of variance) F-statistics
for class-relevance, as suggested by [9]:

F =
between− group variance
within− group variance

,

where the group denotes a set of samples with the same optimal dispatching rule.

Mathematics 2020, 8, 80 8 of 14

Table 3 shows the structure of the queue dataset that is used as the training dataset for the
dispatching rule, where

{
S1, S2, · · · , SQ

}
⊂ {Ψ1, Ψ2, · · · , Ψ21} denotes a set of (selected) relevant queue

state variables.

Table 3. Structure of the training dataset for the dispatching rule selection model.

Time S1 S2 S3 · · · SQ Optimal Rule

t1 x1,1 x1,2 x1,3 · · · x1,Q y1
t2 x2,1 x2,2 x2,3 · · · x2,Q y2
...

...
...

...
. . .

...
...

tK xK,1 xK,2 xK,3 · · · xK,Q yK

3.2. Model Training

We develop a machine learning model that uses the values of the queue state variables to determine
the dispatching rule, from which the processing order of actual job batches is derived. We select
the artificial neural network because it is widely used and has yielded reliable results in previous
research [10]. It should be noted that any type of classification model can be used in place of the neural
network model.

Recall that, according to the steps of Section 3.1, values of the queue state variables
Ψi (i = 1, 2, · · · , 21) are calculated from the generated dataset, and the optimal dispatching rule
y is derived, which gives the minimum tardiness. We use the ANOVA to select the relevant queue state
variables S1, S2, · · · , SQ, and then (S1, S2, · · · , SQ, y) composes one sample of the training dataset that
will be an input to the neural network. Therefore, the neural network is trained against the dispatching
rule for each given values of the queue state variables.

The neural network in our model exhibits an input layer, an output layer, and two hidden
layers. Each node in the input layer corresponds to each queue state variable, and each node
in the output layer matches the candidate dispatching rule. The number of nodes in the hidden
layers are parameters that should be tuned. We test 45 models with nodes in each hidden layer
(h1, h2) = (5, 1), (5, 2), . . . , (5, 5), (6, 1), . . . , (10, 10), where h1 and h2 denote the number of nodes in
the first and second hidden layers, respectively, and we select the parameters exhibiting the optimal
performance with five-fold cross validation.

4. Clustering Model to Group Jobs

Similar jobs are grouped together to form a group of batches when a set of jobs to be processed
are newly entered. Jobs in each batch are simultaneously processed.

4.1. Clustering Model to Group Jobs

When jobs are processed in a batch and not individually, the completion time of the jobs are
negatively impacted by the wasted processing time,

∑
j∈J(i)

(
p(i) − p j

)
, and residual machine capacity of

batch i, δ−
∑

j∈J(i)

(
s j
)
. Therefore, minimizing both wasted processing time and residual machine capacity

decreases the tardiness of the jobs [11]. Additionally, variance of the jobs’ due dates also increases the
tardiness of the jobs. Thus, it is necessary to use the processing time (p), due date (d), and release
time (r) while grouping the jobs into batches. Specifically, π j =

(
p j, d j, r j

)
denotes the vector of the

job characteristics for clustering and is termed as clustering characteristics. Job size
(
s j
)

is considered
as the clustering constraint.

Mathematics 2020, 8, 80 9 of 14

4.2. Formations of Batches

Grouping jobs is based on the constrained k-means clustering algorithm. It consists of three steps,
namely the centroid initialization step, job assignment step, and centroid update step as follows:

(i) Centroid initialization step:
The initial number of batches is obtained by dividing the total size of the jobs by the machine

capacity (i.e., b =

⌈∑n
j=1 s j

δ

⌉
), and the centroids Ci for i = 1, 2, · · · , b are randomly initialized.

(ii) Job assignment step:
Each job is assigned to the nearest cluster. If there is a cluster that does not satisfy the machine

capacity constraints, then one or more jobs in that cluster should be re-assigned. The algorithm
identifies a job j∗ that is the farthest from the cluster’s centroid to which it belongs (e.g., cluster

i), albeit the closest to the next nearest cluster’s centroid, i.e., j∗ = argmax
j

(
Ei, j/min

i,i′

(
Ei′, j

))
).

It assigns job j∗ to the nearest cluster i∗(, i) among those satisfying the capacity constraint,

i∗ = argmini

 1
Ei, j∗
× sgn

δ−
 ∑

j∈J(i)

(
s j
)
+ s j∗

.

(iii) Centroid update step:
The centroid of each cluster is updated.
The job assignment step and centroid update step are repeated until the clustering converges.

If the clustering does not converge even after a certain predetermined number of times, then we
increase the number of batches by 1, and the procedure is repeated until we have enough number of
batches that accommodates all jobs. The following Algorithm 2 summarizes the clustering algorithm
described above.

Algorithm 2. Clustering algorithm for grouping jobs

Input s j and π j =
(
p j, d j, r j

)
for all j, maximum iteration number M

Procedure

/* Centroid initialization step */

b =
⌈∑n

j=1 s j

δ

⌉
Initialize the number of batches

Select Ci (i = 1, 2, · · · , b) randomly
/* Job assignment step */
number of iterations = 1
Until (converged) Do {

If (number of iterations >M) Do {
Iteration = 1
Increase b by 1}

For (j = 1 to n) Do {
Assign job j to the nearest cluster i∗ = argmin

i

(
Ei, j

)
}

For (i = 1 to b) Do {

While

 ∑
j∈J(i)

s j > δ

 Do {

Find job j∗ = argmax
j

 Ei, j

min
i,i′

(Ei′ , j)

Assign job j∗ to another cluster i∗∗, where

i∗∗ = argmax
i

 1
Ei, j∗
× sgn

δ−
 ∑

j∈J(i)

(
s j
)
+ s j∗

}}

/* Centroid update step */

Update Ci as
∑

j∈Jb
π j

|J(i)|
Increase the number of iterations by 1}

Output Job clusters (batches)

Mathematics 2020, 8, 80 10 of 14

The following is an illustrative example of the clustering algorithm to improve the
reader’s understanding.

Assume there are six jobs: π1 = (1, 3), π2 = (2, 2), π3 = (4, 1), π4 = (5, 4), π5 = (3, 4),
and π6 = (4, 2) as depicted in Figure 4. Each job is expressed as a two-dimensional vector for graphical
convenience. The job sizes are s1 = 1, s2 = 1, s3 = 1, s4 = 2, s5 = 2, and s6 = 3, and the machine
capacity is 4.

(i) Centroid initialization step: Since
⌈∑6

j=1 s j

δ

⌉
=

⌈
10
4

⌉
= 3, we commence with three clusters

(i.e., b = 3). Three centroids, namely C1 = (3, 1), C2 = (5, 2), and C3 = (2, 3) (black squares in
the figure), are randomly generated.

(ii) Job assignment-1: every job is assigned to the nearest cluster. Cluster 1 = {job 3}, cluster 2 = {job 4,
6}, and cluster 3 = {job 1, 2, 5}.

(iii) Job assignment-2: Cluster 2 does not satisfy the capacity constraint since s4 + s6 = 5 > 4, and either

job 4 or job 6 should be reassigned to another cluster. Given that E2,6

min
i,2

(Ei,6)
= 0.7071 > E2,4

min
i,2

(Ei,4)
=

0.6324, we select j∗ = 6. The total job sizes of cluster 1 and cluster 3 are 1 and 4, respectively; thus,
job 6 is reallocated to cluster 1.

(iv) Centroid update: each cluster centroid is updated as π1+π2+π5
3 , π4, and π3+π6

2 .

Mathematics 2020, 8, x FOR PEER REVIEW 9 of 14

(iii) Centroid update step:
The centroid of each cluster is updated.
The job assignment step and centroid update step are repeated until the clustering converges. If

the clustering does not converge even after a certain predetermined number of times, then we
increase the number of batches by 1, and the procedure is repeated until we have enough number of
batches that accommodates all jobs. The following Algorithm 2 summarizes the clustering algorithm
described above.

Algorithm 2. Clustering algorithm for grouping jobs
Input 𝑠 and 𝝅 = 𝑝 , 𝑑 , 𝑟 for all 𝑗, maximum iteration number 𝑀

Procedure

/* Centroid initialization step */ 𝑏 = ∑
 # Initialize the number of batches

Select 𝑪 (𝑖 = 1, 2, ⋯ , 𝑏) randomly
/* Job assignment step */
number of iterations = 1
Until (converged) Do {

If (number of iterations > 𝑀) Do {
Iteration = 1
Increase 𝑏 by 1}

For (𝑗 = 1 to 𝑛) Do {
Assign job 𝑗 to the nearest cluster 𝑖∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐸 , }

For (𝑖 = 1 to 𝑏) Do {
While ∑ 𝑠∈ () > 𝛿 Do {

Find job 𝑗∗ = argmax , ,

Assign job 𝑗∗ to another cluster 𝑖∗∗, where 𝑖∗∗ = argmax , ∗ × 𝑠𝑔𝑛 𝛿 − ∑ 𝑠∈ () + 𝑠 ∗ }}

/* Centroid update step */

Update 𝑪 as
∑ 𝝅∈()

Increase the number of iterations by 1}
Output Job clusters (batches)

The following is an illustrative example of the clustering algorithm to improve the reader’s
understanding.

Assume there are six jobs: 𝝅 = (1, 3), 𝝅 = (2, 2), 𝝅 = (4, 1), 𝝅 = (5, 4), 𝝅 = (3, 4), and 𝝅 = (4, 2) as depicted in Figure 4. Each job is expressed as a two-dimensional vector for graphical
convenience. The job sizes are 𝑠 = 1, 𝑠 = 1, 𝑠 = 1, 𝑠 = 2, 𝑠 = 2, and 𝑠 = 3, and the machine
capacity is 4.

Figure 4. Clustering algorithm example.

This process is repeated until the centroid of every batch is not updated any longer.

4.3. Model Deployment

After the jobs are grouped via the proposed clustering model, the rule selection model determines
the batch to be processed whenever a machine becomes idle. First, the values of the selected queue state
variables are calculated from batches, and the current time is set when the machine becomes idle. Next,
the rule selection model selects the proper dispatching rule via the trained neural network. Finally,
the selected rule calculates the priority of each batch, determines the highest priority, and processes it
with the idle machine. Note that the selected rule may be different from the those selected by human
experts because scheduling decisions of human and software models can be different from each other,
and thus it is recommended not to rely only on the selected rule but to consider a human expert’s
experience for practical usage as suggested in [12].

5. Experiment

This section illustrates the application procedure of the proposed framework to batch scheduling
problems to minimize total tardiness where every job is released on the first day. We consider a test
case with a small number of jobs and verify the proposed framework’s effectiveness by comparing it
with the optimal schedule obtained via exhaustive search. Please refer to [13] for the algorithm to find
the optimal solution of small batch scheduling problems.

Mathematics 2020, 8, 80 11 of 14

Additionally, we show the validity of the proposed framework by comparing it with the schedules
from single dispatching rules to solve large-scale realistic problems. Based on the experiment, we
suggest that the proposed framework determines an optimal schedule for small problems and a better
schedule than those obtained via a single dispatching rule for large problems.

5.1. Parameters

We assume that the pmfs and conditional pmfs (cpmfs) of job characteristics are estimated from
the historical data listed in Tables 4 and 5, respectively.

Table 4. Pmfs (probability mass functions) of the job characteristics.

Value Pr(p = Value) Pr(s = Value) Pr(ξ = Value)

1 0.30 0.30 0.25
2 0.40 0.40 0.25
3 0.30 0.30 0.25
4 0.00 0.00 0.25

Table 5. Cpmfs (conditional probability mass functions) of job characteristics.

(a) Processing Time (b) Slack Time

p ξ

1 2 3 1 2 3 4

0.924 0.076 0.001

ξ0

0.836 0.146 0.019 0.000
p0 0.048 0.902 0.050 0.153 0.728 0.097 0.022

0.001 0.071 0.928 0.014 0.098 0.815 0.073

0.003 0.009 0.075 0.913

Each cell in Table 5 indicates Pr
(
c = ĉ

∣∣∣c0 = ĉ0
)
. For example, the value 0.076 in Table 5 denotes

the probability Pr
(
p = 2

∣∣∣p0 = 1
)
= 0.076, which denotes that the processing time of a newly generated

job corresponds to 2 when the processing time of the previously generated sample corresponds to
1. It should be noted that we do not consider Pr

(
r = r̂

∣∣∣r0 = r̂0
)

because every job is assumed to be
released at once.

For the purpose of training, we first generated a training dataset with 100,000 samples as explained
in Section 3.1. The optimal neural network was obtained by using this training dataset (which exhibits
eight nodes in the first hidden layer and nine nodes in the second hidden layer), and the accuracy
corresponds to 88.45%.

5.2. Comparison with Exhaustive Search

Table 6 illustrates the characteristics of 10 jobs to be processed via one of two identical machines
wherein all capacities are 3.

We applied Algorithm 2 (Clustering algorithm for grouping jobs) to the jobs, and this resulted in
five batches. A batch schedule via the trained neural network was established, and the total tardiness
of this schedule was found to be 1.

Subsequently, this result was compared with that obtained by the exhaustive search. All possible
schedules were generated by considering the processing order of batches as well as grouping jobs.
This results in a total of 1,300,561,920 schedules. Each schedule’s total tardiness and maximum tardiness
were calculated, and Figure 5 plots the distributions of them for all schedules.

Mathematics 2020, 8, 80 12 of 14

Table 6. Job characteristics.

j pj sj dj

1 1 2 2
2 3 1 5
3 3 2 4
4 1 2 3
5 3 3 6
6 2 1 4
7 3 2 5
8 3 2 4
9 2 1 2
10 3 3 6

Mathematics 2020, 8, x FOR PEER REVIEW 12 of 14

Figure 5. Total and max tardiness distribution.

There are 55,296 schedules (0.0042% among all the possible schedules) with a total tardiness of
1, and it is confirmed that the schedule obtained from the trained neural network is included in the
55,296 schedules.

We performed an additional experiment with problem sizes similar to those mentioned above
to obtain the schedule with the minimum total tardiness via the proposed approach and then
compare them with the optimal schedule. We randomly generated 1000 datasets that included 2, 3,
and 4 machines with capacities of 3, 4, 5, and 6, and the numbers of jobs were 8, 9, 10, 11, 12, 13, 14,
and 15. In the experiment, job characteristics were randomly generated based on Table 4. The results
indicate that the proposed approach obtains the optimal schedules in 948 datasets out of 1000
datasets. Based on the result, we conclude that the proposed approach can establish the optimal
schedule for small problems in most cases.

5.3. Comparison with Single Dispatching Rule

In this subsection, we compare the proposed framework with cases of single dispatching rule
when there are hundreds of jobs, thereby resulting in a computationally intractable optimal batch
schedule. The experiment involves demonstrating that the proposed method can be applied to a real-
sized problem and exhibits an excellent performance.

We generated 100 test datasets via Tables 4 and 5 where each dataset contained 300 jobs and
there were four identical machines wherein all the capacities were 6. Subsequently, we applied the
clustering algorithm to each dataset. The dispatching rule selection model was then applied to the
batches, and the average total tardiness was calculated. This was compared with the cases wherein
single dispatching rules (Shortest processing time first (SPT), Longest processing time first (LPT),
Earliest minimum due date first (EMIDD), Earliest maximum due date first (EMADD), Earliest
minimum release time first (EMIST), and Earliest maximum release time first (EMAST)) were
adopted to the same datasets. Figure 6 shows the average total tardiness over all the datasets.

Figure 5. Total and max tardiness distribution.

There are 55,296 schedules (0.0042% among all the possible schedules) with a total tardiness of
1, and it is confirmed that the schedule obtained from the trained neural network is included in the
55,296 schedules.

We performed an additional experiment with problem sizes similar to those mentioned above to
obtain the schedule with the minimum total tardiness via the proposed approach and then compare them
with the optimal schedule. We randomly generated 1000 datasets that included 2, 3, and 4 machines
with capacities of 3, 4, 5, and 6, and the numbers of jobs were 8, 9, 10, 11, 12, 13, 14, and 15. In the
experiment, job characteristics were randomly generated based on Table 4. The results indicate that the
proposed approach obtains the optimal schedules in 948 datasets out of 1000 datasets. Based on the
result, we conclude that the proposed approach can establish the optimal schedule for small problems
in most cases.

5.3. Comparison with Single Dispatching Rule

In this subsection, we compare the proposed framework with cases of single dispatching rule
when there are hundreds of jobs, thereby resulting in a computationally intractable optimal batch
schedule. The experiment involves demonstrating that the proposed method can be applied to a
real-sized problem and exhibits an excellent performance.

Mathematics 2020, 8, 80 13 of 14

We generated 100 test datasets via Tables 4 and 5 where each dataset contained 300 jobs and there
were four identical machines wherein all the capacities were 6. Subsequently, we applied the clustering
algorithm to each dataset. The dispatching rule selection model was then applied to the batches,
and the average total tardiness was calculated. This was compared with the cases wherein single
dispatching rules (Shortest processing time first (SPT), Longest processing time first (LPT), Earliest
minimum due date first (EMIDD), Earliest maximum due date first (EMADD), Earliest minimum
release time first (EMIST), and Earliest maximum release time first (EMAST)) were adopted to the
same datasets. Figure 6 shows the average total tardiness over all the datasets.
Mathematics 2020, 8, x FOR PEER REVIEW 13 of 14

Figure 6. Comparison results of the proposed model and single dispatching rule.

As shown in Figure 6, the proposed model yields the least average total tardiness among all
dispatching rules, and this is approximately 4–40% less than the other models. Therefore, it is
concluded that the proposed dispatching model yields a more efficient schedule when compared to
that of the single dispatching rule, even with respect to a real-sized batch scheduling problem. The
proposed model shows only a slight improvement compared to EMIST. This is because this rule
seems to be appropriate for the test datasets and the proposed model selects the most appropriate
dispatching rule among the pre-defined rules (i.e., SPT, LPT, EMIDD, EMADD, EMIST, and EMAST).
It implies that the proposed model relies on the pre-defined rules, and therefore, it is important to
consider various rules as pre-defined rules for practical usage.

6. Conclusions

The batch scheduling problem is one of the most important scheduling problems in the
manufacturing process, and consists of two subproblems: grouping jobs into batches and
determining the sequence of batches. Heuristic approach is a typical way to solve these problems
because they are NP-hard (Non-deterministic Polynomial-time hard). However, the heuristic
algorithm has the evident limitation that it needs to be designed differently according to the specific
problem. In addition, much previous research has addressed only one of those two subproblems.

Motivated by these issues, in this study, we developed a batch scheduling model that is not
problem specific and can solve both subproblems. The model consists of a clustering model and
dispatching rule selection model to solve the problems of grouping jobs and sequencing batches
during batch scheduling, respectively. The clustering model is developed based on the constrained
k-means algorithm using a set of features impacting total tardiness (e.g., due date, processing time,
and arrival time) and yields clusters that contain jobs wherein the sums of job sizes do not exceed the
machine load capacity. The dispatching rule selection model is a supervised model that uses queue
state variables (e.g., the number of batches in the queue and maximum processing time of the batches)
as features and the most appropriate dispatching rule as the class label. The results of the experiment
indicated that the framework solves batch scheduling problems and yields a good batch schedule.

With respect to future work, the proposed framework can be extended to solve diverse batch
scheduling problems, for example, modification of the clustering algorithm to include machine
capacities that are not identical wherein different types of objective functions are introduced.
Additionally, more queue state variables (which cover various batch scheduling problems) can be
adopted to make problems more practical.

Author Contributions: Funding acquisition, S.H.; Investigation, G.A.; Methodology, G.A. and S.H.; Software,
G.A.; Validation, G.A.; Writing—original draft, G.A.; Review and editing, S.H.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (2019R1A2C1088255).

Figure 6. Comparison results of the proposed model and single dispatching rule.

As shown in Figure 6, the proposed model yields the least average total tardiness among all
dispatching rules, and this is approximately 4–40% less than the other models. Therefore, it is concluded
that the proposed dispatching model yields a more efficient schedule when compared to that of the
single dispatching rule, even with respect to a real-sized batch scheduling problem. The proposed
model shows only a slight improvement compared to EMIST. This is because this rule seems to be
appropriate for the test datasets and the proposed model selects the most appropriate dispatching rule
among the pre-defined rules (i.e., SPT, LPT, EMIDD, EMADD, EMIST, and EMAST). It implies that the
proposed model relies on the pre-defined rules, and therefore, it is important to consider various rules
as pre-defined rules for practical usage.

6. Conclusions

The batch scheduling problem is one of the most important scheduling problems in the
manufacturing process, and consists of two subproblems: grouping jobs into batches and determining
the sequence of batches. Heuristic approach is a typical way to solve these problems because they are
NP-hard (Non-deterministic Polynomial-time hard). However, the heuristic algorithm has the evident
limitation that it needs to be designed differently according to the specific problem. In addition, much
previous research has addressed only one of those two subproblems.

Motivated by these issues, in this study, we developed a batch scheduling model that is not
problem specific and can solve both subproblems. The model consists of a clustering model and
dispatching rule selection model to solve the problems of grouping jobs and sequencing batches during
batch scheduling, respectively. The clustering model is developed based on the constrained k-means
algorithm using a set of features impacting total tardiness (e.g., due date, processing time, and arrival
time) and yields clusters that contain jobs wherein the sums of job sizes do not exceed the machine load
capacity. The dispatching rule selection model is a supervised model that uses queue state variables
(e.g., the number of batches in the queue and maximum processing time of the batches) as features and

Mathematics 2020, 8, 80 14 of 14

the most appropriate dispatching rule as the class label. The results of the experiment indicated that
the framework solves batch scheduling problems and yields a good batch schedule.

With respect to future work, the proposed framework can be extended to solve diverse batch
scheduling problems, for example, modification of the clustering algorithm to include machine
capacities that are not identical wherein different types of objective functions are introduced.
Additionally, more queue state variables (which cover various batch scheduling problems) can
be adopted to make problems more practical.

Author Contributions: Funding acquisition, S.H.; Investigation, G.A.; Methodology, G.A. and S.H.; Software,
G.A.; Validation, G.A.; Writing—original draft, G.A.; Review and editing, S.H. All authors have read and agreed
to the published version of the manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (2019R1A2C1088255).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Vanchipura, R.; Sridharan, R.; Babu, A.S. Improvement of constructive heuristics using variable neighbourhood
descent for scheduling a flow shop with sequence dependent setup time. J. Manuf. Syst. 2014, 33, 65–75.
[CrossRef]

2. Ahn, G.; Park, M.; Park, Y.J.; Hur, S. Interactive Q-Learning Approach for Pick-and-Place Optimization of the
Die Attach Process in the Semiconductor Industry. Math. Probl. Eng. 2019, 2019, 4602052. [CrossRef]

3. Mouelhi-Chibani, W.; Pierreval, H. Training a neural network to select dispatching rules in real time.
Comput. Ind. Eng. 2010, 58, 249–256. [CrossRef]

4. Shiue, Y.R. Data-mining-based dynamic dispatching rule selection mechanism for shop floor control systems
using a support vector machine approach. Int. J. Prod. Res. 2009, 47, 3669–3690. [CrossRef]

5. Mönch, L.; Zimmermann, J.; Otto, P. Machine learning techniques for scheduling jobs with incompatible
families and unequal ready times on parallel batch machines. Eng. Appl. Artif. Intell. 2006, 19, 235–245.
[CrossRef]

6. Xu, R.; Chen, H.; Li, X. A bi-objective scheduling problem on batch machines via a Pareto-based ant colony
system. Int. J. Prod. Econ. 2013, 145, 371–386. [CrossRef]

7. Damodaran, P.; Srihari, K. Mixed integer formulation to minimize makespan in a flow shop with batch
processing machines. Math. Comput. Model. 2004, 40, 1465–1472. [CrossRef]

8. Shiue, Y.R.; Guh, R.S.; Tseng, T.Y. Study on shop floor control system in semiconductor fabrication by
self-organizing map-based intelligent multi-controller. Comput. Ind. Eng. 2012, 62, 1119–1129. [CrossRef]

9. Tsai, C.F. Feature selection in bankruptcy prediction. Knowl. Based Syst. 2009, 22, 120–127. [CrossRef]
10. El-Bouri, A.; Shah, P. A neural network for dispatching rule selection in a job shop. Int. J. Adv. Manuf. Technol.

2006, 31, 342–349. [CrossRef]
11. Chen, H.; Du, B.; Huang, G.Q. Scheduling a batch processing machine with non-identical job sizes:

A clustering perspective. Int. J. Prod. Res. 2011, 49, 5755–5778. [CrossRef]
12. Rodger, J.A. An expert system gap analysis and empirical triangulation of individual differences, interventions,

and information technology applications in alertness of railroad workers. Expert. Syst. Appl. 2020, 144, 113081.
[CrossRef]

13. Bilyk, A.; Mönch, L.; Almeder, C. Scheduling jobs with ready times and precedence constraints on parallel
batch machines using metaheuristics. Comput. Ind. Eng. 2014, 78, 175–185. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jmsy.2013.07.003
http://dx.doi.org/10.1155/2019/4602052
http://dx.doi.org/10.1016/j.cie.2009.03.008
http://dx.doi.org/10.1080/00207540701846236
http://dx.doi.org/10.1016/j.engappai.2005.10.001
http://dx.doi.org/10.1016/j.ijpe.2013.04.053
http://dx.doi.org/10.1016/j.mcm.2005.01.005
http://dx.doi.org/10.1016/j.cie.2012.01.004
http://dx.doi.org/10.1016/j.knosys.2008.08.002
http://dx.doi.org/10.1007/s00170-005-0190-y
http://dx.doi.org/10.1080/00207543.2010.512620
http://dx.doi.org/10.1016/j.eswa.2019.113081
http://dx.doi.org/10.1016/j.cie.2014.10.008
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem Statement, Notations, and Framework Overview
	Model Training for Dispatching Rule Selection
	Generating the Training Dataset
	Model Training

	Clustering Model to Group Jobs
	Clustering Model to Group Jobs
	Formations of Batches
	Model Deployment

	Experiment
	Parameters
	Comparison with Exhaustive Search
	Comparison with Single Dispatching Rule

	Conclusions
	References

