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Abstract: Fractional calculus, albeit a synonym of fractional integrals and derivatives which have
two main characteristics—singularity and nonlocality—has attracted increasing interest due to its
potential applications in the real world. This mathematical concept reveals underlying principles
that govern the behavior of nature. The present paper focuses on numerical approximations to
fractional integrals and derivatives. Almost all the results in this respect are included. Existing results,
along with some remarks are summarized for the applied scientists and engineering community of
fractional calculus.
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1. Introduction

1.1. Historical Review

The primary attempt, which was recorded in history to discuss the idea of generalizing the
integer-order differentiation dn f (t)

dtn to dα f (t)
dtα with non-integer α, was contained in the correspondence of

Leibniz [1]. Some remarks were made on the possibility of considering differentials and derivatives of
order one-half. Then, the formulation for derivative of non-integer orders was considered by Euler [2]
and Fourier [3]. At the end of the 19-th century, the theory of more-or-less complete form appeared for
fractional calculus, primarily due to Liouville [4–11], Riemann [12], Grünwald [13], Letnikov [14–17],
and Marchaud [18,19].

Theoretical analysis of fractional calculus has been booming since the 20-th century. Results
in this respect are fruitful, for example, in mapping properties of fractional integration and
integro–differentiation [20], Leibniz rule for the generalized differentiation [21], formulae for fractional
integration by parts [22], and the Bernstein-type inequality for fractional integration and differentiation
operators [23,24], et al.

It is believed that the proper history of fractional calculus began in the realm of physics, with the
papers by Abel [25,26]. In those two papers the integral equation

∫ x

a

ϕ(t)dt
(x− t)µ = f (x), x > a, 0 < µ < 1, (1)

was solved in connection with the tautochrone problem. Although Abel did not intend to generalize
differentiation, the left-hand side of the integral equation leads to the fractional integral operator
of order 1 − µ. Fractional integro–differentiation in such a form was sharpened somewhat later.
It was not until the recent few decades that scholars came to realize the importance of fractional
calculus for applied sciences, such as rheology, continuum mechanics, porous media, thermodynamics,
electrodynamics, quantum mechanics, plasma dynamics, and cosmic rays [27]. Achievements in this
regard were also presented in Refs. [28–31].
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1.2. Current Situations

For the time being, the most frequently utilized fractional integrals and derivatives in applications
are the left- and right-sided Riemann–Liouville integrals [32] (fractional integrals for short),

RLD−α
a,x f (x) =

1
Γ(α)

∫ x

a

f (t)dt
(x− t)1−α

, α > 0, (2)

RLD−α
x,b f (x) =

1
Γ(α)

∫ b

x

f (t)dt
(t− x)1−α

, α > 0, (3)

the left- and right-sided Riemann-Liouville derivatives [32],

RLDα
a,x f (x) =

1
Γ(m− α)

dm

dxm

∫ x

a

f (t)dt
(x− t)α+1−m , m− 1 ≤ α < m ∈ Z+, (4)

RLDα
x,b f (x) =

(−1)m

Γ(m− α)

dm

dxm

∫ b

x

f (t)dt
(t− x)α+1−m , m− 1 ≤ α < m ∈ Z+, (5)

the left- and right-sided Caputo derivatives [32],

CDα
a,x f (x) =

1
Γ(m− α)

∫ x

a

f (m)(t)dt
(x− t)α+1−m , m− 1 ≤ α < m ∈ Z+, (6)

CDα
x,b f (x) =

(−1)m

Γ(m− α)

∫ b

x

f (m)(t)dt
(t− x)α+1−m , m− 1 ≤ α < m ∈ Z+, (7)

and Riesz derivative [33]

RZDα
x f (x) = Ψα

[
RLDα

a,x f (x) + RLDα
x,b f (x)

]
, 0 < α 6= 1, 3, 5, . . . , (8)

where Ψα = − 1
2 cos( απ

2 )
. They are the subjects of this paper. Fractional integrals and derivatives of other

kinds such as ones in [34] and the very newly defined ones in [35,36] and their approximations are
omitted here.

Fractional calculus which has two main characteristics—singularity and nonlocality from its
origin, is a generalization of the classical one to some extent. However, these two concepts are different.
First of all, fractional integral and Riemann–Liouville derivatives coincide with the integer-order ones
while Caputo derivative and Riesz derivative fail to be consistent with integer-order derivatives in
general cases. Besides, semigroup property is valid for fractional integral while is invalid for the case
with fractional derivatives. Fractional derivatives of periodic functions are not in the same form of
those in the integer-order case, either. For example, the α-th order Riemann–Liouville derivative of
sin x and cos x with α > 0 are not sin(x+ απ

2 ) and cos(x+ απ
2 ) unless one adopts the new axiom system

proposed in Ref. [37], which differs from the commonly used one. Last but not least, definite conditions
for fractional differential equations are in general different from the integer-order case. Especially,
in the case with fractional derivatives, boundary and/or initial conditions usually contain fractional
derivatives/integrals at the terminals or integer-order derivatives/integrals at points close to the
terminals [38,39]. The behavior of the solutions to fractional differential equations may also differ from
that of the solutions to the general class of difference equations presented in [40].

In light of potential applications of fractional integration and differentiation operators, there is
a substantial demand for efficient algorithms for their numerical handling. Discretizing fractional
integrals and derivatives gives a series of quadrature formulae. Different choices of nodes and
coefficients give distinct accuracies. Numerical approximations to fractional integrals and derivatives
are mainly derived from three distinct paths. Based on the polynomial interpolation, numerical
schemes can be obtained with accuracy generally depending on the order of integration and
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differentiation, for example, the L1, L2, and L2C methods. Convolution quadratures, which preserve
properties of fractional integrals and derivatives can be viewed as numerical evaluations of fractional
integrals and derivatives with integer-order accuracy. For instance, the fractional multistep methods,
among which the fractional backward difference formulae are mostly used, are of integer-order
accuracy independent of the order of integration and differentiation. These methods can be verified
through Fourier analysis. So do the Grünwald-Letnikov type approximations and fractional centered
difference methods. Reformulating fractional integrals and derivatives as infinite integrals of solutions
to integer-order ordinary differential equations, the diffusive approximation for fractional calculus can
be obtained. Those numerical approximations are discussed in the coming sections. Without specific
clarification, the introduced methods are in the setting of uniformed mesh with h = b−a

N , N ∈ Z+,
and xj = a + jh, j = 0, 1, 2, . . . , N.

2. Numerical Approximations to Fractional Integral

The weak singularities in Equations (2) and (3) often make it difficult to calculate fractional
integrals directly. In the following, several kinds of numerical methods are introduced.

2.1. Numerical Methods Based on Polynomial Interpolation

Assume that f (x) is suitably smooth on [a, b]. Then the α-th order fractional integral of f (x) at
x = xj with 1 ≤ j ≤ N can be expressed as

[
RLD−α

a,x f (x)
]

x=xj
=

1
Γ(α)

j−1

∑
k=0

∫ xk+1

xk

(xj − t)α−1 f (t)dt. (9)

It is reasonable to utilize an interpolate function f̃ (x) to approximate f (x) on each subinterval,
such that the integral

∫ xk+1
xk

(xj − t)α−1 f̃ (t)dt can be calculated exactly. This idea yields a series of
numerical formulae in the form

[
RLD−α

a,x f (x)
]

x=xj
≈

j

∑
k=0

ωk f (xk), 1 ≤ j ≤ N, (10)

where ωk (k = 0, 1, . . . , j) are the corresponding coefficients. To better understand this method,
we retrospect some specific formulae with their brief derivations.

If f (x) ∈ C[a, b] on the right-hand side of Equation (9) is approximated by a piecewise
constant function

f̃ (x) = f (xk), x ∈ [xk, xk+1), 0 ≤ k ≤ j− 1, (11)

then there holds [
RLD−α

a,x f (x)
]

x=xj
≈ 1

Γ(α)

j−1

∑
k=0

∫ xk+1

xk

(xj − t)α−1 f (xk)dt. (12)

This yields the left fractional rectangular formula [38]

[
RLD−α

a,x f (x)
]

x=xj
≈

j−1

∑
k=0

bj−k−1 f (xk), (13)

where the convolution coefficients bk (0 ≤ k ≤ j− 1) are given by

bk =
1

Γ(α)

∫ xk+1

xk

(xj − t)α−1dt =
hα

Γ(α + 1)
[(k + 1)α − kα] . (14)
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Similarly, if the function f (x) on the right-hand side of Equation (9) is replaced by

f̃ (x) = f (xk+1), x ∈ (xk, xk+1], (15)

then we have the right fractional rectangular formula [38]

[
RLD−α

a,x f (x)
]

x=xj
≈

j−1

∑
k=0

bj−k−1 f (xk+1), (16)

with bk (0 ≤ k ≤ j− 1) given by Equation (14). Based on the left and right rectangular formulae,
the weighted fractional rectangular formula [38] yields

[
RLD−α

a,x f (x)
]

x=xj
≈

j−1

∑
k=0

bj−k−1 [θ f (xk) + (1− θ) f (xk+1)] , 0 ≤ θ ≤ 1, (17)

or the similar form

[
RLD−α

a,x f (x)
]

x=xj
≈

j−1

∑
k=0

bj−k−1 f (xk + (1− θ)h) , 0 ≤ θ ≤ 1. (18)

Remark 1. (I) The left fractional rectangular formula (13) and the right fractional rectangular formula (16)
will be recovered if θ = 1 and θ = 0, respectively. In addition, the weighted rectangular formula (17) (or (18)) is
reduced to the composite trapezoidal formula (or midpoint formula) [41] for the classical integral provided that
α = 1 and θ = 1

2 .
(II) Leading terms of remainders for left- and right-rectangular formulae generally can not be canceled out by
introducing weights as the remainders depend on f ′(ξk)(t− xk), 0 ≤ k ≤ j− 1 and f ′(ηk+1)(t− xk+1), 0 ≤
k ≤ j− 1, respectively. Therefore, the accuracy of fractional rectangular formulae are of first order accuracy for
all 0 ≤ θ ≤ 1. And all the above fractional rectangular formulae are of the first order accuracy.

Assume that f (x) ∈ C[a, b]. Replacing f (x) in Equation (9) with the piecewise linear polynomial

f̃ (x) =
xk+1 − x
xk+1 − xk

f (xk) +
x− xk

xk+1 − xk
f (xk+1), x ∈ [xk, xk+1], (19)

we obtain the fractional trapezoidal formula [38]

[
RLD−α

a,x f (x)
]

x=xj
≈ hα

Γ(α + 2)

j

∑
k=0

ak,j f (xk). (20)

Here the coefficients ak,j (0 ≤ k ≤ j) are given by
a0,j =(j− 1)α+1 − (j− 1− α)jα,

ak,j =(j− k + 1)α+1 − 2(j− k)α+1 + (j− k− 1)α+1, 1 ≤ k ≤ j− 1,

aj,j =1.

(21)

Suppose that f (x) ∈ C[a, b]. For 0 ≤ k ≤ j− 1, let {lk,i(x)} be Lagrangian functions defined on
the grid points {xk+s, s ∈ S} with S = {0, 1

2 , 1}, which are given by

lk,i(x) = ∏
s∈S, s 6=i

x− xk+s
xk+i − xk+s

, i ∈ S. (22)
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Denote xk+ 1
2
=

xk+xk+1
2 and utilize the piecewise quadratic polynomial

f̃ (x) = ∑
i∈S

lk,i(x) f (xk+i), x ∈ [xk, xk+1]. (23)

Then we obtain the following fractional Simpson’s formula [38]

[
RLD−α

a,x f (x)
]

x=xj
≈ hα

Γ(α + 3)

[
j

∑
k=0

ck,j f (xk) +
j−1

∑
k=0

ĉk,j f (xk+ 1
2
)

]
, (24)

in which

ĉk,j =4(α + 2)
[
(j− k)1+α + (j− k− 1)1+α

]
− 8

[
(j− k)2+α − (j− k− 1)2+α

]
, 0 ≤ k ≤ j− 1, (25)

and 

c0,j =4
[

j2+α − (j− 1)2+α
]
− (α + 2)

[
3j1+α + (j− 1)1+α

]
+ (α + 2)(α + 1)jα,

ck,j =− (α + 2)
[
(j− k + 1)1+α + (j− k− 1)1+α + 6(j− k)1+α

]
+ 4

[
(j− k + 1)2+α − (j− k− 1)2+α

]
, 1 ≤ k ≤ j− 1,

cj,j =2− α.

(26)

Assume that f (x) ∈ C[a, b]. Let f (x) be approximated by the following r-th degree polynomial
on the grid points

{
xk = x(k)0 , x(k)1 , . . . , x(k)r−1, x(k)r = xk+1

}
,

pk,r(x) =
r

∑
i=0

lk,i(x) f (x(k)i ), x ∈ [xk, xk+1], (27)

with

lk,i(x) =
r

∏
n=0,
n 6=i

x− x(k)n

x(k)i − x(k)n

. (28)

Then we obtain the fractional Newton–Cotes formula [38]

[
RLD−α

a,x f (x)
]

x=xj
≈
[

RLD−α
a,x pk,r(x)

]
x=xj

=
j−1

∑
k=0

r

∑
i=0

A(k)
i,j f (x(k)i ), (29)

with the coefficients being calculated by

A(k)
i,j =

1
Γ(α)

∫ xk+1

xk

(xj − t)α−1lk,i(t)dt. (30)

Remark 2. It has been demonstrated in Ref. [38] that the error estimate of Equation (29) is O(hr+1) provided
that f ∈ Cr+1([a, b]). The error estimate does not equal that for the classical one, which is O(hr+2).
This inconsistency may be due to the asymmetry of the weakly singular kernel (xj − x)α−1, which leads

to the non-symmetry of the remainder term (xj − x)α−1
r

∏
i=0

(x− x(k)i ) in the integrand. Note that formulae (13),

(16), (20), and (24) are special cases of Equation (29). Therefore, they are of the first, second, and third-order
accuracy, respectively.
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Consider the function f (x) in the Sobolev space Hr[a, b] with r ≥ 1 being an integer. Generalizing
the above approaches, we can derive spectral approximations [42]. For f (x) defined on [−1, 1],
we consider the interpolation function

pN(x) =
N

∑
j=0

p̃u,v
j Pu,v

j (x), (31)

based on the Jacobi polynomials {Pu,v
j (x)}N

j=0 (u, v > −1). Here

p̃u,v
j =

1
δu,v

j

N

∑
k=0

f (xk)Pu,v
j (xk)ωk, j = 0, 1, . . . , N, (32)

with {xk}N
k=0 and {ωk}N

k=0 being the collocation points and the corresponding quadrature weights [43].
The constants δu,v

j are given by

δu,v
j =

{
γu,v

j , j = 0, 1, . . . , N − 1,

(2 + u+v+1
N )γu,v

N , j = N,
(33)

with γu,v
j being defined by

γu,v
j =

2u+v+1Γ(j + u + 1)Γ(j + v + 1)
(2j + u + v + 1)j!Γ(j + u + v + 1)

. (34)

In this case, we have the following spectral approximation based on Jacobi polynomials

RLD−α
−1,x f (x) ≈ RLD−α

−1,x pN(x) =
N

∑
j=0

p̃u,v
j P̂u,v,α

j (x), x ∈ [−1, 1]. (35)

Here P̂u,v,α
j (x) = 1

Γ(α)

∫ x
−1(x− t)α−1Pu,v

j (t)dt can be explicitly calculated by the recurrence formula

P̂u,v,α
0 (x) =

(x + 1)α

Γ(α + 1)
,

P̂u,v,α
1 (x) =

u + v + 2
2

(
x(x + 1)α

Γ(α + 1)
− α(x + 1)α+1

Γ(α + 2)

)
+

u− v
2

P̂u,v,α
0 (x),

P̂u,v,α
j+1 (x) =

Au,v
j x− Bu,v

j − αAu,v
j B̂u,v

j

1 + αAu,v
j Ĉu,v

j

P̂u,v,α
j (x)

+
α
(

Âu,v
j Pu,v

j−1(−1) + B̂u,v
j Pu,v

j (−1) + Ĉu,v
j Pu,v

j+1(−1)
)

Γ(α + 1)(1 + αAu,v
j Ĉu,v

j )
Au,v

j (x + 1)α

−
Cu,v

j + αAu,v
j Âu,v

j

1 + αAu,v
j Ĉu,v

j

P̂u,v,α
j−1 (x), j ≥ 1,

(36)
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which follows from the three-term recurrence relation of the Jacobi polynomials. Here the coefficients
are given by 

Au,v
j =

(2j + u + v + 1)(2j + u + v + 2)
2(j + 1)(j + u + v + 1)

,

Bu,v
j =

(v2 − u2)(2j + u + v + 1)
2(j + 1)(j + u + v + 1)(2j + u + v)

,

Cu,v
j =

(j + u)(j + v)(2j + u + v + 2)
(j + 1)(j + u + v + 1)(2j + u + v)

,

(37)

and 

Âu,v
j =

−2(j + u)(j + v)
(j + u + v)(2j + u + v)(2j + u + v + 1)

,

B̂u,v
j =

2(u− v)
(2j + u + v)(2j + u + v + 2)

,

Ĉu,v
j =

2(j + u + v + 1)
(2j + u + v + 1)(2j + u + v + 2)

,

(38)

and Âu,v
j = 0 if j = 1. For f (x) defined on an arbitrary interval [a, b], it follows from the affine

transformation x̂ = 2x−a−b
b−a ∈ [−1, 1] that

RLD−α
a,x f (x) ≈

(
b− a

2

)α

RLD−α
a,x̂ pN(x̂) =

(
b− a

2

)α N

∑
j=0

p̃u,v
j P̂u,v,α

j (x̂). (39)

Let u = v = 0. Then the Jacobi polynomials {Pu,v
j }

N
j=0 reduce to the Legendre polynomials

{Lj(x)}N
j=0. Consequently, numerical scheme (35) becomes the spectral approximation based on

Legendre polynomials

RLD−α
−1,x f (x) ≈

N

∑
j=0

l̃j L̂α
j (x), x ∈ [−1, 1]. (40)

Here the coefficients are given by

l̃j =
1
γ̄j

N

∑
k=0

f (xk)Lj(xk)ωk, (41)

with γ̄j =
2

2j+1 for 0 ≤ j ≤ N − 1, γ̄N = 2
N , and {ωk}N

k=0 being the corresponding quadrature weights.

Recurrence formula for L̂α
j (x) is in the form



L̂α
0(x) =

(x + 1)α

Γ(α + 1)
,

L̂α
1(x) =

x(x + 1)α

Γ(α + 1)
− α(x + 1)α+1

Γ(α + 2)
,

L̂α
j+1(x) =

(2j + 1)xL̂α
j (x)− (j− α)L̂α

j−1(x)

j + 1 + α
, j ≥ 1.

(42)

Correspondingly, for the case with arbitrary interval [a, b], we also have

RLD−α
a,x f (x) ≈

(
b− a

2

)α n

∑
j=0

l̃j L̂α
j (x̂), x̂ =

2x− a− b
b− a

. (43)
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Let u = v = − 1
2 in Equation (39). We obtain the spectral approximation based on

Chebyshev polynomials

RLD−α
a,x f (x) ≈

(
b− a

2

)α N

∑
j=0

t̃jT̂α
j (x̂), x̂ =

2x− a− b
b− a

∈ [−1, 1], (44)

which follows from the relation P−
1
2 ,− 1

2
j (x) =

Γ(j+ 1
2 )

j!
√

π
Tj(x) with {Tj(x)}N

j=0 being the Chebyshev

polynomials. Here T̂α
j (x) = 1

Γ(α)

∫ x
−1(x− s)α−1Tj(s)ds can be computed by the recurrence formula



T̂α
0 (x) =

(x + 1)α

Γ(α + 1)
,

T̂α
1 (x) =

x(x + 1)α

Γ(α + 1)
− α(x + 1)α+1

Γ(α + 2)
,

T̂α
2 (x) =

4x
2 + α

T̂α
1 (x)− 2

2 + α
T̂α

0 (x) +
α(x + 1)α

(2 + α)Γ(α + 1)
,

T̂α
j+1(x) =

2(j + 1)x
j + 1 + α

T̂α
j (x)− (j + 1)(j− 1− α)

(j + 1 + α)(j− 1)
T̂α

j−1(x)

+
2(−1)jα(x + 1)α

Γ(α + 1)(j + 1 + α)(j− 1)
, j ≥ 2.

(45)

The coefficients t̃j (0 ≤ j ≤ N) are determined by

t̃j =
1
σj

N

∑
k=0

f (xk)Tj(xk)ωk, (46)

with

σj =

 γ
− 1

2 ,− 1
2

j , j = 0, 1, . . . , N − 1,

2γ
− 1

2 ,− 1
2

N , j = N,
(47)

and {ωk}N
k=0 being the corresponding quadrature weights.

The above spectral approximations can be rewritten in matrix forms. For differential matrices
for fractional integrals and derivatives, see Refs. [42,44] for more details. Here we present numerical
examples given by Ref. [42] to verify the spectral accuracy of spectral approximations.

Example 1. Let f (x) = xµ, x ∈ [0, 1]. Apply scheme (39) to evaluating its fractional integral. Table 1 shows
the absolute maximum errors at the Jacobi–Gauss–Lobatto points. The spectral accuracy is visible.

Table 1. The absolute errors for Example 1.

u = v = 0, µ = 3.5
n α = 0.2 α = 0.5 α = 0.8 α = 1.2 α = 1.5 α = 1.8

10 4.57×10−8 3.57×10−8 1.78×10−8 5.18×10−9 1.67×10−9 6.04×10−10

20 2.89×10−10 1.52×10−10 5.37×10−11 9.88×10−12 2.54×10−12 1.31×10−12

40 1.82×10−12 6.36×10−13 1.52×10−13 1.74×10−14 3.68×10−15 2.77×10−15

80 1.12×10−14 2.59×10−15 4.11×10−16 1.67×10−16 1.67×10−16 1.18×10−16

u = v = − 1
2 , µ = 3.5

n α = 0.2 α = 0.5 α = 0.8 α = 1.2 α = 1.5 α = 1.8

10 5.49×10−8 4.59×10−8 2.54×10−8 8.33×10−9 3.09×10−9 1.67×10−9

20 3.08×10−10 1.96×10−10 7.62×10−11 1.70×10−11 4.97×10−12 2.93×10−12

40 1.81×10−12 7.79×10−13 2.14×10−13 3.23×10−14 8.09×10−15 5.61×10−15

80 1.06×10−14 3.05×10−15 5.66×10−16 3.33×10−16 1.80×10−16 1.73×10−16
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Example 2. Let f (x) = sin x, x ∈ [0, 1]. Utilize scheme (39) to evaluate its fractional integral. Table 2
displays the absolute maximum errors of the spectral approximations to the fractional integral with u = v = 0
and u = v = − 1

2 . We can observe that satisfactory results are obtained as well.

Table 2. The absolute errors for Example 2.

u = v = 0
n α = 0.2 α = 0.5 α = 0.8 α = 1.2 α = 1.5 α = 1.8

4 4.46×10−6 5.40×10−6 3.88×10−6 1.71×10−6 6.94×10−7 2.90×10−7

8 4.79×10−12 4.72×10−12 2.73×10−12 8.94×10−13 2.88×10−13 6.96×10−14

16 6.66×10−16 2.22×10−16 2.22×10−16 1.67×10−16 1.67×10−16 8.33×10−17

u = v = − 1
2

n α = 0.2 α = 0.5 α = 0.8 α = 1.2 α = 1.5 α = 1.8

4 6.08×10−6 7.91×10−6 6.26×10−6 3.41×10−6 1.87×10−6 1.27×10−6

8 6.58×10−12 6.63×10−12 3.96×10−12 1.38×10−12 4.97×10−13 1.36×10−13

16 3.33×10−16 3.33×10−16 2.22×10−16 5.55×10−17 2.22×10−16 5.55×10−17

2.2. Fractional Linear Multistep Method

In Ref. [45], the convolution quadrature

Iα
h f (x) = hα

n

∑
j=0

ω`,n−j f (jh) + hα
s

∑
j=0

wn,j f (jh), x = nh, (48)

is utilized to evaluate fractional integrals (with α > 0) and derivatives (with α < 0).
Here the convolution quadrature weights ω`,j (j ≥ 0) and the starting quadrature weights wn,j (n ≥
0, j = 0, . . . , s; s fixed) do not depend on h.

On the basis of Dahlquist’s theorem on linear multistep methods [46], the proposed convolution
quadrature was proved to be convergent of order ` if and only if it is stable and consistent of order `.
An easy way of obtaining such a convolution quadrature is by using an `-th order linear multistep
method to the power α, which gives fractional linear multistep methods. The widely used one is
fractional backward difference formula (the fractional BDF), whose implementations are as follows.

Theorem 1 ([45,47,48]). The convolution quadrature (48) approximates the fractional integral RLD−α
0.x f (x)

with accuracy order O(h`), i.e.,

RLD−α
0,x f (x) = hα

n

∑
j=0

ω`,n−j f (jh) + hα
s

∑
j=0

wn,j f (jh) +O(h`), x = a + nh, (49)

where s is a fixed integer with s ≤ n. Here the convolution coefficients ω`,j are respectively those of the Taylor
series expansions of the corresponding generating functions

W(α)
` (z) =

(
`

∑
k=1

1
k
(1− z)k

)α

=
∞

∑
j=0

ω`,jzj, |z| < 1, (50)

with ` being the order of consistency. Technically all the coefficients ω`,j can be computed by using any
implementation of the fast Fourier transform. For the starting weights wn,j, we can consider the fixed s = 0.
In this case, we obtain the Lubich formulae for fractional integrals

RLD−α
0,x f (x) = hα

n

∑
j=0

ω`,n−j f (jh) +O(h`), x = a + nh, (51)
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when f (0) = 0. For s 6= 0, the coefficients wn,j can be constructed such that Equation (49) exactly holds for
power functions. Therefore, we recover

s

∑
j=0

wn,j jq =
Γ(q + 1)

Γ(q + α + 1)
nq+α −

n

∑
j=0

ω`,n−j jq, q = 0, . . . , s, (52)

and it makes sense to choose s = `− 1.

In the case with the lower terminal a 6= 0, we can readily adopt affine transform to modify the
fractional linear multistep methods.

Remark 3. Apart from the choice given by Equation (50), which corresponds to the fractional BDF, there are
alternatives for the generating functions of the convolution coefficients. When we choose

Wα
2 (z) =

(
1
2

1 + z
1− z

)α

(53)

as the generating function, the fractional trapezoidal rule with second order accuracy for α ≥ 0 is obtained.
Let γi (i = 0, 1, 2, . . .) denote the coefficients of

∞

∑
i=0

γi(1− z)i =

(
ln z

z− 1

)−α

, (54)

and set
W̃α

` = (1− z)−α
[
γ0 + γ1(1− z) + · · ·+ γ`−1(1− z)`−1

]
, ` = 1, 2, . . . (55)

Then we obtain the generating function for the coefficients of the generalized Newton-Gregory formulae, which
is convergent of order `. Direct calculation gives γ0 = 1 and γ1 = − α

2 . Then the corresponding generating
function for the second order generalized Newton–Gregory formula is given by

W̃α
2 = (1− z)−α

[
1− α

2
(1− z)

]
. (56)

More details for generating functions can be found in Refs. [45,49–51].

2.3. Diffusive Approximation

The above numerical methods may result in expensive computational costs. To eliminate this
deficiency, the diffusive approximation reformulates the model containing the fractional integral as a
system of differential equations.

Recalling the relations

Γ(α) =
∫ ∞

0
e−zzα−1dz, (57)

and
Γ(1− α)Γ(α) =

π

sin(πα)
, (58)

the fractional integral with 0 < α < 1 can be rewritten as [52]

RLD−α
0,x f (x) =

sin(πα)

π

∫ x

0

[∫ ∞

0
e−z

(
z

x− t

)1−α dz
z

]
f (t)dt. (59)

Define the variable transformation z = (x− t)ω2, ω ≥ 0. The Fubini’s Theorem yields

RLD−α
0,x f (x) =

2 sin(πα)

π

∫ ∞

0
ω1−2α

(∫ x

0
e−(x−t)ω2

f (t)dt
)

dω. (60)
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Introducing the auxiliary function

φ(ω, x) =
2 sin(πα)

π
ω1−2α

∫ x

0
e−(x−t)ω2

f (t)dt, (61)

we have

RLD−α
0,x f (x) =

∫ ∞

0
φ(ω, x)dω, 0 < α < 1. (62)

It follows from the definition of φ(ω, x) that the auxiliary function satisfies
∂

∂x
φ(ω, x) =

2 sin(πα)

π
ω1−2α f (x)−ω2φ(ω, x),

φ(ω, 0) = 0.
(63)

In this case, evaluating Riemann–Liouville integral RLD−α
0,x f (x) consists of two steps: solving the

first order differential equation (63), and computing the infinite integral in Equation (62) via suitable
quadratures.

Instead of utilizing the properties of the Gamma function, Chatterjee adopted a popular integral
representation [53,54]

xα−1 =
1

Γ(1− α)

∫ ∞

0
e−zxz−αdz. (64)

Consequently, the Fubini’s Theorem gives

RLD−α
0,x f (x) =

1
Γ(α)

1
Γ(1− α)

∫ ∞

0

(∫ x

0
e−z(x−t) f (t)dt

)
dz
zα

=
sin(πα)

π

∫ ∞

0
g(z, x)z−αdz,

(65)

where g(z, x) is defined as

g(z, x) =
∫ x

0
e−z(x−t) f (t)dt. (66)

In order to generate nonreflecting boundary conditions [55] and accelerate convolutions with the
heat kernel [56], literatures such as Ref. [57] usually recognize

g(z, x) = e−z∆xg(z, x− ∆x) + Ψ(z, x, ∆x), (67)

where
Ψ(z, x, ∆x) =

∫ x

x−∆x
e−z(x−t) f (t)dt. (68)

Alternatively, other literatures have regarded g(z, x) as the solution of a first order ordinary
differential (ODE) equation [52,53,58,59],

dg(z, x)
dx

= −zg(z, x) + f (x), g(z, 0) = 0. (69)

Any approximate method for ODEs can be used to obtain g(z, x), x = ∆x, 2∆x, . . ., in an amount
of work that is linear.

The principle difficulty of implementing both approaches lies in the discretization of the integrals
on the right-hand side of Equations (62) and (65). The choices of quadrature nodes and corresponding
weights have been investigated in several literatures, see Refs. [57,60,61] for more details.
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3. Numerical Approximations to Fractional Derivatives

We introduce the existing numerical evaluations to Caputo, Riemann–Liouville, and Riesz
derivatives in this section. The basic ideas of these methods are presented as well.

3.1. Numerical Caputo Differentiation

Caputo derivatives in Equations (6) and (7) can be viewed as Riemann–Liouville fractional
integrals of integer-order derivatives. As a result, most of the numerical evaluations of Caputo
derivatives follow from those of fractional integrals. We derive numerical evaluations of the Caputo
derivative as follows.

3.1.1. L1, L2, and L2C Methods

The well-known L1 method was originally introduced in Ref. [62] to evaluate Riemann–Liouville
derivative with 0 < α < 1, which equivalently reads as

RLDα
a,x f (x) =

(x− a)−α

Γ(1− α)
f (a) +

1
Γ(1− α)

∫ x

a
(x− t)−α f ′(t)dt. (70)

Note that the second term on the right-hand side happens to be Caputo derivative with 0 < α < 1.
That is the reason why we introduce the L1 method when considering numerical approximations to
the Caputo derivative.

Let f (x) ∈ C2[a, b]. On the setting of uniform grids {xk}N
k=0, utilizing the constant f (xk+1)− f (xk)

h
to approximate f ′(x) on each interval [xk, xk+1] yields the following L1 method on uniform grids for
Caputo derivative [62]

[
CDα

a,x f (x)
]

x=xj
=

1
Γ(1− α)

j−1

∑
k=0

∫ xk+1

xk

(xj − t)−α f (xk+1)− f (xk)

h
dt +O(h2−α)

=
j−1

∑
k=0

bj−k−1 [ f (xk+1)− f (xk)] +O(h2−α), 0 < α < 1, 1 ≤ j ≤ N.

(71)

Here the coefficients are given by

bk =
h−α

Γ(2− α)

[
(k + 1)1−α − k1−α

]
, 0 ≤ k ≤ j− 1. (72)

Normally, the L1 method can lead to unconditionally stable algorithms [63–69]. Therefore, it is
frequently used in the discretization of time fractional differential equations. Since the proof for this
scheme available is not very direct or a little cryptic, it is necessary to present clear proof of its truncated
error for reference as it is mostly used.

Theorem 2. Let 0 < α < 1 and f (x) ∈ C2[a, b]. Denote by

[δα
x f (x)]x=xj

=
j−1

∑
k=0

bj−k−1 [ f (xk+1)− f (xk)] , 1 ≤ j ≤ N. (73)

Then it holds that ∣∣∣[δα
x f (x)]x=xj

−
[

CDα
a,x f (x)

]
x=xj

∣∣∣ ≤ Ch2−α, (74)

where C is a positive constant given by

C =
1

Γ(2− α)

[
1− α

12
+

22−α

2− α
− (2−α + 1)

]
max

x0≤x≤xj
| f ′′(x)|. (75)
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Proof. Denote

A =
j−1

∑
k=0

f (xk+1)− f (xk)

h

∫ xk+1

xk

dt
(xj − t)α

−
∫ xj

x0

f ′(t)
(xj − t)α

dt. (76)

Then it immediately follows that

|A|
Γ(1− α)

=

∣∣∣∣ j−1

∑
k=0

bj−k−1 [ f (xk+1)− f (xk)]−
[

CDα
a,x f (x)

]
x=xj

∣∣∣∣. (77)

Using the Taylor expansion with integral remainder, we have for t ∈ [xk, xk+1],

f ′(t)− f (xk+1)− f (xk)

h
=

1
h

[∫ t

xk

f ′′(s)(s− xk)ds−
∫ xk+1

t
f ′′(s)(xk+1 − s)ds

]
, (78)

which yields

A =
j−1

∑
k=0

∫ xk+1

xk

[
f ′(t)− f (xk+1)− f (xk)

h

]
(xj − t)−αdt

=
1
h

j−1

∑
k=0

∫ xk+1

xk

[∫ t

xk

f ′′(s)(s− xk)ds−
∫ xk+1

t
f ′′(s)(xk+1 − s)ds

]
dt

(xj − t)α
.

(79)

Exchanging the order of integration gives

A =
1
h

j−1

∑
k=0

∫ xk+1

xk

[∫ t

xk

f ′′(s)(s− xk)ds−
∫ xk+1

t
f ′′(s)(xk+1 − s)ds

]
dt

(xj − t)α

=
1
h

j−1

∑
k=0

[∫ xk+1

xk

f ′′(s)(s− xk)
∫ xk+1

s
(xj − t)−αdtds−

∫ xk+1

xk

f ′′(s)(xk+1 − s)
∫ s

xk

(xj − t)−αdtds
]

=
1

1− α

j−1

∑
k=0

[ ∫ xk+1

xk

f ′′(s)
s− xk

h

[
(xj − s)1−α − (xj − xk+1)

1−α
]

ds

−
∫ xk+1

xk

f ′′(s)
xk+1 − s

h

[
(xj − xk)

1−α − (xj − s)1−α ]ds
]

=
1

1− α

j−1

∑
k=0

∫ xk+1

xk

f ′′(s)
{
(xj − s)1−α −

[
s− xk

h(xj − xk+1)α−1 +
xk+1 − s

h(xj − xk)α−1

]}
ds.

(80)

In the following, we show that when 0 < α < 1,

∫ xk+1

xk

{
(xj − s)1−α −

[
s− xk

h(xj − xk+1)α−1 +
xk+1 − s

h(xj − xk)α−1

]}
ds ≥ 0 (81)

for 0 ≤ k ≤ j− 1, and

j−1

∑
k=0

∫ xk+1

xk

{
(xj − s)1−α −

[
s− xk

h(xj − xk+1)α−1 +
xk+1 − s

h(xj − xk)α−1

]}
ds < +∞. (82)

Denote g(s) = (xj − s)1−α. Then it holds for any s ∈ (xk, xk+1) that

g(s)−
[

s− xk
h

g(xk+1) +
xk+1 − s

h
g(xk)

]
=

(1− α)(−α)(s− xk)(s− xk+1)

2(xj − ξk)α+1 ≥ 0, (83)
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with certain ξk ∈ (xk, xk+1). As a result, inequality (81) holds. For the inequality (82), one has

j−3

∑
k=0

∫ xk+1

xk

{
g(s)−

[
s− xk

h
g(xk+1) +

xk+1 − s
h

g(xk)

]}
ds

=
j−3

∑
k=0

∫ xk+1

xk

α(1− α)(s− xk)(xk+1 − s)
2(xj − ξk)α+1 ds

≤α(1− α)

2

j−3

∑
k=0

(xj − xk+1)
−α−1

∫ xk+1

xk

(s− xk)(xk+1 − s)ds

≤ h2

12
α(1− α)

j−3

∑
k=0

∫ xk+2

xk+1

(xj − s)−α−1ds

≤1− α

12
h2−α,

(84)

and
j−1

∑
k=j−2

∫ xk+1

xk

{
g(s)−

[
s− xk

h
g(xk+1) +

xk+1 − s
h

g(xk)

]}
ds

=
∫ xj

xj−2

g(s)ds−
[ g(xj−2)

2
+ g(xj−1) +

g(xj)

2

]
h

=
∫ xj

xj−2

g(s)ds−
[ g(xj−2)

2
+ g(xj−1)

]
h

=
∫ xj

xj−2

(xj − s)1−αds−
[
(xj − xj−2)

1−α

2
+ (xj − xj−1)

1−α

]
h

=

[
22−α

2− α
− (2−α + 1)

]
h2−α.

(85)

The above two equalities yield that Equation (82) holds.
Combining the above analysis, one has

0 ≤
j−1

∑
k=0

∫ xk+1

xk

{
(xj − s)1−α −

[
s− xk

h(xj − xk+1)α−1 +
xk+1 − s

h(xj − xk)α−1

]}
ds

≤
[

1− α

12
+

22−α

2− α
− (2−α + 1)

]
h2−α.

(86)

Inserting the above estimate into Equation (80) gives

|A| ≤ 1
1− α

[
1− α

12
+

22−α

2− α
− (2−α + 1)

]
max

x0≤x≤xj
| f ′′(x)|h2−α. (87)

All this ends the proof.

Remark 4. The idea of proving Theorem 2 is borrowed from Ref. [70] where the case with α ∈ (1, 2) was
considered. Such an estimate was also considered in [71].
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Let {x̃i} be any division of [a, b] with a = x̃0 < x̃1 < . . . < x̃n−1 < x̃N = b. Then the classical L1
method is generalized into the L1 method on nonuniform grids for Caputo derivative [72]

[
CDα

a,x f (x)
]

x=x̃j
=

j−1

∑
k=0

bj
k+1 [ f (x̃k+1)− f (x̃k)] +O(h̃2−α

max), (88)

provided that
max

0≤k≤j−1
h̃k

min
0≤k≤j−1

h̃k
≤ C with C being a positive constant. Here h̃k = x̃k+1 − x̃k, h̃max = max

0≤k≤j−1
h̃k,

and the coefficients are given by

bj
k+1 =

1

Γ(2− α)h̃k

[
(x̃j − x̃k)

1−α − (x̃j − x̃k+1)
1−α
]

. (89)

In the special case of nonuniform grids with x̃0 = x0, x̃j = xj− 1
2
=

xj+xj−1
2 , j = 1, 2, . . ., scheme (88)

is reduced to

[
CDα

a,x f (x)
]

x=x̃j+1
= b0 f (x̃j+1)−

j

∑
k=1

(bj−k − bj−k+1) f (x̃k)− Bj f (x̃0) +O(h2−α). (90)

Here the coefficients are given by
bk =

(k + 1)1−α − k1−α

Γ(2− α)hα
, 0 ≤ k ≤ j,

Bj =
2
(

j + 1
2

)1−α
− 2j1−α

Γ(2− α)hα
, 0 ≤ j ≤ N.

(91)

Replacing f (x̃k) = f ( xk−1+xk
2 ) with f (xk)+ f (xk−1)

2 yields the following modified L1 method for
Caputo derivative [38]

[
CDα

a,x f (x)
]

x=x
j+ 1

2

=− 1
2

j

∑
k=1

(bj−k − bj−k+1) [ f (xk−1) + f (xk)]

+
b0

2
[

f (xj+1) + f (xj)
]
− Bj f (x0) +O(h2−α).

(92)

Remark 5. (I) The modified L1 method (92) is useful to obtain the Crank–Nicolson scheme for the time-fractional
subdiffusion equation [73,74], which can be regarded as a natural extension of the classical Crank–Nicolson
scheme [75].
(II) The (weak) singularity makes it difficult to evaluate fractional derivatives. In this case, approximations such
as Equations (88) and (92) on nonuniform meshes or graded meshes can be utilized. One can refer to [72,76,77]
for more details in this respect.

For the case with 1 < α < 2 and the lower terminal a = 0, there holds

[
CDα

0,x f (x)
]

x=xj
=

1
Γ(2− α)

j−1

∑
k=0

∫ xk+1

xk

t1−α f ′′(xj − t)dt. (93)

Suppose that f (x) ∈ C3[a, b]. Utilizing the central difference scheme

f (xj − xk+1)− 2 f (xj − xk) + f (xj − xk−1)

h2 , (94)
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to approximate f ′′(xj − t) on each interval [xk, xk+1], we have the following L2 method for Caputo
derivative [62] [

CDα
0,x f (x)

]
x=xj

=
1

Γ(3− α)hα

j

∑
k=−1

Wk f (xj−k) +O(h3−α), (95)

in which 

W−1 = 1, W0 = 22−α − 3,

Wk =
[
(k + 2)2−α − 3(k + 1)2−α + 3k2−α − (k− 1)2−α

]
, 1 ≤ k ≤ j− 2,

Wj−1 = −2j2−α + 3(j− 1)2−α − (j− 2)2−α,

Wj = j2−α − (j− 1)2−α.

(96)

In Ref. [78], the integral
∫ xk+1

xk
t1−α f ′′(xj − t)dt was evaluated in a more symmetric form. For t ∈

[xk−1, xk], if we replace f ′′(xj − t) with the difference

f (xj − xk+2)− f (xj − xk+1) + f (xj − xk−1)− f (xj − xk)

2h2 , (97)

then the L2C method for Caputo derivative

[
CDα

0,x f (x)
]

x=xj
=

1
2Γ(3− α)hα

j+1

∑
k=−1

Ŵk f (xj−k) +O(h3−α) (98)

is obtained. Here the coefficients are given by

Ŵ−1 = 1, Ŵ0 = 22−α − 2, Ŵ1 = 32−α − 23−α,

Ŵk =
[
(k + 2)2−α − 2(k + 1)2−α + 2(k− 1)2−α − (k− 2)2−α

]
, 2 ≤ k ≤ j− 2,

Ŵj−1 = 2(j− 2)2−α − j2−α − (j− 3)2−α,

Ŵj = 2(j− 1)2−α − j2−α − (j− 2)2−α,

Ŵj+1 = j2−α − (j− 1)2−α.

(99)

Note that in the above two schemes the value of f (x−1) is needed. We can set f (x−1) = f (x1)

when the condition f ′(0) = 0 is met. For the case with lower terminal a 6= 0, we can utilize affine
transformation before applying the L2 and L2C methods.

Remark 6. The L2 and L2C methods reduce to the backward difference method and the central difference method
for the first order derivative, respectively, when α = 1. If α = 2, the L2 method reduces to the central difference
method for the second order derivative and the L2C method reduces to

d2 f (xk)

dx2 ≈ f (xk+2)− f (xk) + f (xk−1)− f (xk+1)

2h2 (100)

with the first order accuracy. As a matter of fact, the error bound for the L2 method is O(h3−α).
Numerical experiments indicate that the L2 method is more accurate than the L2C method for 1.5 < α < 2,
while the opposite result appears when 1 < α < 1.5. And these two methods behave in almost the same way
near α = 1.5 [78].
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3.1.2. Numerical Methods Based on Polynomial Interpolation

It is evident that the higher-order accuracy can be achieved by utilizing the higher-order
interpolation, provided that f (x) is suitably smooth. In the following, we introduce numerical
approximations in this respect.

(I) (3− α)-th order approximations
Let f (x) ∈ C3[a, b]. For 0 ≤ k ≤ j and 0 < x − xk < h, it follows from Taylor expansions of

f (xk+1), f (xk), and f (xk−1) at x that

f ′(x) =
f (xk+1)− f (xk−1)

2h
+

f (xk+1)− 2 f (xk) + f (xk−1)

h2 (x− xk)

− f (3)(xk)

3!
h2 +

f (3)(xk)

2!
(x− xk)

2 +O
(
(x− xk)

3
)

.

(101)

In this case, we have the following (3− α)-th order approximation [79],

[
CDα

a,x f (x)
]

x=xj
=

1
Γ(1− α)

∫ xj

x0

(xj − t)−α f ′(t)dt (102)

=
h−α

Γ(3− α)

j−1

∑
k=0

{
ω1,j−k [ f (xk+1)− f (xk−1)] + ω2,j−k [ f (xk+1)− 2 f (xk) + f (xk−1)]

}
+ Rj,

where 0 < α < 1, Rj denotes the truncated error, and the coefficients are given by
ω1,j−k =

2− α

2

[
(j− k)1−α − (j− k− 1)1−α

]
,

ω2,j−k =(j− k)2−α − (j− k− 1)2−α − (2− α)(j− k− 1)1−α,
(103)

with 0 ≤ k ≤ j− 1 and 1 ≤ j ≤ N.
Since the above (3− α)-th order method is also widely used, we estimate its truncated error

in detail.

Theorem 3 ([80]). Let 0 < α < 1 and f (x) ∈ C3[a, b]. For the truncated error Rj of approximation (102),
it holds that ∣∣∣Rj

∣∣∣ ≤ ch3−α, 1 ≤ j ≤ N, (104)

with c being a positive constant and f (x−1) in Equation (102) being used.

Proof. It is clear that the truncated error is given by

Rj =− 1
Γ(1− α)

j−1

∑
k=0

∫ xk+1

xk

(xj − t)−α

{
1

2! · 2h

[∫ xk+1

t
(xk+1 − s)2 f (3)(s)ds

−
∫ xk−1

t
(xk−1 − s)2 f (3)(s)ds

]
+

(t− xk)

2h2

[∫ xk+1

t
(xk+1 − s)2 f (3)(s)ds− 2

∫ xk

t
(xk − s)2 f (3)(s)ds

+
∫ xk−1

t
(xk−1 − s)2 f (3)(s)ds

]}
dt.

(105)
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Interchanging the order of integrations yields

Rj =
1

2hΓ(2− α)

j−1

∑
k=0

{ ∫ xk+1

xk

(xk+1 − s)2 f (3)(s)

[
(xj − s)1−α − (xj − xk)

1−α

2

+
(xj − s)1−α(s− xk)

h
+

(xj − s)2−α − (xj − xk)
2−α

h(2− α)

]
ds

+
2
h

∫ xk+1

xk

(xk − s)2 f (3)(s)
[
(xj − xk+1)

1−αh− (xj − s)1−α(s− xk)

+
(xj − xk+1)

2−α − (xj − s)2−α

2− α

]
ds

+
∫ xk+1

xk

(xk−1 − s)2 f (3)(s)

[
(xj − xk+1)

1−α − (xj − s)1−α

2
− (xj − xk+1)

1−α

+
(xj − s)1−α(s− xk)

h
−

(xj − xk+1)
2−α − (xj − s)2−α

h(2− α)

]
ds

+
∫ xk

xk−1

(xk−1 − s)2 f (3)(s)
[
(xj − xk+1)

1−α − (xj − xk)
1−α

2

−
(xj − xk+1)

2−α − (xj − xk)
2−α

h(2− α)
− (xj − xk+1)

1−α

]
ds
}

=
1

2hΓ(2− α)

j−1

∑
k=0

Sk.

(106)

For k = 0, 1, . . . , j− 1, denote

Bk =
∫ xk

xk−1

(xk−1 − s)2 f (3)(s)
[
(xj − xk+1)

1−α − (xj − xk)
1−α

2

−
(xj − xk+1)

2−α − (xj − xk)
2−α

h(2− α)
− (xj − xk+1)

1−α

]
ds,

(107)

and
Ak = Sk − Bk, (108)

where the expression of Ak can be derived from Equations (106) and (107) so is left out due
to lengthiness.

Let l = j− k, k = 0, 1, . . . , j− 1. The affine transformation s = xk−1 + ξh with ξ ∈ [0, 1] yields

Bj−l =h4−α
∫ 1

0
ξ2 f (3)(xj−l−1 + ξh)

[
(l − 1)1−α − l1−α

2
− (l − 1)1−α − (l − 1)2−α − l2−α

2− α

]
dξ

=h4−αbl

∫ 1

0
ξ2 f (3)(xj−l−1 + ξh)dξ, 1 ≤ l ≤ j.

(109)

It is evident that b1 = 1
2−α −

1
2 , and for l ≥ 2,

bl = l1−α
∞

∑
n=2

1
ln

(
1

2n!
− 1

(n + 1)!

)
(−α + 1)α(α + 1) · · · (α + n− 2) ≥ 0. (110)
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Thus, it holds for l ≥ 2 that∣∣∣Bj−l

∣∣∣ = h4−α

∣∣∣∣bl

∫ 1

0
ξ2 f (3)(xj−l−1 + ξh)dξ

∣∣∣∣
≤h4−α

3
max

x∈[xj−l−1,xj−l ]

∣∣∣ f (3)(x)
∣∣∣ l1−α

∞

∑
n=2

1
ln

(
1

2n!
− 1

(n + 1)!

)
(1− α)α(α + 1) · · · (α + n− 2)

≤h4−α

3
max

x∈[xj−l−1,xj−l ]

∣∣∣ f (3)(x)
∣∣∣ l1−α

∞

∑
n=2

1
ln

(
1
2
− 1

n + 1

)
1− α

n

≤h4−α

3
max

x∈[xj−l−1,xj−l ]

∣∣∣ f (3)(x)
∣∣∣ l−1−α

∞

∑
n=2

1
ln−2 ·

1
2
· 1− α

2

≤h4−α(1− α)

12
l−1−α l

l − 1
max

x∈[xj−l−1,xj−l ]

∣∣∣ f (3)(x)
∣∣∣

≤h4−α

6
max

x∈[xj−l−1,xj−l ]

∣∣∣ f (3)(x)
∣∣∣ 1− α

l1+α
.

(111)

As a result,∣∣∣∣∣ j−1

∑
k=0

Bk

∣∣∣∣∣ =
∣∣∣∣∣ j

∑
l=1

Bj−l

∣∣∣∣∣ ≤h4−α

{∣∣∣∣b1

∫ 1

0
ξ2 f (3)(xj−2 + ξh)dξ

∣∣∣∣+ j

∑
l=2
|Bl |
}

≤h4−α max
x∈[x−1,xj−1]

∣∣∣ f (3)(x)
∣∣∣ [1

3

(
1

2− α
− 1

2

)
+

1− α

12

j

∑
l=2

l−1−α

]

≤C2 max
x∈[x−1,xj−1]

∣∣∣ f (3)(x)
∣∣∣ h4−α

(112)

with C2 > 0 being a constant.
Note that Ak contains all the terms in Equation (106) with the form of integrals over [xk, xk+1].

Then the affine transformation s = xk + ξh, ξ ∈ [0, 1] and l = j− k, k = 0, 1, . . . , j− 1 yield

Aj−l =h4−α
∫ 1

0
f (3)(xj−l + ξh)

{
− 2

2− α

[
(l − 1)2−α − (l − ξ)2−α

]
+

(1− ξ)2

2− α

[
(l − 1)2−α − l2−α

]
+ 2

[
(l − ξ)1−αξ − (l − 1)1−α

]
+ (1− ξ)2(l − 1)1−α +

(1− ξ)2

2

[
(l − ξ)1−α − l1−α

]
+

(ξ + 1)2

2

[
(l − 1)1−α − (l − ξ)1−α

]}
dξ

=h4−α
∫ 1

0
f (3)(xj−l + ξh)al(ξ)dξ.

(113)

Rewrite al(ξ) in the form

al(ξ) = l1−α
∞

∑
n=2

1
ln ãn(ξ)(−α + 1)α(α + 1) · · · (α + n− 2), (114)

with

ãn(ξ) =
2ξn+1 − 2 + (1− ξ)2

(n + 1)!
+

2− (1− ξ)2 − 1
2 (1 + ξ)2

n!
, n ≥ 2. (115)
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For n ≥ 2, we have ãn(ξ) ≥ 0 for arbitrary ξ ∈ [0, 1]. To see this, recall that
ã′n(ξ) =

2ξn

n!
− 2(1− ξ)

(n + 1)!
+

1− 3ξ

n!
,

ã′′n(ξ) =
2ξn−1

(n− 1)!
+

2
(n + 1)!

− 3
n!

.

(116)

When ξ0 =
(

1
2n + 1

n+1

) 1
n−1 ∈ (0, 1), there hold

ã′′n(ξ0) = 0, (117)

and

ã′′n(ξ)

{
< 0, ξ ∈ [0, ξ0),

≥ 0, ξ ∈ [ξ0, 1],
(118)

Note that 
ã′n(1) = 0,

ã′n(0) =
1
n!
− 2

(n + 1)!
> 0.

(119)

One has ã′n(ξ0) < ã′n(1) = 0, and there exits ξ1 ∈ (0, ξ0) such that ã′n(ξ1) = 0 since ã′n(0) > 0.
Therefore,

ã′n(ξ)

{
> 0, ξ ∈ [0, ξ1),

≤ 0, ξ ∈ [ξ1, 1].
(120)

Since 
ãn(1) = 0,

ãn(0) =
1

2n!
− 1

(n + 1)!
> 0,

(121)

it holds that ãn(ξ) ≥ 0 for arbitrary ξ ∈ [0, 1] when n ≥ 2. As a result,

al(ξ) = l1−α
∞

∑
n=2

1
ln ãn(ξ)(1− α)α(α + 1) · · · (α + n− 1) ≥ 0, 2 ≤ l ≤ j. (122)

Furthermore,

al(ξ) =l1−α
∞

∑
n=2

1
ln

[
2ξn+1 − 2 + (1− ξ)2

(n + 1)!
+

2− (1− ξ)2 − 1
2 (1 + ξ)2

n!

]
(1− α)α(α + 1) · · · (α + n− 1)

≤l1−α
∞

∑
n=2

1
ln

{
2ξ3 − 2 + (1− ξ)2

n + 1
+

[
2− (1− ξ)2 − 1

2
(1 + ξ)2

]}
1− α

n

≤l1−α
∞

∑
n=2

1
ln

(
1

n + 1
35 + 13

√
13

54
+

2
3

)
1− α

n

≤l−1−α(1− α)
143 + 13

√
13

324
1

1− 1
l

.

(123)

Especially, for l ≥ 2,

al(ξ) ≤ l−1−α(1− α)
143 + 13

√
13

162
. (124)
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As a result, it holds that∣∣∣∣∣ j

∑
l=1

Al

∣∣∣∣∣ ≤ h4−α

{∣∣∣∣∫ 1

0
a1(ξ) f (3)(xj−1 + ξh)dξ

∣∣∣∣+ j

∑
l=2
|Al |

}

≤h4−α max
x∈[x0,xj ]

∣∣∣ f (3)(x)
∣∣∣ {∫ 1

0
a1(ξ)dξ +

j

∑
l=2

∫ 1

0
al(ξ)dξ

}

≤h4−α max
x∈[x0,xj ]

∣∣∣ f (3)(x)
∣∣∣ [ 2

(2− α)(3− α)
− 1

3(2− α)
− 1

6
+

j

∑
l=2

l−1−α(1− α)
31
√

13 + 125
162

]

≤C1 max
x∈[x0,xj ]

∣∣∣ f (3)(x)
∣∣∣ h4−α,

(125)

with C1 > 0 being a constant. Consequently, the truncated error has the bound

∣∣∣Rj
∣∣∣ = 1

2hΓ(2− α)

∣∣∣∣∣ j−1

∑
k=0

(Ak + Bk)

∣∣∣∣∣
≤ 1

2hΓ(2− α)

{∣∣∣∣∣ j

∑
l=1

Aj−l

∣∣∣∣∣+
∣∣∣∣∣ j

∑
l=1

Bj−l

∣∣∣∣∣
}

≤ h3−α

2Γ(2− α)

{
C1 max

x∈[x0,xj ]

∣∣∣ f (3)(x)
∣∣∣+ C2 max

x∈[x−1,xj−2]

∣∣∣ f (3)(x)
∣∣∣} .

(126)

Note that the derivative f (3)(x) with x ∈ [x−1, x0] is needed in the above inequality. In this case,
f (3)(xk) with k ≥ 0 can be utilized to approximate f (3)(x) when x ∈ [x−1, x0] and then f (3)(x) is
bounded on [x−1, x0]. Consequently, the desired estimate is obtained.

Remark 7. In formula (102), f (x−1) is defined outside of [a, b]. In numerical calculation, we can approximate
f (x−1) based on the relation f (x−1) = f (a) − h f ′(a) + h2

2 f ′′(a) + O(h3). When f ′(a) = f ′′(a) = 0,
then f (x−1) = f (a) + O(h3), and we have Rj = O(h3−α). When f ′(a) = 0 and f ′′(a) 6= 0, then
f (x−1) = f (a) + h2

2 f ′′(a) +O(h3), and Rj = O(h2). If f ′(a) 6= 0, then Rj = O(h).

Example 3 ([79]). Consider the function f (x) = x4, x ∈ [0, 1]. Evaluate its Caputo derivative at x = 1 by
formula (102). Absolute error (AE) and convergence order (CO) are shown in Table 3. It is obvious that the
convergence order is (3− α), which is in line with the theoretical analysis.

Table 3. Numerical results for Example 3.

α h AE CO α h AE CO

0.2

1
10 0.0015 -

0.6

1
10 0.0139 -

1
40 3.7575×10−5 2.6809 1

40 5.4517×10−4 2.3606
1

160 8.6640×10−7 2.7289 1
160 2.0146×10−5 2.3846

0.4

1
10 0.0052 -

0.8

1
10 0.0331 -

1
40 1.6158×10−4 2.5282 1

40 0.0017 2.1414
1

160 4.6455×10−6 2.5676 1
160 8.1011×10−5 2.1910
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In Ref. [81], another (3− α)-th order approximation was proposed. Denote
δx f j− 1

2
=

f (xj)− f (xj−1)

h
, j ≥ 1

δ2
x f j =

1
h

(
δx f j+ 1

2
− δx f j− 1

2

)
, j ≥ 1.

(127)

Let f (x) ∈ C3[a, b] and 0 < α < 1. We utilize the linear interpolation

P1,k(x) = f (xk−1)
xk − x

h
+ f (xk)

x− xk−1
h

, (128)

on the first interval [x0, x1], and the quadratic interpolation

P2,k(x) =
2

∑
l=0

f (xk−l)
2

∏
i=0
i 6=l

x− xk−i
xk−l − xk−i

= P1,k(x) +
1
2

(
δ2

x fk−1

)
(x− xk−1)(x− xk) (129)

on the remaining intervals [xk−1, xk] (k ≥ 2) to approximate f (x). Denote xj+ 1
2
=

xj+1+xj
2 , j ≥ 0.

We obtain the following L1-2 formula [81]

[
CDα

a,x f (x)
]

x=xj
=

1
Γ(1− α)

[∫ x1

x0

(P1,1(t))
′

(xj − t)α
dt +

j

∑
k=2

∫ xk

xk−1

(P2,k(t))
′

(xj − t)α
dt

]
+ Rj

=
1

Γ(1− α)

 j

∑
k=2

∫ xk

xk−1

δx fk− 1
2
+
(
δ2

x fk−1
)
(t− xk− 1

2
)

(xj − t)α
dt + δx f 1

2

∫ x1

x0

dt
(xj − t)α

+ Rj

=
h−α

Γ(2− α)

[
c(α)0 f (xj)−

j−1

∑
k=1

(
c(α)j−k−1 − c(α)j−k

)
f (xk)− c(α)j−1 f (x0)

]
+ Rj,

(130)

with the truncated errors R1 = O(h2−α) and Rj = O(h3−α), j ≥ 2. The coefficient c(α)0 = 1 when j = 1.
For j ≥ 2, the coefficients are give by

c(α)k =


a(α)0 + b(α)0 , k = 0,

a(α)k + b(α)k − b(α)k−1, 1 ≤ k ≤ j− 2,

a(α)k − b(α)k−1, k = j− 1

(131)

with
a(α)k = (k + 1)1−α − k1−α, 0 ≤ k ≤ j− 1, (132)

and

b(α)k =
(k + 1)2−α − k2−α

2− α
− (k + 1)1−α + k1−α

2
, 0 ≤ k ≤ j− 2. (133)

Numerical results in Ref. [81] imply that the computational errors given by the L1-2 formula are
obviously much smaller than those of the L1 formula.

Modifying the above L1-2 formula, Alikhanov proposed an overall (3− α)-th order approximation.
Let σ = 1− α

2 with 0 < α < 1, then the Caputo derivative of f (x) ∈ C3[a, b] at xj+σ = a + (j + σ)h
with 0 ≤ j ≤ N − 1 can be expressed by

[
CDα

0,x f (x)
]

x=xj+σ
=

1
Γ(1− α)

[
j

∑
k=1

∫ xk

xk−1

f ′(t)dt
(xj+σ − t)α

+
∫ xj+σ

xj

f ′(t)dt
(xj+σ − t)α

]
. (134)
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Applying the quadratic interpolation

Π2,k f (x) = f (xk−1)
(x− xk)(x− xk+1)

2h2 − f (xk)
(x− xk−1)(x− xk+1)

h2

+ f (xk+1)
(x− xk−1)(x− xk)

2h2 , x ∈ [xk−1, xk], 1 ≤ k ≤ j,

(135)

which is different from the one defined in Equation (129) to approximating f (x), and utilizing the

expression f ′(t) ≈ f (xj+1)− f (xj)

h on the interval [xj, xj+σ], we obtain the L2-1σ formula [82]

[
CDα

a,x f (x)
]

x=xj+σ
=

h−α

Γ(2− α)

j

∑
k=0

c(α,σ)
j−k [ f (xk+1)− f (xk)] +O(h3−α) (136)

with 0 ≤ j ≤ N − 1. Here c(α,σ)
0 = a(α,σ)

0 when j = 0, and for j ≥ 1,

c(α,σ)
k =


a(α,σ)

0 + b(α,σ)
1 , k = 0,

a(α,σ)
k + b(α,σ)

k+1 − b(α,σ)
k , 1 ≤ k ≤ j− 1,

a(α,σ)
j − b(α,σ)

j , k = j,

(137)

with a(α,σ)
k and b(α,σ)

k given bya(α,σ)
0 = σ1−α,

a(α,σ)
k = (k + σ)1−α − (k + σ− 1)1−α, k ≥ 1,

(138)

and

b(α,σ)
k =

(k + σ)2−α − (k + σ− 1)2−α

2− α
− (k + σ)1−α + (k + σ− 1)1−α

2
. (139)

The comparison between the L2-1σ and L1-2 methods in Ref. [82] shows that the L2-1σ formula refines
the accuracy indeed.

Remark 8 ([80]). The L2-1σ formula for the right-sided Caputo derivative can be derived in a similar manner.
In this case, the parameter should be chosen as σ = α

2 , α ∈ (0, 1). The corresponding approximation is given by

[
CDα

x,b f (x)
]

x=xj+σ

=
h−α

Γ(2− α)

N−1

∑
k=j

c̃(α,σ)
k−j [ f (xk)− f (xk+1)] +O(h3−α) (140)

with 0 ≤ j ≤ N − 1. Here the coefficients are given by

c̃(α,σ)
0 = −ã(α,σ)

0 , (141)

if j = N − 1, and for 0 ≤ j < N − 1,

c̃(α,σ)
k =


b̃(α,σ)

1 , k = 0,

b̃(α,σ)
k+1 − b̃(α,σ)

k , 1 ≤ k ≤ N − j− 2,

−ã(α,σ)
N−j−1 − b̃(α,σ)

N−j−1, k = N − j− 1,

(142)

where
ã(α,σ)

k = (k + 1− σ)1−α, (143)
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and

b̃(α,σ)
k =

(k + 1− σ)1−α − (k− σ)1−α

2
− (k + 1− σ)2−α − (k− σ)2−α

2− α
. (144)

For other (3− α)-th order approximations to Caputo derivative based on interpolation, one may
refer to Refs. [83,84].

(II) (4− α)-th order approximation
Let 0 < α < 1 and f (x) ∈ C4[x0, xj]. A linear interpolation of f (x) on the first subinterval [x0, x1]

yields

∫ x1

x0

(xj − t)−α f ′(t)dt ≈ f (x1)− f (x0)

h

∫ x1

x0

(xj − t)−αdt =
aj−1

hα(1− α)
[ f (x1)− f (x0)] (145)

with aj−1 = j1−α − (j− 1)1−α. On the second subinterval [x1, x2], we similarly obtain

∫ x2

x1

(xj − t)−α f ′(t)dt ≈ h−α

1− α

[
(aj−2 + bj−2) f (x2)− (aj−2 + 2bj−2) f (x1) + bj−2 f (x0)

]
(146)

through the quadratic interpolation, where
aj−2 =(j− 1)1−α − (j− 2)1−α,

bj−2 =
(j− 1)2−α − (j− 2)2−α

2− α
− (j− 1)1−α + (j− 2)1−α

2
.

(147)

For the remaining subintervals, we use the cubic interpolation function

p3(x) =
3

∑
l=0

f (xk−l)
3

∏
i=0,i 6=l

x− xk−i
xk−l − xk−i

, x ∈ [xk−1, xk], k ≥ 3, (148)

to approximate f (x). Consequently, it holds that

1
Γ(1− α)

j

∑
k=3

∫ xk

xk−1

f ′(t)
(xj − t)α

dt ≈ 1
Γ(1− α)

j

∑
k=3

∫ xk

xk−1

(xj − t)−α p′3(t)dt

=
h−α

Γ(2− α)

j

∑
k=3

[
ω1,j−k f (xk) + ω2,j−k f (xk−1) + ω3,j−k f (xk−2) + ω4,j−k f (xk−3)

]
, j ≥ 3,

(149)

where the coefficients are given by

ω1,j−k =
2(j− k + 1)1−α − 11(j− k)1−α

6
− 2(j− k)2−α − (j− k + 1)2−α

2− α
− (j− k)3−α − (j− k + 1)3−α

(2− α)(3− α)
,

ω2,j−k =
6(j− k)1−α + (j− k + 1)1−α

2
+

5(j− k)2−α − 2(j− k + 1)2−α

2− α
+

3(j− k)3−α − 3(j− k + 1)3−α

(2− α)(3− α)
,

ω3,j−k =−
3(j− k)1−α + 2(j− k + 1)1−α

2
− 4(j− k)2−α − (j− k + 1)2−α

2− α
− (j− k)3−α − (j− k + 1)3−α

(2− α)(3− α)
,

ω4,j−k =
2(j− k)1−α + (j− k + 1)1−α

6
+

(j− k)2−α

2− α
+

(j− k)3−α − (j− k + 1)3−α

(2− α)(3− α)
, 3 ≤ j ≤ N.

In view of the above analysis, we obtain the numerical approximation [85]

[
CDα

a,x f (x)
]

x=xj
=

1
Γ(1− α)

j

∑
k=1

∫ xk

xk−1

f ′(t)
(xj − t)α

dt =
h−α

Γ(2− α)

j

∑
k=0

gk f (xj−k) + Rj, 0 < α < 1. (150)
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The coefficients gk have different values for different j. When j = 1,

g0 = a0, g1 = −a0. (151)

When j = 2, 
g0 = a0 + b0,

g1 = a1 − a0 − 2b0,

g2 = b0 − a1.

(152)

When j = 3, 
g0 = ω1,0, g1 = ω2,0 + a1 + b1,

g2 = ω3,0 + a2 − a1 − 2b1,

g3 = ω4,0 − a2 + b1.

(153)

When j = 4, 

g0 = ω1,0, g1 = ω1,1 + ω2,0,

g2 = ω2,1 + ω3,0 + a2 + b2,

g3 = ω3,1 + ω4,0 + a3 − a2 − 2b2,

g4 = ω4,1 − a3 + b2.

(154)

When j = 5, 

g0 = ω1,0, g1 = ω1,1 + ω2,0,

g2 = ω1,2 + ω2,1 + ω3,0,

g3 = ω2,2 + ω3,1 + ω4,0 + a3 + b3,

g4 = ω3,2 + ω4,1 + a4 − a3 − 2b3,

g5 = ω4,2 − a4 + b3.

(155)

When j ≥ 6, 

g0 = ω1,0, g1 = ω1,1 + ω2,0,

g2 = ω1,2 + ω2,1 + ω3,0,

gk = ω1,k + ω2,k−1 + ω3,k−2 + ω4,k−3, 3 ≤ k ≤ j− 3,

gj−2 = aj−2 + bj−2 + ω2,j−3 + ω3,j−4 + ω4,j−5,

gj−1 = ω3,j−3 + ω4,j−4 + aj−1 − aj−2 − 2bj−2,

gj = ω4,j−3 − aj−1 + bj−2.

(156)

If f (x) ∈ C4[x0, xj] and α ∈ (0, 1), the truncated error Rj in Equation (150) satisfies

∣∣∣R1
∣∣∣ ≤ c1 max

x0≤x≤x1

∣∣ f ′′(x)
∣∣ h2−α, c1 > 0,∣∣∣R2

∣∣∣ ≤ c2 max
x0≤x≤x2

∣∣ f ′′′(x)
∣∣ h3−α, c2 > 0,

∣∣∣Rj
∣∣∣ ≤ 1

Γ(1− α)

{
2α

3
max

x0≤x≤x2

∣∣ f ′′′(x)
∣∣ (xj − x2)

−α−1h4

+

[
1
12

+
3α2

2(1− α)(2− α)

]
max

x0≤x≤xj

∣∣∣ f (4)(x)
∣∣∣ h4−α

}
, j ≥ 3.

(157)
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Numerical examples in Ref. [85] verify the above theoretical results.

Example 4. Suppose that 0 < α < 1 and f (x) = x4. Evaluate the α-th order Caputo derivative of f (x) at
x = 1 by Equation (150). Maximum errors (ME) and convergence order (CO) are presented in Table 4.

Table 4. Numerical results for Example 4.

α h ME CO α h ME CO

0.2

1
10 1.2176×10−4 -

0.6

1
10 1.0943×10−3 -

1
40 6.9376×10−7 3.7336 1

40 9.9598×10−6 3.3918
1

160 3.8404×10−9 3.7528 1
160 8.9946×10−8 3.3963

0.4

1
10 4.1401×10−4 -

0.8

1
10 2.6315×10−3 -

1
40 2.9349×10−6 3.5741 1

40 3.1265×10−5 3.1982
1

160 2.0437×10−8 3.5855 1
160 3.7065×10−7 3.1994

Example 5. Let f (x) = e2x. We evaluate Caputo derivative of f (x) at x = 1 by utilizing Equation (150).
The maximum errors (ME) and convergence order (CO) are shown in Table 5.

Table 5. Numerical results for Example 5.

α h ME CO α h ME CO

0.2

1
10 4.9025×10−4 -

0.6

1
10 4.2309×10−3 -

1
40 3.8638×10−6 3.5125 1

40 4.6839×10−5 3.2902
1

160 3.1440×10−8 3.4447 1
160 4.5469×10−7 3.3536

0.4

1
10 1.6156×10−3 -

0.8

1
10 1.0190×10−2 -

1
40 1.4478×10−5 3.4371 1

40 1.4521×10−4 3.1086
1

160 1.1851×10−7 3.4669 1
160 1.8089×10−6 3.1747

(III) (r + 1− α)-th order approximation
Generalizing the above (4− α)-th order approximation, an (r+ 1− α)-th order approximation was

proposed in Ref. [86] by virtue of the Lagrange polynomials of degree r. Let f (x) ∈ Cr[a, b] (r ≥ 4) and
0 < α < 1. On the subintervals [xk−1, xk], j ≥ k ≥ r, N ≥ j ≥ r, we utilize the Lagrange polynomial

pr(x) =
r

∑
l=0

f (xk−l)
r

∏
i=0,i 6=l

x− xk−i
xk−l − xk−i

, x ∈ [xk−1, xk], (158)

to approximate f (x). Denote

Ik[pr(x)] =
1

Γ(1− α)

∫ xk

xk−1

(xj − t)−α p′r(t)dt. (159)

Then it holds that

1
Γ(1− α)

∫ xk

xk−1

f ′(t)
(xj − t)α

dt ≈ Ik[pr(x)]

=
1

Γ(1− α)

r

∑
l=0

(−1)l f (xk−l)

l!(r− l)!hr

∫ xk

xk−1

(xj − t)−α

[
r

∏
i=0,i 6=l

(t− xk−i)

]′
dt

=
h−α

Γ(1− α)

r

∑
l=0

ωr
l,j−k f (xk−l).

(160)
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To compute the coefficients ωr
i,j−k, we denote by

as
k = sk−α, bs

k = (s + 1)k−α, pk =
k

∏
l=1

(l − α), (161)

and

αk
j,i =

{
φk

j,i, k 6= 0,

1, k = 0,
βk

j,i =

{
ψk

j,i, k 6= 0,

1, k = 0.
(162)

Here φk
j,i and ψk

j,i are the sums of products of all different combinations of k elements in
the sets Aj,i = {ā|ā ∈ [0, j− 1], ā 6= i, ā ∈ Z}, and Bj,i = {b̄|b̄ ∈ [−1, j − 2], b̄ 6= i − 1, b̄ ∈ Z},
respectively. Then

ωr
i,j−k =

(−1)i+1

i!(r− i)!

r

∑
l=1

[
l!
pl

(
αr−l

r+1,i aj−k
l − βr−l

r+1,i bj−k
l

)]
, 0 ≤ i ≤ r− 1. (163)

On the subinterval [xk−1, xk], 1 < k < r, 1 ≤ j ≤ N, there are no enough nodes to obtain
an r-th degree Lagrange polynomial. In this case, we use Ik[pk(x)] to approximate the integral

1
Γ(1−α)

∫ xk
xk−1

(xj − t)−α f ′(t)dt. In summary, we obtain the following approximation [86]

[
CDα

a,x f (x)
]

x=xj
=


j

∑
k=1

Ik[pk(x)] + Rj
r, j < r,

r−1
∑

k=1
Ik[pk(x)] +

j
∑

k=r
Ik[pr(x)] + Rj

r, r ≤ j ≤ N,
(164)

with Rj
r being the truncated error. It has been proved that when f (x) ∈ Cr[a, b] (r ≥ 4), the truncation

error satisfies

(1)
∣∣R1

r
∣∣ ≤ c1 max

x0≤x≤x1

∣∣∣ f (2)(x)
∣∣∣ h2−α, c1 > 0;

(2)
∣∣R2

r
∣∣ ≤ c2 max

x0≤x≤x2

∣∣∣ f (3)(x)
∣∣∣ h3−α, c2 > 0;

(3) If f (1)(a) = f (2)(a) = 0, then
∣∣R3

r
∣∣ ≤ c3 max

x0≤x≤x3

∣∣∣ f (4)(x)
∣∣∣ h4−α, c3 > 0;

(4) Provided that f (k)(a) = 0 for 0 < k ≤ j, then∣∣∣Rj
r

∣∣∣ ≤ cj max
x0≤x≤xj

∣∣∣ f (j+1)(x)
∣∣∣ hj+1−α, 2 < j < r, cj > 0;

(5) Provided that f (k)(a) = 0 for 0 ≤ k ≤ r− 1, then∣∣∣Rj
r

∣∣∣ = α

Γ(1− α)

[
1

r + 1

(
1
α
+

1
(1− α)(2− α)

)
max

x0≤x≤xj

∣∣∣ f (r+1)(x)
∣∣∣ hr+1−α

+
r−1

∑
k=1

(xj − xr−1)
−α−1(r− 1)r−1

(r− k− 1)!(k + 1)
max

x0≤x≤xj

∣∣∣ f (r)(x)
∣∣∣ hr+1

]
, j ≥ r.

Numerical examples in Ref. [86] verify the above theoretical results.

Example 6. Suppose 0 < α < 1, and let f (x) = x6, x ∈ [0, 1]. Use scheme (164) to compute Caputo derivative
of f (x) at x = 1 with different stepsizes. Table 6 lists the computational errors and convergence orders at x = 1
with different values for α, and r = 4, 5. It can be observed that the numerical convergence order of the utilized
scheme is (r + 1− α).
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Table 6. Numerical results for Example 6.

α h Errors (r = 4) Order Errors (r = 5) Order

0.2

1
40 3.4260×10−7 - 7.5843×10−9 -
1

50 1.2040×10−7 4.6900 2.0999×10−9 5.7583
1

60 5.1128×10−8 4.7001 7.3082×10−10 5.8067

0.4

1
40 1.5377×10−6 - 3.3066×10−8 -
1

50 5.5973×10−7 4.5319 9.5097×10−9 5.5862
1

60 2.4468×10−7 4.5408 3.4281×10−9 5.6014

0.8

1
40 1.7551×10−5 - 3.7712×10−7 -
1

50 6.9402×10−6 4.1604 1.1820×10−7 5.1992
1

60 3.2473×10−6 4.1673 4.5817×10−8 5.1977

Example 7. Suppose 0 < α < 1, and consider the function f (x) = e2x − 2x− 2x2 − 4
3 x3 − 2

3 x4, x ∈ [0, 1].
Table 7 lists the numerical results with different values for α, and r = 4, 5. It is evident that scheme (164) can
reach (r + 1− α)-th order accuracy.

Table 7. Numerical results for Example 7.

α h Errors (r = 4) Order Errors (r = 5) Order

0.2

1
26 7.7151×10−7 - 4.7095×10−8 -
1

28 5.4884×10−7 4.5977 3.1083×10−8 5.6001
1

30 3.9948×10−7 4.6064 2.1014×10−8 5.7337

0.4

1
26 3.2710×10−6 - 1.9686×10−7 -
1

28 2.3542×10−6 4.4402 1.3170×10−7 5.4275
1

30 1.7322×10−6 4.4490 9.0617×10−8 5.4056

0.8

1
26 3.2210×10−5 - 1.9644×10−6 -
1

28 2.3819×10−5 4.0750 1.3521×10−6 5.0431
1

30 1.7973×10−5 4.0832 9.5398×10−7 5.0602

Remark 9. The (3 − α)-th, (4 − α)-th, and (r + 1 − α)-th order numerical schemes established in
Refs. [79,85,86] are of unconditional stability in the practical sense when solving fractional differential equations.
In other words, numerical schemes for fractional differential equations based on these approximations are stable
only if α lies in their respective subsets of the interval (0, 1). On the other hand, there are some other interesting
methods in this respect. See [87,88] for more details.

(IV) Spectral approximations
Let m − 1 < α < m ∈ Z+ and f (x) ∈ Hr[a, b] with r ≥ 2m. Now we introduce spectral

approximations to Caputo derivative [42,44]. Here we take the Jacobi approximation as a representative
example since the others such as Chebyshev approximation are special cases of the Jacobi one.
Let the polynomial

pN(x) =
N

∑
j=0

p̃u,v
j Pu,v

j (x), x ∈ [−1, 1] (165)

be an approximation of f (x) based on the Jacobi polynomials. Recall that
dm

dxm Pu,v
j (x) = du,v

j,mPu+m,v+m
j−m (x), j ≥ m ∈ Z+,

du,v
j,m =

Γ(j + m + u + v + 1)
2mΓ(j + u + v + 2)

.
(166)
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It holds that

CDα
−1,x pN(x) =

1
Γ(m− α)

∫ x

−1
(x− t)m−α−1

N

∑
j=m

p̃u,v
j du,v

j,mPu+m,v+m
j−m (t)dt

=
N

∑
j=m

p̃u,v
j du,v

j,m P̂u+m,v+m,m−α
j−m (x),

(167)

where p̃u,v
j and P̂u+m,v+m,m−α

j (x) are defined by Equations (32) and (36). Denote

Du,v,α,m
j (x) = du,v

j,m P̂u+m,v+m,m−α
j−m (x) (168)

with Du,v,α,m
j (x) = 0 for 0 ≤ j ≤ m− 1. Then it holds that

CDα
−1,x f (x) ≈ CDα

−1,x pN(x) =
n

∑
j=m

p̃u,v
j Du,v,α,m

j (x), x ∈ [−1, 1]. (169)

The affine transformation x̂ = 2x−a−b
b−a with x ∈ [a, b] yields

CDα
a,x f (x) ≈

(
b− a

2

)−α N

∑
j=m

p̃u,v
j Du,v,α,m

j (x̂). (170)

For the corresponding differential matrix, see Ref. [44] for more details.
The following numerical examples verify the efficiency of the spectral approximation.

Example 8 ([42]). Let f (x) = xµ, x ∈ [0, 1]. We use formula (170) to compute CDα
0,x f (x). Table 8 shows the

absolute maximum errors at the Jacobi-Gauss-Lobatto points. The spectral accuracy is obtained.

Table 8. The absolute errors for Example 8.

u = v = 0, µ = 3.5
n α = 0.2 α = 0.5 α = 0.8 α = 1.2 α = 1.5 α = 1.8

20 2.49×10−9 2.90×10−8 1.99×10−7 6.63×10−6 1.92×10−5 2.67×10−5

40 2.70×10−11 4.73×10−10 4.88×10−9 2.81×10−7 1.22×10−6 2.55×10−6

80 2.88×10−13 7.62×10−12 1.19×10−10 1.18×10−8 7.77×10−8 2.44×10−7

u = v = − 1
2 , µ = 3.5

n α = 0.2 α = 0.5 α = 0.8 α = 1.2 α = 1.5 α = 1.8

20 2.12×10−9 2.11×10−8 1.62×10−7 5.37×10−6 1.86×10−5 3.95×10−5

40 2.15×10−11 3.22×10−10 3.77×10−9 2.17×10−7 1.14×10−6 3.66×10−6

80 2.20×10−13 5.00×10−12 8.89×10−11 8.92×10−9 7.10×10−8 3.45×10−7

Example 9 ([42]). Let f (x) = sin x, x ∈ [0, 1]. We utilized Equation (170) to evaluate CDα
0,x f (x). Table 9

presents the absolute maximum errors for the cases of u = v = 0 and u = v = − 1
2 . The expected results can

be observed.
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Table 9. The absolute errors for Example 9.

u = v = 0
n α = 0.2 α = 0.5 α = 0.8 α = 1.2 α = 1.5 α = 1.8

4 1.05×10−5 6.17×10−5 2.31×10−4 1.02×10−3 2.18×10−3 5.66×10−3

8 1.48×10−11 1.08×10−10 5.96×10−10 4.14×10−9 1.47×10−8 5.33×10−8

16 3.22×10−15 1.91×10−14 9.29×10−14 6.39×10−13 2.45×10−12 9.03×10−12

u = v = − 1
2

n α = 0.2 α = 0.5 α = 0.8 α = 1.2 α = 1.5 α = 1.8

4 1.34×10−5 5.66×10−5 1.95×10−4 9.93×10−4 2.05×10−3 5.40×10−3

8 1.98×10−11 1.04×10−10 3.92×10−10 3.34×10−9 1.15×10−8 4.34×10−8

16 4.44×10−16 1.22×10−15 7.55×10−15 4.40×10−14 2.32×10−13 9.82×10−13

(V) Radial basis function discretization
Being a natural generalization of univariate polynomial splines to a multivariate setting, radial

basis functions work for arbitrary geometry with high dimensions and it does not require a mesh
at all [89]. Numerically solving fractional differential equations based on radial basis functions has
attracted sustained attention in engineering and science community. See [90–93] and references cited
therein. In [94], radial basis functions are utilized to evaluate fractional differential operators. In the
following, we introduce the basic idea of this method.

Take the one-dimensional case as an example. Let xj (j = 1, 2, . . . , N) be the collocation points in
the interval [a, b]. An radial basis function interpolant of a given function f (x) is defined in the form

f (x) ≈ S(x) =
N

∑
j=1

λjφ(|x− xj|). (171)

In order to take the values f (xi), i = 1, 2, . . . , N, the expansion coefficients λj are required to
satisfy the matrix form

A~λ = ~f (172)

with ~λ = (λ1, λ2, . . . , λN)
>, ~f = ( f (x1), f (x2), . . . , f (xN))

>, and Aij = φ(|xi − xj|). Here φ(·) is the
radial basis function. Some popular choices of radial basis function are cubic (φ(r) = r3), multiquadrics
(φ(r) =

√
r2 + c2), and Gaussian (φ(r) = e−cr2

), where the free parameter c is called the shape
parameter for the radial basis function. The smooth radial functions (such as multiquadrics and
Gaussian) give rise to spectrally accurate function representation while the piecewise smooth radial
functions (such as cubic) only produce algebraically accurate representations [94]. Applying the
Caputo differentiation operator to (171) yields

N

∑
j=1

λj CDα
a,xφ(|x− xj|)

∣∣
x=xi
≈ g(xi), 1 ≤ i ≤ N, (173)

which can be written in the matrix form
B~λ ≈ ~g (174)

with Bi,j = CDα
a,xφ(|x− xj|)

∣∣
x=xi

and ~g = (g(x1), g(x2), . . . , g(xN))
>. Here g(xi) is the value of

CDα
a,x f (x) at the point x = xi. Note that the collocation matrix A is unconditionally nonsingular [94].

Combing equations (172) and (174) gives

~g ≈ BA−1~f . (175)

Therefore, the differential matrix D = BA−1 yields an radial basis function discretiazation of the
operator CDα

a,x.



Mathematics 2020, 8, 43 31 of 53

Remark 10. (I) The above procedure of deriving differential matrix based radial basis functions is applicable for
other fractional differentiation operators as well.
(II) Finding a closed form analytical expression for the fractional derivative of a given function may be challenging.
In practice, one has to represent the radial basis function in the form of Taylor series before applying fractional
differentiation operator term by term. Then the infinite sum can be truncated once the terms are smaller in
magnitude than machine precision.
(III) The standard radial basis function methods may result in ill-conditioning which often impairs the
convergence. To offset this deficiency, the so-called RBF-QR method can be utilized instead of the standard one.
See Ref. [94] for more details.

3.1.3. Fractional Backward Difference Formulae

It has been mentioned in Ref. [45] that the fractional linear multistep method is applicable for
numerical Riemann-Liouville differentiation, provided that the generating functions are properly
chosen. We can therefore derive fractional backward multistep methods for Caputo derivative, on the
basis of the relation 

CDα
a,x f (x) =RLDα

a,x f (x)−
m−1

∑
k=0

f (k)(a)(x− a)k−α

Γ(1 + k− α)
,

CDα
x,b f (x) =RLDα

x,b f (x)−
m−1

∑
k=0

(−1)k f (k)(b)(b− x)k−α

Γ(1 + k− α)
,

(176)

where m − 1 < α < m ∈ Z+. In Ref. [95], shifted fractional backward difference formulae for
Caputo derivative were derived through three steps. Shifted Lubich formulae for Riemann–Liouville
derivative on bounded domain were first introduced for the case with homogeneous conditions.
At that stage, generating functions of the coefficients were constructed to maintain high-order accuracy.
By virtue of adopting suitable auxiliary functions, the shifted formulae were modified for the case with
inhomogeneous conditions. Finally, the shifted formulae for Caputo derivative are obtained based on
relation (176). Theoretical results which can be proved through Fourier analysis are as follows.

Theorem 4. Suppose that f (x) ∈ C[α]+3[a, b], and that the derivatives of f (x) up to order [α] + 4 belong to
L1[a, b]. Then there hold

[
CDα

a,x f (x)
]

x=xj
=

1
hα

j+p

∑
k=0

ζ
(α)
2,p,k f (xj−k+p) +O(h2), 0 < α < 1, (177)

and [
CDα

a,x f (x)
]

x=xj
=

1
hα

j+p

∑
k=0

ξ
(α)
2,p,k f (xj−k+p) +O(h2), 1 < α < 2, (178)

where the weights ζ
(α)
2,p,k and ξ

(α)
2,p,k (k = 0, 1, . . .) are given by

ζ
(α)
2,p,k =


v
(α)
2,p,k, k = 0, 1, . . . , j + p− 1,

−
j+p−1

∑
l=0

v
(α)
2,p,l , k = j + p,

(179)
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and,

ξ
(α)
2,p,k =



v
(α)
2,p,k, k = 0, 1, . . . , j + p− 3,

v
(α)
2,p,j+p−2 +

1
2

j+p
∑

l=0
v
(α)
2,p,l(j− l + p), k = j + p− 2,

v
(α)
2,p,j+p−1 − 2

j+p
∑

l=0
v
(α)
2,p,l(j− l + p), k = j + p− 1,

−
j+p−1

∑
l=0

v
(α)
2,p,l +

3
2

j+p
∑

l=0
v
(α)
2,p,l(j− l + p), k = j + p.

(180)

Here the shift p ≤ 3α
2 , and the coefficients v

(α)
2,p,k (0 ≤ k ≤ j + p) are given by

ω
(α)
2,p (z) =

(
3α− 2p

2α
− 2(α− p)

α
z +

α− 2p
2α

z2
)α

=
∞

∑
k=0

v
(α)
2,p,kzk, |z| < 1. (181)

Theorem 5. Suppose that f (x) ∈ C[α]+4[a, b], and that the derivatives of f (x) up to order [α] + 5 belong to
L1[a, b]. Then the third order schemes are given by

[
CDα

a,x f (x)
]

x=xj
=

1
hα

j+p

∑
k=0

ζ
(α)
3,p,k f (xj−k+p) +O(h3), 0 < α < 1, (182)

and [
CDα

a,x f (x)
]

x=xj
=

1
hα

j+p

∑
k=0

ξ
(α)
3,p,k f (xj−k+p) +O(h3), 1 < α < 2, (183)

where the weights ζ
(α)
3,p,k and ξ

(α)
3,p,k (k = 0, 1, . . .) are

ζ
(α)
3,p,k =


v
(α)
3,p,k, k = 0, 1, . . . , j + p− 1,

−
j+p−1

∑
l=0

v
(α)
3,p,l , k = j + p,

(184)

and,

ξ
(α)
3,p,k =



v
(α)
3,p,k, k = 0, 1, . . . , j + p− 4,

v
(α)
3,p,j+p−3 −

1
3

j+p
∑

l=0
v
(α)
3,p,l(j− l + p), k = j + p− 3,

v
(α)
3,p,j+p−2 +

3
2

j+p
∑

l=0
v
(α)
3,p,l(j− l + p), k = j + p− 2,

v
(α)
3,p,j+p−1 − 3

j+p
∑

l=0
v
(α)
3,p,l(j− l + p), k = j + p− 1,

−
j+p−1

∑
l=0

v
(α)
3,p,l +

11
6

j+p
∑

l=0
v
(α)
3,p,l(j− l + p), k = j + p.

(185)

Here the shift p satisfies 3p2 − 12αp + 11α2 ≥ 0, and v
(α)
3,p,k (0 ≤ k ≤ j + p) are given by

ω
(α)
3,p (z) =

(
a0 + a1z + a2z2 + a3z3

)α
=

∞

∑
k=0

v
(α)
3,p,kzk, |z| < 1, (186)

with 
a0 =

11α2 − 12αp + 3p2

6α2 , a1 =
−18α2 + 30αp− 9p2

6α2 ,

a2 =
9α2 − 24αp + 9p2

6α2 , a3 =
−2α2 + 6αp− 3p2

6α2 .

(187)



Mathematics 2020, 8, 43 33 of 53

Theorem 6. Suppose that f (x) ∈ C[α]+5[a, b], and that the derivatives of f (x) up to order [α] + 6 belong to
L1[a, b]. Then there hold

[
CDα

a,x f (x)
]

x=xj
=

1
hα

j+p

∑
k=0

ζ
(α)
4,p,k f (xj−k+p) +O(h4), 0 < α < 1, (188)

and [
CDα

a,x f (x)
]

x=xj
=

1
hα

j+p

∑
k=0

ξ
(α)
4,p,k f (xj−k+p) +O(h4), 1 < α < 2, (189)

where the weights ζ
(α)
4,p,k and ξ

(α)
4,p,k (k = 0, 1, . . .) are defined by

ζ
(α)
4,p,k =


v
(α)
4,p,k, k = 0, 1, . . . , j + p− 1,

−
j+p−1

∑
l=0

v
(α)
4,p,l , k = j + p,

(190)

and,

ξ
(α)
4,p,k =



v
(α)
4,p,k, k = 0, 1, . . . , j + p− 5,

v
(α)
4,p,j+p−4 +

1
4

j+p
∑

l=0
v
(α)
4,p,l(j− l + p), k = j + p− 4,

v
(α)
4,p,j+p−3 −

4
3

j+p
∑

l=0
v
(α)
4,p,l(j− l + p), k = j + p− 3,

v
(α)
4,p,j+p−2 + 3

j+p
∑

l=0
v
(α)
4,p,l(j− l + p), k = j + p− 2,

v
(α)
4,p,j+p−1 − 4

j+p
∑

l=0
v
(α)
4,p,l(j− l + p), k = j + p− 1,

−
j+p−1

∑
l=0

v
(α)
4,p,l +

25
12

j+p
∑

l=0
v
(α)
4,p,l(j− l + p), k = j + p.

(191)

Here the shift p satisfies 25α3 − 35α2 p + 15αp2 − 2p3 ≥ 0, and v
(α)
4,p,k (0 ≤ k ≤ j + p) are given by

ω
(α)
4,p (z) =

(
b0 + b1z + b2z2 + b3z3 + b4z4

)α
=

∞

∑
k=0

v
(α)
2,p,kzk, |z| < 1, (192)

with 

b0 =
25α3 − 35α2 p + 15αp2 − 2p3

12α3 ,

b1 =
−48α3 + 104α2 p− 54αp2 + 8p3

12α3 ,

b2 =
36α3 − 114α2 p + 72αp2 − 12p3

12α3 ,

b3 =
−16α3 + 56α2 p− 42αp2 + 8p3

12α3 ,

b4 =
3α3 − 11α2 p + 9αp2 − 2p3

12α3 .

(193)

Different from numerical algorithms based on the polynomial interpolation, in which the
corresponding accuracy depends on the derivative order α and homogenous conditions are needed,
the formulae presented in Theorems 4–6 for Caputo derivatives have no restriction on the initial
conditions, and are of integer-order accuracy. Here we display two numerical examples to verify
these arguments.
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Example 10 ([95]). Consider the function f (x) = x6+α, x ∈ [0, 1]. We utilize schemes (178), (183), and (189)
to evaluate the α-th order Caputo derivative at x = 1. The absolute errors and convergence orders for p = 0
and p = 1 are shown in Table 10. The experiment convergence orders are consistent with theoretical analysis.
Furthermore, the shifted numerical methods are more efficient than the unshifted one when 1 < α < 2.

Table 10. The absolute errors and convergence orders of Example 10.

p = 0

α h n = 2 n = 3 n = 4
E(h) rate E(h) rate E(h) rate

1.70

1
20 1.0791 - 1.5714×10−1 - 1.9056×10−2 -
1

80 7.5767×10−2 1.94 2.8201×10−3 2.93 8.4873×10−5 3.94
1

320 4.8717×10−3 1.99 4.5587×10−5 2.99 3.4203×10−7 3.96

1.80

1
20 1.4104 - 2.0548×10−1 - 2.4921×10−2 -
1

80 9.9074×10−2 1.94 3.6878×10−3 2.93 1.1098×10−4 3.94
1

320 6.3705×10−3 1.99 5.9612×10−5 2.98 4.4862×10−7 3.98

1.85

1
20 1.6112 - 2.3480×10−1 - 2.8478×10−2 -
1

80 1.1321×10−1 1.94 4.2140×10−3 2.93 1.2682×10−4 3.94
1

320 7.2796×10−3 1.99 6.8119×10−5 2.98 5.1220×10−7 3.98

p = 1

α h n = 2 n = 3 n = 4
E(h) rate E(h) rate E(h) rate

1.70

1
20 3.0173×10−1 - 4.3788×10−2 - 5.0963×10−3 -
1

80 1.9203×10−2 1.99 7.3362×10−4 2.97 2.1650×10−5 3.96
1

320 1.2061×10−3 2.00 1.1665×10−5 2.99 8.6359×10−8 4.00

1.80

1
20 3.2844×10−1 - 5.0679×10−2 - 6.0965×10−3 -
1

80 2.0842×10−2 1.99 8.4958×10−4 2.97 2.5938×10−5 3.96
1

320 1.3081×10−3 2.00 1.3511×10−5 2.99 1.0348×10−7 3.99

1.85

1
20 3.3890×10−1 - 5.4135×10−2 - 6.6280×10−3 -
1

80 2.1454×10−2 1.99 9.0750×10−4 2.97 2.8214×10−5 3.96
1

320 1.3456×10−3 2.00 1.4432×10−5 2.99 1.1252×10−7 3.99

Example 11 ([95]). Consider f (x) = x6+α + (x + 1)2, x ∈ [0, 1]. In this case, f (0) 6= 0. We utilize schemes
(178), (183), and (189) to evaluate its α-th order Caputo derivative at x = 1. Numerical results are presented in
Table 11. These results imply that the numerical approximations can be used to compute Caputo derivatives of
suitably smooth functions with inhomogeneous conditions at the initial time.

Table 11. The absolute errors and convergence orders of Example 11 with p = 1.

α h n = 2 n = 3 n = 4
E(h) rate E(h) rate E(h) rate

1.70

1
20 3.0157×10−1 - 4.3799×10−2 - 5.0897×10−3 -
1

80 1.9193×10−2 1.99 7.3380×10−4 2.97 2.1622×10−5 3.96
1

320 1.2055×10−3 2.00 1.1668×10−5 2.99 8.6891×10−8 3.98

1.80

1
20 3.2833×10−1 - 5.0688×10−2 - 6.0949×10−3 -
1

80 2.0836×10−2 1.99 8.4970×10−4 2.97 2.5935×10−5 3.96
1

320 1.3077×10−3 2.00 1.3513×10−5 2.99 1.0350×10−7 3.99

1.85

1
20 3.3882×10−1 - 5.4142×10−2 - 6.6269×10−3 -
1

80 2.1449×10−2 1.99 9.0760×10−4 2.97 2.8211×10−5 3.96
1

320 1.3453×10−3 2.00 1.4433×10−5 2.99 1.1225×10−7 3.99
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3.1.4. Diffusive Approximation

Recall that Caputo derivative is defined as the Riemann–Liouville integral of an integer-order
derivative, i.e.,

CDα
a,x f (x) = RLD−(m−α)

0,x f (m)(x), m− 1 < α < m ∈ Z+. (194)

In this case, Equation (62) implies

CDα
0,x f (x) =

∫ ∞

0
φ(ω, x)dω, (195)

with m− 1 < α < m ∈ Z+ and φ : (0, ∞)× [0, x]→ R being the auxiliary bivariate function defined by

φ(ω, x) = (−1)m−1 2 sin(πα)

π
ω2α−2m+1

∫ x

0
f (m)(t)e−(x−t)ω2

dt. (196)

For fixed ω > 0, the function φ(ω, ·) satisfies the differential equation

∂

∂x
φ(ω, x) = (−1)m−1 2 sin(πα)

π
ω2α−2m+1 f (m)(x)−ω2φ(ω, x) (197)

subject to the initial condition φ(ω, 0) = 0. Consequently, any implementation solving ODEs and
suitable quadratures approximating the infinite integral (196) yield numerical approximations to
Caputo derivative.

For more details of discussions, modifications, and applications of the diffusive approximation,
see Refs. [60,61].

3.2. Numerical Riemann-Liouville Differentiation

Now we consider numerical approximations to Riemann-Liouville derivatives. The relation (176)
indicates that numerical evaluations of Riemann–Liouville derivative can be readily obtained based on
those of Caputo derivative. Numerical approximations derived from evaluations of Caputo derivative
are therefore omitted in this section. Here we present alternative approaches.

3.2.1. Numerical Methods Based on Linear Spline Interpolation

Let f (x) ∈ C4[a, b] and 1 < α < 2. For j = 1, 2, . . . , N − 1, there holds

[
RLDα

a,x f (x)
]

x=xj
=

1
Γ(2− α)

[
d2

dx2

∫ x

a
(x− t)1−α f (t)dt

]
x=xj

≈ h−2

Γ(2− α)

[
I l

α(xj−1)− 2I l
α(xj) + I l

α(xj+1)
]

,

(198)

where I l
α(xj) =

∫ xj
a (xj − t)1−α f (t)dt. Approximate f (x) with the linear spline

sl
j(x) =

j

∑
k=0

f (xk)sl
j,k(x), (199)

where

sl
j,k(x) =



x− xk−1
xk − xk−1

, xk−1 ≤ x ≤ xk,

xk+1 − x
xk+1 − xk

, xk ≤ x ≤ xk+1,

0, otherwise,

(200)
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for 1 ≤ k ≤ j− 1,

sl
j,0(x) =


x1 − x
x1 − x0

, x0 ≤ x ≤ x1,

0, otherwise,
(201)

and

sl
j,j(x) =


x− xj−1

xj − xj−1
, xj−1 ≤ x ≤ xj,

0, otherwise.

(202)

Then we obtain an approximation to I l
α(xj) given by

Il
α(xj) =

∫ xj

a
(xj − t)1−αsl

j(t)dt =
h2−α

(2− α)(3− α)

j

∑
k=0

al
j,k f (xk) (203)

with

al
j,k =


(3− α)j2−α + (j− 1)3−α − j3−α, k = 0,

(j− k + 1)3−α − 2(j− k)3−α + (j− k− 1)3−α, 1 ≤ k ≤ j− 1,

1, k = j.

(204)

As a result, there holds [96][
RLDα

a,x f (x)
]

x=xj

≈ h−α

Γ(4− α)

[
j−1

∑
k=0

al
j−1,k f (xk)− 2

j

∑
k=0

al
j,k f (xk) +

j+1

∑
k=0

al
j+1,k f (xk)

]

=
h−α

Γ(4− α)

[ j−1

∑
k=0

(
al

j−l,k − 2al
j,k + al

j+l,k

)
f (xk) +

(
al

j+1,j − 2al
j,j

)
f (xj) + al

j+1,j+1 f (xj+1)

]
.

(205)

Similarly, the right-sided Riemann–Liouville derivative can be approximated by [96]

[
RLDα

x,b f (x)
]

x=xj
≈ h−α

Γ(4− α)

[
N

∑
k=j+1

(
ar

j−1,k − 2ar
j,k + ar

j,k

)
f (xk)

+ ar
j−1,j−1 f (xj−1) +

(
ar

j−1,j − 2ar
j,j

)
f (xj)

]
,

(206)

where 
ar

j,N =(3− α)(N − j)2−α + (N − j− 1)3−α − (N − j)3−α,

ar
j,k =(k− j + 1)3−α − 2(k− j)3−α + (k− j− 1)3−α, j + 1 ≤ k ≤ N − 1,

ar
j,j =1.

(207)

The truncated error of this approach has been proved in Ref. [96] to beO(h2) provided that f (4)(x)
has compact support on [a, b].

In the particular cases with a = −∞ and b = +∞, Equations (205) and (206) can be written
as [96–98] [

RLDα
−∞,x f (x)

]
x=xj
≈ h−α

Γ(4− α)

∞

∑
m=−1

qm f (xj−m), (208)

and [
RLDα

x,∞ f (x)
]

x=xj
≈ h−α

Γ(4− α)

∞

∑
m=−1

qm f (xj+m), (209)
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with

qm =


am−1 − 2am + am+1, m ≥ 1,

−2a0 + a1, m = 0,

a0, m = −1.

(210)

Here

am =

{
1, m = 0,

(m + 1)3−α − 2m3−α + (m− 1)3−α, m ≥ 1.
(211)

Both series on the right-hand side of Equations (208) and (209) converge absolutely for 1 < α < 2
if f (x) is bounded [96]. When α = 1, Equations (208) and (209) reduce to the second order finite
difference formula for the first order derivative. When α = 2, Equations (208) and (209) are consistent
with the central difference formula for the second order derivative.

3.2.2. Grünwald-Letnikov Type Approximations

Let m− 1 < α < m ∈ Z+ and f (x) be m times continuously differentiable. It is known that when
a = −∞ or f (a) = 0, the Grünwald–Letnikov derivative

GLDα
a,x f (x) = lim

h→0

1
hα

[ x−a
h ]

∑
l=0

(−1)l
(

α

l

)
f (x− lh), (212)

can approximate the α-th order Riemann–Liouville derivative with first order accuracy [48], i.e.,

RLDα
a,x f (x) =

1
hα

j

∑
l=0

ω
(α)
l f (x− lh) +O(h), jh = x− a, (213)

where ω
(α)
l = (−1)l(α

l ). Equation (213) can be verified through the Fourier transform. The above
numerical approximation, which is called the classical Grünwald–Letnikov formula, is warmly
applied to solving fractional differential equations. However, this approximation is not suitable for the
discretization of fractional differential equations when α ∈ (1, 2) since it leads to unstable numerical
schemes [99].

One way to construct stable schemes for fractional differential equations is to make the
corresponding coefficient matrix diagonally dominated via replacing f (x − lh) in Equation (213)
by f (x − (l − p)h) with p ∈ Z being the shift. In this case, we obtain the shifted
Grünwald–Letnikov formula

RLDα
a,x f (x) =

1
hα

[j+p]

∑
l=0

ω
(α)
l f (x− (l − p)h) +O(h), jh = x− a. (214)

It turns out that the best performances of the shifted Grünwald–Letnikov method come
from minimizing |p − α

2 |. And it coincides with the central difference of the classical second
order differentiation. If the shift is chosen to be non-integers, numerical method (214) may have
superconvergent behaviors [100–102].

Introducing integer shifts to the classical Grünwald-Letnikov approximation may eliminate the
instability indeed, while the truncated error is still O(h). A modification called the weighted and
shifted Grünwald-Letnikov formulae was proposed in Ref. [103], in the spirit of eliminating the first
order terms in the truncated errors of the shifted Grünwald–Letnikov formulae. In the following,
we introduce the basic idea in details.
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Let f (x) ∈ L1(R), RLDα+1
−∞,x f , and its Fourier transform belong to L1(R). It can be verified through

the Fourier analysis that the shifted Grünwald–Letnikov difference operator

Aα
h,p f (x) = h−α

∞

∑
k=0

ω
(α)
k f (x− (k− p)h) , (215)

with p ∈ Z approximates the left-sided Riemann-Liouville derivative RLDα
−∞,x f (x) with first

order accuracy. Assume that the following weighted and shifted Grünwald–Letnikov difference
(WSGD) operator

Bα
h,p,q f (x) = a1 Aα

h,p f (x) + b1 Aα
h,q f (x), a1, b1 ∈ R, (216)

approximates the Riemann–Liouville derivative with second order accuracy. Then the Fourier
transform gives

F
{

Bα
h,p,q f (x); ξ

}
=

1
hα

∞

∑
k=0

ω
(α)
k

(
a1e−i(k−p)hξ + b1e−i(k−q)hξ

)
F{ f (x); ξ}

=
1
hα

(
a1(1− e−ihξ)αeiphξ + b1(1− e−ihξ)αeiqhξ

)
F{ f (x); ξ}

=

(
1− eihξ

ihξ

)α [
a1eiphξ + b1eiqhξ

]
(iξ)αF{ f (x); ξ}

(217)

with i2 = −1. Note that
F{RLDα

−∞,x f (x); ξ} = (iξ)αF{ f (x); ξ}, (218)

and (
1− ez

z

)α

ezr = 1 + (r− α

2
)z +O(|z|2). (219)

Therefore, a1 and b1 need to satisfy{
a1 + b1 = 1,

a1(p− α
2 ) + b1(q− α

2 ) = 0,
(220)

to assure that Bα
h,p,q f (x) is of second order accuracy. In other words,

Bα
h,p,q f (x) = RLDα

−∞,x f (x) +O(h2) (221)

holds uniformly when a1 = α−2q
2p−2q and b1 = 2p−α

2p−2q [103].

Remark 11. The relevant academic literature has revealed that numerical approximation (221) results in
unstable schemes for fractional partial differential equations when the shift paring (p, q) = (0,−1) [99].
The corresponding schemes are stable when (p, q) = (1, 0) and (p, q) = (1,−1). Furthermore, the WSGD
operator reduces to the centred difference approximation for the classical second order differentiation when
(p, q) = (1, 0) and (p, q) = (1,−1) in the case with α = 2, while for the classical first order one when
(p, q) = (1, 0) if α = 1.

A third order WSGD operator was also proposed in Ref. [103]. Nevertheless, it fails to obtain
stable numerical schemes when α ∈ (1, 2). To offset this situation, the compact-WSGD operator [104]
was introduced through combining WSGD operators with Taylor expansions of the shifted Grünwald
formula for sufficiently smooth function f (x) that satisfies homogeneous initial conditions.

The construction of the WSGD operators implies the possibility of deriving higher-order
numerical approximations to Riemann-Liouville derivative by imposing various weights and shifts on
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higher-order Lubich formulae. In Ref. [105], numerical algorithms with second, third, and fourth order
accuracy are proposed based on the second order Lubich formula.

3.2.3. Fractional Backward Difference Formulae and Their Modifications

It is evident that the classical Grünwald–Letnikov approximation coincides with the first order
Lubich formula (51) with α > 0 replaced by −α. In fact, Lubich formulae (51) are applicable for
evaluating Riemann–Liouville derivative indeed.

Let f (k)(a+) = 0 (k = 0, 1, . . . , `− 1). We have the classical Lubich formulae [106]

RLDα
a,x f (x) =

1
hα

[ x−a
h ]

∑
l=0

v
(α)
`,l f (x− lh) +O(h`), α > 0, (222)

in which h is the stepsize. The convolution coefficients v
(α)
`,l are generated by W(α)

` (z) defined in
Equation (50). This can be readily verified by the Fourier transform.

Remark 12. In Ref. [106], the coefficients of high-order approximations (till 10-th order) for Riemann–Liouville
derivative were computed. Furthermore, a conjecture on coefficients of the third, fourth, and fifth order schemes
was proposed by Li and Ding and was rephrased on Page 80 of Ref. [38], stated as follows,

(1) If 0 < α < 1, then v
(α)
3,l ≤ v

(α)
3,l+1 for l ≥ 4, v

(α)
4,l ≤ v

(α)
4,l+1 for l ≥ 7, and v

(α)
5,l ≤ v

(α)
5,l+1 for l ≥ 12;

(2) If 1 < α < 2, then v
(α)
3,l ≥ v

(α)
3,l+1 for l ≥ 7, v

(α)
4,l ≥ v

(α)
4,l+1 for l ≥ 12, and v

(α)
5,l ≥ v

(α)
5,l+1 for l ≥ 16.

Recently, the above conjecture for v
(α)
3,l with 0 < α < 1 has been proved in Ref. [107].

Similarly to the case of the classical Grünwald-Letnikov approximation, the classical Lubich
formulae may produce unstable numerical schemes for fractional differential equations due to the
eigenvalue issue [105]. In this case, we often introduce shifts. To maintain the high-order accuracy,
the corresponding generating functions need modifying. The shifted fractional backward difference
formulae [108], which can be proved via the Fourier transform method, are presented as follows.

Theorem 7. Suppose that f (x) ∈ C[α]+3(R), and all the derivatives of f (x) up to order [α] + 4 belong to
L1(R). Then we have

RLDα
−∞,x f (x) =

1
hα

∞

∑
l=0

k(α)2,l f (x− (l − 1)h) +O(h2), (223)

and

RLDα
x,+∞ f (x) =

1
hα

∞

∑
l=0

k(α)2,l f (x + (l − 1)h) +O(h2), (224)

as h→ 0. Here k(α)2,l (l = 0, 1, . . .) are generated by

W̃2(z) =
(

3α− 2
2α

− 2(α− 1)
α

z +
α− 2

2α
z2
)α

=
∞

∑
l=0

k(α)2,l zl , |z| < 1. (225)

Theorem 8. Let p ≥ 3, f (x) ∈ C[α]+p+1(R), and all the derivatives of f (x) up to order [α] + p + 2 belong to
L1(R). Then there hold

RLDα
−∞,x f (x) =

1
hα

∞

∑
l=0

k(α)p,l f (x− (l − 1)h) +O(hp), p ≥ 3, (226)

and

RLDα
x,+∞ f (x) =

1
hα

∞

∑
l=0

k(α)p,l f (x + (l − 1)h) +O(hp), p ≥ 3. (227)
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Here the generating functions of coefficients k(α)p.l (l = 0, 1, . . .) with p ≥ 3 are

W̃p(z) =
(
(1− z) +

α− 2
2α

(1− z)2 +
p

∑
k=3

λ
(α)
k−1,k−1

α
(1− z)k

)α

, (228)

in which the parameters λ
(α)
k−1,k−1 (k = 3, 4, . . .) can be determined by the relation

W̃k(e−z)
ez

zα
= 1−

∞

∑
l=k

λ
(α)
k,l zl , k = 2, 3, . . . (229)

Introducing suitable weights and shifts to the classical Lubich operators, we can obtain weighted
and shifted Lubich formulae [105], which are not only of high-order accuracy but also stable when
α ∈ (1, 2).

Define the operator

Aα
p =

1
hα

∞

∑
k=0

v
(α)
2,k f (x− (k− p)h), (230)

where the shift p is an integer. The coefficients v
(α)
2,k can be calculated by Equation (50) with ` = 2.

The weighted and shifted Lubich formulae, whose convergence and accuracy can be verified through
the Fourier transform, are given as follows.

Theorem 9. Let f (x), RLDα+1
−∞,x f (x) (or RLDα+2

−∞,x f (x)) with 1 < α < 2 and their Fourier transforms belong
to L1(R). Then we have RLDα

−∞,x f (x) = Aα
p f (x) +O(h), p 6= 0,

RLDα
−∞,x f (x) = Aα

p f (x) +O(h2), p = 0,
(231)

where Aα
p is given by Equation (230)

Theorem 10. When f (x), RLDα+2
−∞,x f (x) with 1 < α < 2, and their Fourier transforms belong to L1(R),

there holds
RLDα

−∞,x f (x) = Aα
p,q f (x) +O(h2). (232)

Here
Aα

p,q f (x) = WpAα
p f (x) + WqAα

q f (x) (233)

with Aα
p, Aα

q being defined in Equation (230), Wp = q
q−p , Wq = p

p−q , p 6= q, and p, q being integers.

It was proved in Ref. [105] that the approximation (232) with 1 < α < 2 works well for space
fractional differential equations when the pair (p, q) = (1, q) with |q| ≥ 2.

Theorem 11. Assume that f (x), RLDα+3
−∞,x f (x) with 1 < α < 2, and their Fourier transforms belong to

L1(R). Then there holds
RLDα

−∞,x f (x) = Aα
p,q,r,s f (x) +O(h3), (234)

Aα
p,q,r,s f (x) = Wp,qAα

p,q f (x) + Wr,sAα
r,s f (x), (235)

where Aα
p,q and Aα

r,s are defined in Equation (233), Wp,q = 3rs+2α
3(rs−pq) , Wr,s =

3pq+2α
3(pq−rs) , rs 6= pq, and p, q, r, s

are integers.

When (p, q, r, s) = (1, q, 1, s), |q| ≥ 2, |s| ≥ 2, and qs < 0, the approximation (234) with 1 < α < 2
works well for space fractional differential equations.
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For higher-order weighted and shifted Lubich formulae such as the fourth order one, see Ref. [105]
for more details.

Remark 13. All the above weighted and shifted Lubich formulae are applicable to the bounded domain (a, b)
through performing zero extension, whenever the zero extended function satisfies the corresponding assumptions
of the approximations.

An alternative approach modifying the Lubich formulae is to introduce compact operators,
which gives the following fractional-compact formulae [109]. The corresponding accuracy can be
proved by the Fourier transform.

Theorem 12. Define the following two difference operators,

LBα
2 f (x + sh) =

1
hα

∞

∑
l=0

k(α)2,l f (x− (l − s− 1)h) , (236)

and
RBα

2 f (x + sh) =
1
hα

∞

∑
l=0

k(α)2,l f (x + (l − s− 1)h) , (237)

where the coefficients k(α)2,l are given by the function

W̃2(z) =
(

3α− 1
2α

− 2(α− 1)
α

z +
α− 2

2α
z2
)α

=
∞

∑
l=0

k(α)2,l zl , |z| < 1. (238)

If we introduce the fractional-compact difference operator

L f (x) =
(

1− 2α2 − 6α + 3
6α

δ2
x

)
f (x), (239)

with δ2
x being a second order central difference operator defined by δ2

x f (x) = f (x + h)− 2 f (x) + f (x + h),
then equalities

LBα
2 f (x) = L RLDα

−∞,x f (x) +O(h3) (240)

and
RBα

2 f (x) = L RLDα
x,∞ f (x) +O(h3) (241)

hold uniformly for x ∈ R, provided that f (x) ∈ C[α]+4(R) and all derivatives of f (x) up to order [α] + 5
belong to L1(R).

Theorem 13. Choose the generating function as

˜̃W2(z) =
(

3α + 2
2α

− 2(α + 1)
α

z +
α + 2

2α
z2
)α

=
∞

∑
l=0

k̃(α)2,l zl , |z| < 1, (242)

and define the following difference operators

LB̃α
2 f (x + sh) =

1
hα

∞

∑
l=0

k̃(α)2,l f (x− (l − s + 1)h) , (243)

RB̃α
2 f (x + sh) =

1
hα

∞

∑
l=0

k̃(α)2,l f (x + (l − s + 1)h) . (244)
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Then the equalities
LB̃α

2 f (x) = L̃ RLDα
−∞,x f (x) +O(h3), (245)

and
RB̃α

2 f (x) = L̃ RLDα
x,∞ f (x) +O(h3) (246)

hold uniformly for x ∈ R, provided that f (x) ∈ C[α]+4(R) and all derivatives of f (x) up to order [α] + 5
belong to L1(R). Here the fractional-compact difference operator L̃ is given by

L̃ f (x) =
(

1− 2α2 + 6α + 3
6α

δ2
x

)
f (x). (247)

Theorem 14. Let f (x) ∈ C[α]+5(R) and all derivatives of f (x) up to order [α] + 6 belong to L1(R). Define the
fractional-compact operator as

H f (x) =
[(

σ̃
(α)
3,0 − σ

(α)
3,0

)
+
(

σ
(α)
2,0 σ̃

(α)
3,0 − σ̃

(α)
2,0 σ

(α)
3,0

)
δ2

x

]
f (x), (248)

where 
σ
(α)
2,0 = −2α2 − 6α + 3

6α
, σ̃

(α)
2,0 = −2α2 + 6α + 3

6α
,

σ
(α)
3,0 =

3α3 − 11α2 + 12α− 4
12α2 , σ̃

(α)
3,0 =

3α3 + 11α2 + 12α + 4
12α2 .

(249)

Then
σ̃
(α)
3,0

LBα
2 f (x)− σ

(α)
3,0

LB̃α
2 f (x) = H RLDα

−∞,x f (x) +O(h4), (250)

and
σ̃
(α)
3,0

RBα
2 f (x)− σ

(α)
3,0

RB̃α
2 f (x) = H RLDα

x,∞ f (x) +O(h4) (251)

hold uniformly on R.

The idea of the above approximations can be applied to evaluating tempered fractional derivatives,
see Ref. [110] for more details.

3.2.4. Fractional Average Central Difference Method

In Ref. [111], a shifted operator of the form

C∆α
−h f (x) =

∞

∑
k=0

(−1)k
(

α

k

)
f
(

x−
(

k− α

2

)
h
)

(252)

with h > 0 was proposed to approximate Riemann–Liouville derivative. This difference operator
reduces to the standard central difference operator when α is a positive integer. It can be verified
through the Fourier transform that the equality

1
hα C∆α

−h f (x) = RLDα
−∞,x f (x) +O(h2), (253)

holds uniformly for x ∈ R as h → 0, provided that f ∈ C[α]+3(R) and all derivative of f up to the
order [α] + 4 exist and belong to L1(R).

Recently, the above shifted operator has been modified to obtain higher-order approximations,
which are based on the fractional left and right average central difference operators [112]

AC∆α
−h f (x) =

1
2

∞

∑
k=0

(−1)k
(

α

k

)
[ f (x− kh) + f (x− (k− α)h)] , (254)
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and

AC∆α
+h f (x) =

1
2

∞

∑
k=0

(−1)k
(

α

k

)
[ f (x + kh) + f (x + (k− α)h)] . (255)

The main results, which can be verified through Fourier transform, are presented as follows.

Theorem 15. Assume that f (x), the Fourier transform of RLDα+2
−∞,x f (x) and RLDα+2

x,+∞ f (x) are in L1(R).
Then the equalities

RLDα
−∞,x f (x) = AC∆α

−h f (x)
hα

+O(h2), (256)

RLDα
x,+∞ f (x) = AC∆α

+h f (x)
hα

+O(h2) (257)

hold uniformly on R.

Theorem 16. When f (x) and the Fourier transforms of RLDα+4
−∞,x f (x) and RLDα+4

x,+∞ f (x) are in L1(R),
then the relations [

1 +
α(3α + 1)

24
δ2

x

]
RLDα

−∞,x f (x) =
1
hα AC∆α

−h f (x) +O(h4), (258)

and [
1 +

α(3α + 1)
24

δ2
x

]
RLDα

x,+∞ f (x) =
1
hα AC∆α

+h f (x) +O(h4) (259)

hold uniformly on R. Here δ2
x denotes the second order central difference operator defined by δ2

x f (xj) =

f (xj+1)− 2 f (xj) + f (xj−1).

For functions defined on [a, b], the fractional average central difference formulae can be modified
through suitable extensions.

3.3. Numerical Riesz Differentation

Since Riesz derivative can be viewed as a linear combination of the left- and right-sided
Riemann–Liouville derivatives. Several numerical approximations to Riesz derivative can be readily
obtained based on the aforementioned methods of Riemann–Liouville derivative. Here we only
present the one based on L2-1σ formulae when introducing indirect evaluations of Riesz derivative.
For more details of these indirect approaches, one can refer to Refs. [108,109,112,113]. Then we focus
on introducing some schemes evaluating Riesz derivative in direct ways.

3.3.1. Approximation Based on L2-1σ Formulae

In Ref. [107], the L2-1σ formulae are reformulated in the following forms,

[
CDα

a,x f (x)
]

x=xj+σ
=

h−α

Γ(2− α)

j

∑
k=0

d(α,σ)
j−k [ f (xk+1)− f (xk)] +O(h3−α), (260)

and [
CDα

x,b f (x)
]

x=xj+σ′
= − h−α

Γ(2− α)

N−1

∑
k=j

d̃(α,σ′)
k−j [ f (xk+1)− f (xk)] +O(h3−α), (261)
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with 0 ≤ j ≤ N− 1, σ = 1− α
2 , and σ′ = α

2 . When j = 0, d(α,σ)
0 = c(α,σ)

0 . When j = N− 1, d̃(α,σ)
0 = c(α,σ′)

0 .
For j ≥ 1, the coefficients are given by

d(α,σ)
k =


c(α,σ)

0 + c̃(α,σ)
1 , k = 0,

c(α,σ)
k + c̃(α,σ)

k+1 − c̃(α,σ)
k , 1 ≤ k ≤ j− 1,

c(α,σ)
i − c̃(α,σ)

i , k = j,

(262)

in which the second case of the right-hand side of Equation (262) should be removed if j = 1, and

d̃(α,σ′)
k =


c(α,σ′)

0 + c̃(α,σ′)
2 , k = 0,

c(α,σ′)
k+1 − c̃(α,σ′)

k+1 + c̃(α,σ′)
k+2 , 1 ≤ k ≤ N − 2− j,

c(α,σ′)
k+1 − c̃(α,σ′)

k+1 , k = N − 1− j,

(263)

in which the second case of the right-hand side of Equation (263) should be removed if j = N− 2. Here

c(α,σ)
0 =σ1−α,

c(α,σ)
k =(k + σ)1−α − (k− 1 + σ)1−α, k ≥ 1,

c̃(α,σ)
k =

1
2− α

[
(k + σ)2−α − (k− 1 + σ)2−α

]
− 1

2

[
(k + σ)1−α + (k− 1 + σ)1−α

]
, k ≥ 1,

(264)

and 

c(α,σ′)
0 =(1− σ′)1−α,

c(α,σ′)
k =(k− σ′)1−α − (k− 1− σ′)1−α, k ≥ 1,

c̃(α,σ′)
k =

1
2− α

[
(k− σ′)2−α − (k− 1− σ′)2−α

]
− 1

2

[
(k− σ′)1−α + (k− 1− σ′)1−α

]
, k ≥ 1.

(265)

In order to combine Equations (260) and (261), σ + σ′ = 1 should be satisfied such that 2σ− 2 +
α + 2σ′ − α = 0. Furthermore, assume that σ = σ′, i.e., σ = σ′ = 1

2 , then xj+σ = xj+ 1
2
= xj+σ′ . One can

get the following (3− α)-th order scheme for Riesz derivatives at x = xj+ 1
2

with 0 ≤ j ≤ N − 1 [107],

[RZDα
x f (x)]x=x

j+ 1
2

=− 1
2 cos(πα

2 )

[
(xj+ 1

2
− a)−α f (a)

Γ(1− α)
+

(b− xj+ 1
2
)−α f (b)

Γ(1− α)

+
h−α

Γ(2− α)

(
j

∑
k=0

d(α, 1
2 )

j−k [ f (xk+1)− f (xk)]

−
N−1

∑
k=j

d̃(α, 1
2 )

k−j [ f (xk+1)− f (xk)]

)]
+O(h3−α),

(266)

in which d(α, 1
2 )

j−k and d̃(α, 1
2 )

k−j are defined by Equations (262) and (263) with σ = σ′ = 1
2 , respectively.
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3.3.2. Asymmetric Centred Difference Operators

Slightly different from the fractional average central difference operators in the previous section,
the symmetric fractional centred difference operator is defined as

∆α
h f (x) =

+∞

∑
k=−∞

g(α)k f (x− kh), (267)

with the coefficients being given by

g(α)k =
(−1)kΓ(α + 1)

Γ( α
2 − k + 1)Γ( α

2 + k + 1)
, k = 0,±1,±2, . . . (268)

It can be verified through the Fourier analysis that the relation [114]

RZDα
x f (x) = − 1

hα
∆α

h f (x) +O(h2), 1 < α ≤ 2, (269)

holds uniformly for x ∈ R as h→ 0+, provided that f ∈ C5(R) and all of its derivatives up to order
five belong to L1(R). It has been pointed out by Ref. [115] that Equation (269) also holds for 0 < α ≤ 1.

3.3.3. Weighted and Shifted Centred Difference Operators

Introducing shifts to the symmetric fractional centred difference operator in Equation (267),
the shifted centred difference operators [112]

Lθ f (x) =
∞

∑
k=−∞

g(α)k f (x− (k + θ)h), |θ| = 0, 1, 2, . . . (270)

can be obtained. To achieve high-order accuracy, the following high-order approximations to Riesz
derivative can be derived through combining these shifted operators with suitable weights.

Theorem 17 ([116]). If f (x) lies in C7(R) with all the derivatives up to order 7 in L1(R), then the relation

RZDα
x f (x) =

1
hα

[ α

24
L−1 f (x)−

(
1 +

α

12

)
L0 f (x) +

α

24
L1 f (x)

]
+O(h4) (271)

holds uniformly for x ∈ R.

Theorem 18 ([112]). Assume that f (x) ∈ C9(R) with all the derivatives up to order 9 in L1(R). Then

RZDα
x f (x) =

1
hα

[A1L−2 f (x) +A2L−1 f (x) +A3L0 f (x) +A2L1 f (x) +A1L2 f (x)] +O(h6) (272)

holds uniformly for x ∈ R, in which 

A1 = −
(

α

1152
+

11
2880

)
α,

A2 =

(
α

288
+

41
720

)
α,

A3 = −
(

α2

192
+

17α

160
+ 1
)

.

(273)
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Theorem 19 ([112]). Assume that f (x) lies in C11(R) with all the derivatives up to order 11 in L1(R). Then

RZDα
x f (x) =

1
hα

[B1L−3 f (x) + B2L−2 f (x) + B3L−1 f (x) + B4L0 f (x)

+B3L1 f (x) + B2L2 f (x) + B1L3 f (x)] +O(h8)

(274)

holds uniformly for x ∈ R. Here
B1 =

(
α2

82944
+

11α

69120
+

191
362880

)
α, B2 = −

(
α2

13824
+

7α

3840
+

211
30240

)
α,

B3 =

(
5α2

27648
+

3α

512
+

7843
120960

)
α, B4 = −

(
5α3

20736
+

29α2

3456
+

5297α

45360
+ 1
)

.

(275)

For much higher-order difference operators in this respect, see Ref. [112].

3.3.4. Compact Centred Difference Operators

As another variant of the centred difference operator, compact centred difference operators are
based on the idea of introducing compact operators to maintain even-order accuracy.

Theorem 20 ([117]). Suppose that f (x) ∈ C2n+3(R), and all the derivatives of f (x) up to order 2n + 4 exist
and belong to L1(R). Then

(
δ0

x − bn−1δ2n−2
x

)
RZDα

x f (x) =

(
n−2

∑
l=0

blδ
2l
x

)(
−

∆α
h f (x)
hα

)
+O(h2n), n ∈ Z+, (276)

where

δ2l
x f (xj) =

2l

∑
s=0

(−1)s
(

2l
s

)
f (xl+j−s), l ≥ 0. (277)

Specifically, δ0
x is the identity operator, i.e., δ0

x f (xj) = f (xj). The coefficients bl (l = 0, 1, . . . , n− 2) satisfy the
following equation

n−2

∑
l=0

bl

(
2

l−1

∑
s=0

n−1

∑
q=0

n−1−q

∑
p=0

(−1)s+q(l − s)2q(2l
s )ap

(2q)!
|ωh|2(p+q) + (−1)l

(
2l
l

) n−1

∑
p=0

ap|ωh|2p

)

=1− bn−1

(
n−2

∑
s=0

(−1)s
(

2n− 2
s

)
2(n− 1− s)2n−2

(2n− 2)!

)
(−1)n−1|ωh|2n−2,

(278)

and ap (p = 0, 1, . . .) satisfy the equation

∞

∑
p=0

ap|ωh|2p =

∣∣∣∣∣∣
2sin

(
ωh
2

)
ωh

∣∣∣∣∣∣
α

=

[
1− α

24
|ωh|2 +

(
1

1920
+

α− 1
1152

)
α|ωh|4

−
(

1
322560

+
α− 1
46080

+
(α− 1)(α− 2)

82944

)
α|ωh|6 + · · ·

]
.

(279)

Remark 14. In view of proofs in Refs. [111,118,119], conditions in Theorem 20 can be weakened as f (x) ∈
L2n+α(R), where

L2n+α(R) =
{

f
∣∣∣ f ∈ L1(R), and

∫
R
(1 + |ω|)2n+α| f̂ (ω)|dω < +∞

}
. (280)
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Remark 15. One should bear in mind that some suitable smooth conditions for f (x) are necessary and cannot
be dropped. Once these conditions are violated, the expected accuracy cannot be achieved. Example 13 will verify
this assertion latter.

For function f (x) defined on the bounded interval [a, b] with f (a) = f (b) = 0, we can extend
f (x) by zero outside of the domain. When the conditions in Theorem 20 or Remark 14 are satisfied,
the compact centred difference formula can be written in the following form,

(δ0
x − bn−1δ2n−2

x )
∂α f (x)
∂|x|α =

− 1
hα

n−2

∑
l=0

blδ
2l
x

[ x−a
h ]−l

∑
k=[− b−x

h ]+l

g(α)k f (x− kh)

+O(h2n). (281)

The following numerical examples demonstrate the accuracy of the fractional-compact centred
formula (281) and the assertion in Remark 15.

Example 12 ([117]). Consider the function fn(x) = x2n(1− x)2n, x ∈ [0, 1], n = 2, 3, 4, 5. Utilize numerical
scheme (281) with n = 2, 3, 4, 5 to compute the Riesz derivative of f (x) at x = 0.5. The absolute error (AE) and
experimental convergence order (CO) displayed in Table 12 are in line with the theoretical analysis.

Table 12. The absolute error and the experimental convergence order of function f2(x) in Example 12
by numerical scheme (281) with n = 2, 3, 4, 5.

n = 2

α h AE CO α h AE CO

1.1

1
20 1.985528×10−6 -

1.7

1
20 9.316621×10−6 -

1
80 7.806460×10−9 3.9981 1

80 3.661963×10−8 3.9982
1

320 3.050456×10−11 4.0000 1
320 1.431370×10−10 3.9995

1.3

1
20 3.418165×10−6 -

1.9

1
20 1.486627×10−5 -

1
80 1.343913×10−8 3.9981 1

80 5.841643×10−8 3.9983
1

320 5.251979×10−11 3.9998 1
320 2.284402×10−10 3.9988

n = 3

1.1

1
20 3.120201×10−8 -

1.7

1
20 2.053203×10−7 -

1
28 4.223802×10−9 5.9537 1

28 2.780411×10−8 5.9527
1
36 9.422903×10−10 5.9735 1

36 6.204232×10−9 5.9727

1.3

1
20 6.008620×10−8 -

1.9

1
20 3.675466×10−7 -

1
28 8.135715×10−9 5.9531 1

28 4.976658×10−8 5.9530
1
33 1.815230×10−9 5.9730 1

36 1.110461×10−8 5.9727

n = 4

1.1

1
30 3.442344×10−11 -

1.7

1
30 2.889640×10−10 -

1
38 5.303531×10−12 7.9206 1

38 4.449502×10−11 7.9249
1
46 1.164521×10−12 7.9393 1

46 9.752953×10−12 7.9502

1.3

1
30 7.195825×10−11 -

1.9

1
30 5.601931×10−10 -

1
38 1.108608×10−11 7.9213 1

38 8.624075×10−11 7.9260
1
46 2.433728×10−12 7.9402 1

46 1.890060×10−11 7.9506

n = 5

1.1

1
30 2.669378×10−12 -

1.7

1
30 2.756366×10−11 -

1
38 2.057061×10−13 9.5521 1

38 2.007171×10−12 9.8190
1
46 2.983513×10−14 8.8684 1

46 2.368039×10−13 10.2781

1.3

1
30 6.076893×10−12 -

1.9

1
30 5.640743×10−11 -

1
38 4.563785×10−13 9.6687 1

38 4.097488×10−12 9.8250
1
46 6.127250×10−14 9.3784 1

46 4.868649×10−13 10.2198
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Example 13 ([117]). Consider the function f (x) = x(1 − x), x ∈ [0, 1]. This function fails to meet
prerequisites for Equation (281) and Remark 14. We numerically compute its Riesz derivative at x = 0.5 by
using scheme (281) with n = 2. The absolute error (AE) and experimental convergence order (CO) are displayed
in Table 13. One can see that the expected fourth order accuracy is not achieved, which verifies the assertion in
Remark 15.

Table 13. Numerical results of Example 13 by using scheme (281) with n = 2.

α h AE CO α h AE CO

1.1

1
10 5.900848×10−4 -

1.7

1
10 6.101600×10−4 -

1
40 3.674047×10−5 2.0011 1

40 3.779590×10−5 2.0026
1

160 2.295736×10−6 2.0001 1
160 2.360928×10−6 2.0002

1.3

1
10 6.828118×10−4 -

1.9

1
10 2.863584×10−4 -

1
40 4.245071×10−5 2.0015 1

40 1.770032×10−5 2.0032
1

160 2.652296×10−6 2.0001 1
160 1.105502×10−6 2.0002

4. Conclusions

In this paper we focus on numerical approximations to fractional integrals and derivatives,
which are essential for solving fractional differential equations. This work is targeted at systematically
clarifying basic ideas of the existing numerical evaluations, which provides the readers with
comprehensive understanding of numerical methods for fractional calculus.

As the experimental advances further reveal nonlocality, memory, and hereditary properties of
numerous materials and processes, the importance of the fractional calculus is becoming obvious.
We hope that this work, which is designated to compressively review numerical approximations to
fractional calculus, will become the first step in elucidating underlying principles and results of a
wider variety of fractional dynamics.
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