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Abstract: In this study, we establish new integral inequalities of the Hermite–Hadamard type for
s-convexity via the Katugampola fractional integral. This generalizes the Hadamard fractional
integrals and Riemann–Liouville into a single form. We show that the new integral inequalities of
Hermite–Hadamard type can be obtained via the Riemann–Liouville fractional integral. Finally, we give
some applications to special means.
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1. Introduction

Fractional calculus, whose applications can be found in many disciplines including economics,
life and physical sciences, as well as engineering, can be considered as one of the modern branches of
mathematics [1–4]. Many problems of interests from these fields can be analyzed through fractional
integrals, which can also be regarded as an interesting sub-discipline of fractional calculus. Some of the
applications of integral calculus can be seen in the following papers [5–10], through which problems in
physics, chemistry, and population dynamics were studied. The fractional integrals were extended to
include the Hermite–Hadamard inequality, which is classically given as follows.

Consider a convex function, h : E ⊆ R→ R, w, z ∈ E if, and only if,

h
(

w + z
2

)
≤ 1

z− w

∫ z

w
h(x)dx ≤ h(w) + h(z)

2
. (1)

Following this, many important generalizations of Hermite–Hadamard inequality were
studied [11–17], some of which were formulated via generalized s-convexity, which is defined as follows.

Definition 1. Let 0 < s ≤ 1. The function h : [w, z] ⊂ R+ → Rα is said to be generalized s-convex on fractal sets
Rα (0 < α < 1) in the second sense if

h (tw + (1− t) z) ≤ (t)αs h (w) + (1− t)αs h (z) .

This class of function is denoted by GK2
s (see Mo and Sui [18]).
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Hermite–Hadamard-type inequalities have been extended to include fractional integrals. For example,
Chen and Katugampola [19] generalized Equation (1) via generalized fractional integrals. Other important
extensions of Equation (1) include the work of Mehran and Anwar [20], who studied the
Hermite–Hadamard-type inequalities for s-convex functions involving generalized fractional integrals.
The definitions of the generalized fractional integrals were given in [21], and we present them as follows.

Definition 2. Suppose [w, z] ⊂ R is a finite interval. For order α > 0, the two sides of Katugampola fractional
integrals for h ∈ Xp

c (w, z) are defined by

ρ Iα
w+h(x) =

ρ1−α

Γ(α)

∫ x

w
(xρ − tρ)α−1 tρ−1h(t)dt,

and
ρ Iα

z−h(x) =
ρ1−α

Γ(α)

∫ z

x
(tρ − xρ)α−1 tρ−1h(t)dt,

where w < x < z, ρ > 0, and Xp
c (w, z)(c ∈ R, 1 ≤ p ≤ ∞) represents the space of complex-valued Lebesgue

measurable functions h on [w, z] for ‖h‖Xp
c <∞. The norm is given as

‖h‖Xp
c
=

(∫ z

w
|tch(t)|p dt

t

)1/p
< ∞

for 1 ≤ p < ∞, c ∈ R. For the case p = ∞, we get

‖h‖X∞
c = ess sup

w≤t≤z
[tc|h(t)|] ,

whereby ess sup is the essential supremum.

Even though Katugampola fractional integrals have been used to generalize many inequalities, such as
Grüss [22,23], Hermite–Hadamard [24], and Lyapunov [25], this work generalizes Hermite–Hadamard
inequality involving Katugampola on fractal sets.

When improving the results in Mehran and Anwar [20], we used Definition 2 together with the
following lemma.

Lemma 1. [19] Suppose that h : [wρ, zρ] ⊂ R+ → R is a differentiable function on (wρ, zρ), where 0 ≤ w < z for
α > 0 and ρ > 0. If the fractional integrals exist, we get

h (wρ) + h (zρ)

2
− αραΓ(α + 1)

2 (zρ − wρ)α

[
ρ Iα

w+ h (zρ) +ρ Iα
z− h (wρ)

]
=

zρ − wρ

2

∫ 1

0

[
(1− tρ)α − (tρ)α] tρ−1h′ (tρwρ + (1− tρ) zρ) dt.

This paper is aimed at establishing some new integral inequalities for generalized s-convexity via
Katugampola fractional integrals on fractal sets linked with Equation (1). We presented some inequalities
for the class of mappings whose derivatives in absolute value are the generalized s-convexity. In addition,
we obtained some new inequalities linked with convexity and generalized s-convexity via classical integrals
as well as Riemann–Liouville fractional integrals in form of a corollary. As an application, the inequalities
for special means are derived.
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2. Main Results

Hermite–Hadamard inequality for s-convexity via generalized fractional integral can be written with
the aid of the following theorem.

Theorem 1. Let h : [wρ, zρ] ⊂ R+ → Rα be a positive function for 0 ≤ w < z and h ∈ Xp
c (wρ, zρ) for α > 0

and ρ > 0. If h is a generalized s-convex function on [wρ, zρ], then

2α(s−1)h
(

wρ + zρ

2

)
≤ ραΓ(α + 1)

2 (zρ − wρ)α

[
ρ Iα

w+h (zρ) +ρ Iα
z−h (wρ)

]
≤
[

1
ρ(1 + s)

+ αβ(α, αs + 1)
]

h (wρ) + h (zρ)

2
.

(2)

Proof. Since h is generalized s-convex function on [wρ, zρ], for t ∈ [0, 1], we get

h (tρwρ + (1− tρ) zρ) ≤ (tρ)αs h (wρ) + (1− tρ)αs h (zρ) ,

and
h (tρzρ + (1− tρ)wρ) ≤ (tρ)αs h (zρ) + (1− tρ)αs h (wρ) .

Combining the above inequalities, we have

h (tρwρ + (1− tρ) zρ) + h (tρzρ + (1− tρ)wρ) ≤
(
(tρ)αs + (1− tρ)αs) [h (wρ) + h (zρ)] . (3)

Multiplying both sides of Equation (3) by tαρ−1, for α > 0 and integrating it over [0, 1] with respect to
t, we obtain

ρα−1Γ(α)
(zρ − wρ)α

[
ρ Iα

w+h (zρ) +ρ Iα
z−h (wρ)

]
≤
∫ 1

0
tαρ−1 ((tρ)αs + (1− tρ)αs) [h (wρ) + h (zρ)] dt. (4)

Since ∫ 1

0
tαsρ+αρ−1dt =

1
αρ(s + 1)

,

applying the change of variable tρ = a gives the following

∫ 1

0
tαρ−1 (1− tρ)αs dt =

β(α, αs + 1)
ρ

.

Thus, Equation (4) becomes

ραΓ(α + 1)
2 (zρ − wρ)α

[
ρ Iα

w+h (zρ) +ρ Iα
z−h (wρ)

]
≤
[

1
ρ(1 + s)

+ αβ(α, αs + 1)
]

h (wρ) + h (zρ)

2
.

In order to prove the first part of Equation (2), since h is generalized s-convex function on [wρ, zρ],
the following inequality is obtained:

h
(

xρ + yρ

2

)
≤ h (xρ) + h (yρ)

2αs , (5)

for xρ, yρ ∈ [wρ, zρ], α ≥ 0.
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Consider xρ = tρwρ + (1− tρ) zρ and yρ = tρzρ + (1− tρ)wρ, where t ∈ [0, 1].
Applying Equation (5), we have

2αsh
(

wρ + zρ

2

)
≤ h (tρwρ + (1− tρ) zρ) + h (tρzρ + (1− tρ)wρ) . (6)

Multiplying both sides of the Equation (6) by tαρ−1, for α > 0 and integrating over [0, 1] with respect
to t gives the following:

2s

αρ
h
(

wρ + zρ

2

)
≤
∫ 1

0
tαρ−1h (tρwρ + (1− tρ) zρ) dt +

∫ 1

0
tαρ−1h (tρzρ + (1− tρ)wρ) dt

=
∫ w

z

(
zρ − xρ

zρ − wρ

)α−1
h (xρ)

xρ−1

wρ − zρ dx

+
∫ z

w

(
yρ − wρ

zρ − wρ

)α−1
h (yρ)

yρ−1

zρ − wρ dy

=
ρα−1Γ(α)
(zρ − wρ)α

[
Iα
w+h (zρ) +ρ Iα

z−h (wρ)
]

.

(7)

Then, it follows that

2α(s−1)h
(

wρ + zρ

2

)
≤ ραΓ(α + 1)

2 (zρ − wρ)α

[
ρ Iα

w+h (zρ) +ρ Iα
z−h (wρ)

]
,

where β(w, z) is the Beta function.

Remark 1. When substituting ρ = 1 and α = 1 in Equation (2), we obtained the results reported by
Dragomir and Fitzpatrick [11].

Example 1. Consider a function h : [wρ, zρ] ⊂ R+ → Rα, such that h(x) = xsα belongs to GK2
s , s ∈ (0, 1] with

h ∈ Xp
c (wρ, zρ), where α > 0 and ρ > 0. Suppose w = 0 and z = 1. For α = 2, s = 1

2 and ρ = 1, the first, second,
and third parts of Equation (2) give 0.25, 0.33 and 0.50, respectively. Thus, the Equation (2) holds. Similarly, when
α = 1, s = 1

2 and ρ = 2, we get 0.35, 0.50 and 0.80, respectively, which satisfies Theorem 1.

In the next theorem, the new upper bound for the right-hand side of Equation (1) for generalized
s-convexity is proposed. Thus, the generalized beta function is defined as

βρ(w, z) =
∫ 1

0
ρ(1− xρ)b−1(xρ)a−1xρ−1dx.

Note that, as ρ→ 1, βρ(w, z)→ β(w, z).

Theorem 2. Let α > 0 and ρ > 0. Let h : [wρ, zρ] ⊂ R+ → Rα be a differentiable function on (wρ, zρ),
and h′ ∈ L1[w, z] with 0 ≤ w < z. If |h′|q is generalized s-convex on [wρ, zρ] for q ≥ 1, we obtain

∣∣∣∣ h(wρ)+h(zρ)
2 − αραΓ(α+1)

2(zρ−wρ)α

[
ρ Iα

w+h (zρ) +ρ Iα
z−h (wρ)

] ∣∣∣∣ ≤ zρ−wρ

2

(
1

(α+1)ρ

) q−1
q

×
[

βρ(αs+1,α+1)
ρ + 1

(αρ(s+1)+1)

] 1
q

×(|h′(wρ)|q + |h′(zρ)|q)
1
q .
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Proof. In view of Lemma 1, we have∣∣∣∣ h(wρ)+h(zρ)
2 − αραΓ(α+1)

2(zρ−wρ)α

[
ρ Iα

w+h (zρ) +ρ Iα
z−h (wρ)

] ∣∣∣∣ =

∣∣∣∣ zρ−wρ

2

∫ 1
0

[
(1− tρ)α − (tρ)α] tρ−1

×h′ (tρwρ + (1− tρ) zρ) dt
∣∣∣∣. (8)

For the first case, when q = 1, and |h′| is generalized s-convex on [wρ, zρ], we have

h′ (tρwρ + (1− tρ) zρ) ≤ (tρ)αs h′ (wρ) + (1− tρ)αs h′ (zρ) .

Therefore,∣∣∣∣ ∫ 1
0
[
(1− tρ)α − (tρ)α] tρ−1h′ (tρwρ + (1− tρ) zρ) dt

∣∣∣∣ ≤ ∫ 1
0
[
(1− tρ)α + (tρ)α] tρ−1[(tρ)αs |h′(wρ|)

+ (1− tρ)αs |h′ (zρ|)]dt
= |h′(wρ)|

∫ 1
0
[
(tρ−1 (tρ)αs)((1− tρ)α + (tρ)α)

]
dt

+|h′(zρ)|
∫ 1

0
[
(tρ−1 (1− tρ)αs)((1− tρ)α + (tρ)α)

]
dt

= S1 + S2.

(9)

Calculating S1 and S2, we get

S1 = |h′(wρ|)
[ ∫ 1

0 (1− tρ)αtρ−1(tρ)αsdt +
∫ 1

0 (t
ρ)α(s+1)tρ−1dt

]
= |h′ (wρ) |

[
βρ(αs+1,α+1)

ρ + 1
ρ(αs+α+1)

]
,

(10)

and

S2 = |h′(zρ|)
[ ∫ 1

0 (1− tρ)α(s+1)tρ−1dt +
∫ 1

0 (t
ρ)αtρ−1(1− tρ)αsdt

]
= |h′(zρ)|

[
1

ρ(αs+α+1) +
βρ(α+1,αs+1)

ρ

]
.

(11)

Thus, if we use Equations (10) and (11) in (9), we obtain∣∣∣∣ ∫ 1
0

[
(1− tρ)α − (tρ)α] tρ−1h′ (tρwρ + (1− tρ) zρ) dt

∣∣∣∣ ≤ |h′ (wρ) |
[

βρ(αs+1,α+1)
ρ + 1

ρ(αs+α+1)

]
+|h′(zρ)|

[
1

ρ(αs+α+1) +
βρ(α+1,αs+1)

ρ

]
.

(12)
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Obtaining Equations (8) and (12) completes the proof for this case. Consider the second case, q > 1.
Using Equation (8) and the power mean inequality, we obtain

∣∣∣∣ ∫ 1
0

[
(1− tρ)α − (tρ)α] tρ−1h′ (tρwρ + (1− tρ) zρ) dt

∣∣∣∣ ≤
( ∫ 1

0 |(1− tρ)α − (tρ)α|tρ−1dt
)1− 1

q

×
( ∫ 1

0 |(1− tρ)α − (tρ)α|tρ−1|h′(tρwρ + (1− tρ)zρ)|qdt
) 1

q

≤
∫ 1

0

(
[(1− tρ)α + (tρ)α]tρ−1dt

)1− 1
q

×
( ∫ 1

0 [(1− tρ)α + (tρ)α]tρ−1[(tρ)αs|h′(wρ)|q

+(1− tρ)αs|h′(zρ)|q]dt
) 1

q

=

(
1

ρ(α+1)

) q−1
q

×
((

βρ(αs+1,α+1)
ρ + 1

ρ(αs+α+1)

)
|h′(wρ)|q

+ 1
ρ(αs+α+1) +

βρ(α+1,αs+1))
ρ |h′(zρ)|q

) 1
q

.

(13)

The Equations (8) and (13) complete the proof.

Corollary 1. Using the similar assumptions given in Theorem 2.

1. If ρ = 1, we get

∣∣∣∣h(w) + h(z)
2

− αΓ(α + 1)
2(z− w)α

[Iα
w+h(z) + Iα

z−h(w)]

∣∣∣∣ ≤ z− w
2

(
1

α + 1

) q−1
q

×
[

β(αs + 1, α + 1) +
1

1 + α(s + 1)

] 1
q

× (|h′(w)|+ |h′(z)|).

2. If ρ = 1 and s = 1, then

∣∣∣∣h(w) + h(z)
2

− αΓ(α + 1)
2(z− w)α

[Iα
w+h(z) + Iα

z−h(w)]

∣∣∣∣ ≤ z− w
2

(
1

1 + α

) q−1
q

×
(

β(α + 1, α + 1) +
1

1 + 2α

) 1
q

× (|h′(w)|q + |h′(z)|q).

3. If ρ = 1, s = 1 and α = 1, we obtain

∣∣∣∣h(w) + h(z)
2

− 1
z− w

∫ z

w
h(x)dx

∣∣∣∣ ≤ z− w
2

(
1
2

) q−1
q
(

h′(w)|q + h′(z)|q
2

) 1
q

.
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Theorem 3. With the similar assumptions stated in Theorem 2, we get the following inequality:

∣∣∣∣ h(wρ)+h(zρ)
2 − αραΓ(α+1)

2(zρ−wρ)α

[
ρ Iα

w+h (zρ) +ρ Iα
z−h (wρ)

] ∣∣∣∣ ≤ ( 1
ρ

)1− 1
q

zρ−wρ

2

×
[

βρ(αs+1,α+1)
ρ + 1

(α(s+1)+1)ρ

] 1
q

×
(
|h′(wρ)|q + |h′(zρ)|q

) 1
q

.

(14)

Proof. Using the fact |h′|q, a generalized s-convex on [wρ, zρ] with q ≥ 1, we get

h′ (tρwρ + (1− tρ) zρ) ≤ (tρ)αs h′ (wρ) + (1− tρ)αs h′ (zρ) .

Applying Equation (8) together with the power mean inequality, we get

∣∣∣∣ ∫ 1
0

[
(1− tρ)α − (tρ)α] tρ−1h′ (tρwρ + (1− tρ) zρ) dt

∣∣∣∣ ≤
( ∫ 1

0 tρ−1dt
)1− 1

q

×
( ∫ 1

0 |(1− tρ)α − (tρ)α|tρ−1|h′(tρwρ + (1− tρ)zρ)|qdt
) 1

q

≤
(

1
ρ

)1− 1
q
( ∫ 1

0 [(1− tρ)α + (tρ)α]tρ−1[(tρ)αs|h′(wρ)|q

+(1− tρ)αs|h′(zρ)|q]dt
) 1

q

≤
(

1
ρ

)1− 1
q
(
|h′(wρ)|q

∫ 1
0 [(1− tρ)α(tρ)αstρ−1 + (tρ)α(tρ)αstρ−1]dt

+|h′(zρ)|q
∫ 1

0 [(1− tρ)αtρ−1(1− tρ)αs + (tρ)α(1− tρ)αstρ−1]dt
) 1

q

=

(
1
ρ

)1− 1
q

×
(
|h′(wρ)|q

[
βρ(αs+1,α+1)

ρ + 1
ρ(αs+α+1)

]
+|h′(zρ)|q

[
βρ(α+1,αs+1)

ρ + 1
ρ(αs+α+1)

]) 1
q

.

Remark 2. Choosing ρ = 1 in Theorem 3, we get the following∣∣∣∣h(w) + h(z)
2

− αΓ(α + 1)
2(z− w)α

[Iα
w+h(z) + Iα

z−h(w)]

∣∣∣∣ ≤ z− w
2

×
[

β(αs + 1, α + 1) +
1

α(s + 1) + 1

] 1
q

× (|h′(w)|+ |h′(z)|).

Remark 3. When choosing ρ = 1 and s = 1
2 in Theorem 3, we get

∣∣∣∣h(w) + h(z)
2

− αΓ(α + 1)
2(z− w)α

[Iα
w+h(z) + Iα

z−h(w)]

∣∣∣∣ ≤ z− w
2

(
β

(
α

2
+ 1, α + 1

)
+

1
3
2 α + 1

) 1
q

× (|h′(w)|q + |h′(z)|q).
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Corollary 2. Choosing ρ = 1, s = 1 and α = 1in Theorem 3, we obtain

∣∣∣∣h(w) + h(z)
2

− 1
z− w

∫ z

w
h(x)dx

∣∣∣∣ ≤ z− w
2

(
h′(w)|q + h′(z)|q

2

) 1
q

.

The other type is given by the next theorem.

Theorem 4. Let α > 0 and ρ > 0. Let h : [wρ, zρ] ⊂ R+ → Rα be a differentiable function on (wρ, zρ),
where h′ ∈ L1[w, z] with 0 ≤ w < z. For q > 1, if |h′|q is generalized s-convex on [wρ, zρ], we get

∣∣∣∣h (wρ) + h (zρ)

2
− αραΓ(α + 1)

2 (zρ − wρ)α

[
ρ Iα

w+h (zρ) +ρ Iα
z−h (wρ)

] ∣∣∣∣ ≤ zρ − wρ

2

(
1

p(ρ− 1) + 1

) 1
p

×
[

βρ(αs + 1, α + 1)
ρ

+
1

ρ(αs + α + 1)

] 1
q

×
(
|h′(wρ)|q + |h′(zρ)|q

) 1
q

,

with 1
p + 1

q = 1.

Proof. Using the Hölder’s inequality, we obtain the following:

∣∣∣∣ ∫ 1
0
[
(1− tρ)α − (tρ)α] tρ−1h′ (tρwρ + (1− tρ) zρ) dt

∣∣∣∣ ≤ ( ∫ 1
0 (t

ρ−1)pdt
) 1

p

×
( ∫ 1

0 [(1− tρ)α + (tρ)α]tρ−1|h′(tρwρ + (1− tρ)zρ)|qdt
) 1

q

.

The fact |h′| is generalized s-convex, and it can be used to obtain the following:

∣∣∣∣ ∫ 1
0
[
(1− tρ)α − (tρ)α] tρ−1h′ (tρwρ + (1− tρ) zρ) dt

∣∣∣∣ ≤ ( 1
p(ρ−1)+1

) 1
p

×
( ∫ 1

0 [(1− tρ)α + (tρ)α]tρ−1[(tρ)αs|h′(wρ)|q

+(1− tρ)αs|h′(zρ)|q]dt
) 1

q

≤
(

1
p(ρ−1)+1

) 1
p

×
(
|h′(wρ)|q

∫ 1
0 [t

ρ−1(tρ)αs(1− tρ)α + tρ−1(tρ)α(tρ)αs]dt

+|h′(zρ)|q
∫ 1

0 [t
ρ−1(1− tρ)α(1− tρ)αs

+tρ−1(tρ)α(1− tρ)αs]dt
) 1

q

=

(
1

p(ρ−1)+1

) 1
p

×
(
|h′(wρ)|q

[
βρ(αs+1,α+1)

ρ + 1
(α(s+1)+1)ρ

]
+|h′(zρ)|q

[
1

ρ(α(s+1)+1) +
βρ(α+1,αs+1)

ρ

]) 1
q

.
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Corollary 3. From Theorems 2–4, for q > 1, we obtain the following inequality:∣∣∣∣h (wρ) + h (zρ)

2
− αραΓ(α + 1)

2 (zρ − wρ)α

[
ρ Iα

w+h (zρ) +ρ Iα
z−h (wρ)

] ∣∣∣∣ ≤ min(M1, M2, M3)
(zρ − wρ)

2
,

where

M1 =

(
1

ρ(α + 1)

) q−1
q
[

βρ(αs + 1, α + 1)
ρ

+
1

((s + 1)α + 1)ρ

] 1
q

(|h′(wρ)|q + |h′(zρ)|q)
1
q ,

M2 =

(
1
ρ

) q−1
q
[

βρ(αs + 1, α + 1)
ρ

+
1

ρ(α(s + 1) + 1)

] 1
q

(|h′(wρ)|q + |h′(zρ)|q)
1
q ,

and

M3 =

(
1

1 + (ρ− 1)p

) 1
p
[

βρ(αs + 1, α + 1)
ρ

+
1

(α(s + 1) + 1)ρ

] 1
q

(|h′(wρ)|q + |h′(zρ)|q)
1
q .

3. Applications to Special Means

The applications to special means for positive real numbers w and z can be studied through the
results obtained.

1. The arithmetic mean:
A = A(w, z) = w+z

2 .
2. The logarithmic mean:

L(w, z) = z−w
log z−log w .

3. The generalized logarithmic mean:

Li(w, z) =
[

zi+1−wi+1

(z−w)(i+1)

] 1
i
; i ∈ Z \ {−1, 0}.

Applying the results in Section 2, together with the applications of means, gives the following propositions.

Proposition 1. Let i ∈ Z, |i| ≥ 2 and w, z ∈ R where 0 < w < z. For q ≥ 1, we obtain the following:∣∣∣∣A(wi, zi)− Li
i(w, z)

∣∣∣∣ ≤ (z− w)|i|

2
q−1

q +1
A

1
q (|w|q(i−1), |z|q(i−1)).

Proof. This follows from Corollary 1 (iii) when applied on h(w) = wi.

Proposition 2. Let i ∈ Z, |i| ≥ 2 and w, z ∈ R, where 0 < x < y. For q ≥ 1, we obtain the following:∣∣∣∣A(wi, zi)− Li
i(w, z)

∣∣∣∣ ≤ (z− w)|i|
2

A
1
q (|w|q(i−1), |z|q(i−1)).

Proof. This follows from Corollary 2 when applied on h(w) = wi.
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Proposition 3. Let w, z ∈ R, where 0 < w < z. For q ≥ 1, we obtain∣∣∣∣A(w−1, z−1)− L(w, z)
∣∣∣∣ ≤ (z− w)

2
q−1

q + 1
A

1
q (|w|−2q, |z|−2q).

Proof. This follows from Corollary 1 (iii) when applied on h(w) = 1
w .

Proposition 4. Let w, z ∈ R, where 0 < w < z. For q ≥ 1, we obtain∣∣∣∣A(w−1, z−1)− L(w, z)
∣∣∣∣ ≤ (z− w)

2
A

1
q (|w|−2q, |z|−2q).

Proof. This follows from Corollary 2 when applied for h(w) = 1
w .
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