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Abstract: Given a Khalimsky (for short, K-) topological space X, the present paper examines if there
are some relationships between the contractibility of X and the existence of the fixed point property
of X. Based on a K-homotopy for K-topological spaces, we firstly prove that a K-homeomorphism
preserves a K-homotopy between two K-continuous maps. Thus, we obtain that a K-homeomorphism
preserves K-contractibility. Besides, the present paper proves that every simple closed K-curve in the
n-dimensional K-topological space, SCn,l

K , n ≥ 2, l ≥ 4, is not K-contractible. This feature plays an
important role in fixed point theory for K-topological spaces. In addition, given a K-topological space
X, after developing the notion of K-contractibility relative to each singleton {x}(⊂ X), we firstly
compare it with the concept of K-contractibility of X. Finally, we prove that the K-contractibility
does not imply the K-contractibility relative to each singleton {x0}(⊂ X). Furthermore, we deal with
certain conjectures involving the (almost) fixed point property in the categories KTC and KAC, where
KTC (see Section 3) (resp. KAC (see Section 5)) denotes the category of K-topological (resp. KA-) spaces,
KA-) spaces are subgraphs of the connectedness graphs of the K-topology on Zn.

Keywords: fixed point property; adjacency; contractibility; Khalimsky homotopy; Khalimsky
topology; almost fixed point property; digital topology
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1. Introduction

First of all, we recall that in a category an object X has the fixed point property (FPP, for short) if
every self-morphism f of X has a point x ∈ X such that f (x) = x. Since every singleton obviously has
the FPP, when studying the FPP of topological spaces, each topological space X (resp. digital image
(X, k)) is assumed to be connected (resp. k-connected) and |X | ≥ 2. Thus, each set X involving the
FPP considered in this paper is assumed to follow this requirement. As stated in [1], associated with
the Borsuk and the Lefschetz fixed point theorems [2–4], there was the following conjecture [3]: Let X
be a contractible and locally contractible space.

Then it has the FPP for compact mappings. (1)

Indeed, as mentioned in [1], Borsuk proved in [2] that this conjecture is true in finite dimensional
metric spaces. As referred in (1), the contractibility of a metric space X plays an important role in
studying the FPP of a metric space X. Thus, many works [2,5–10] associated with contractibility are
well developed. Meanwhile, it is obvious that a K-topological space is not metrizable [1] because it is
not even a regular space. Hence it cannot be metrizable, according to Nagata-Smirnov theorem [11].
Hereafter, since we often use the term “Khalimsky”, we will use instead of it ‘K-’ for short if there is no
danger of confusion. Indeed, a paper [1] studied the conjecture (1) from the viewpoint of the category
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of K-topological spaces by using a certain new approach. At the moment, a paper [1] developed a new
homotopy for K-topological spaces, the so-called K-homotopy, which can be used in fixed point theory
for K-topological spaces.

Then, a paper [1] proposed a K-topological version of the conjecture (1) and some related works.
At this moment, we need to remind that there are some differences between metric-based fixed
point theory and K-topological-based fixed point theory. Furthermore, unlike the difference between
contractibility and local contractibility in metric-based topological spaces, a paper [1] proved that their
K-topological versions have their own features. Namely, based on a K-homotopy for K-topological
spaces, it turns out that in K-topology whereas every K-topological space is locally contractible, it need
not be K-contractible. To be specific, it turns out that [1] in K-topology, the K-contractibility implies the
local K-contractibility, the converse does not hold. Let us now recall the K-topological version of (1)
stated in [1], as follows: Let X be a K-topological space with K-contractibility.

Then it has the FPP for K-continuous (compact) mappings. (2)

Then, the paper [1] asserted that a simple closed K-curve with four elements in the K-plane, SC2,4
K ,

is K-contractible relative to a certain singleton {x} ⊂ SC2,4
K . Indeed, after intensively studying the

K-contractibility of a K-topological space, in this paper we now prove that SCn,4
K is not K-contractible

and further, it is not K-contractible relative to a certain singleton {x} ⊂ SC2,4
K (Theorem 3 and Remark

4). This means that we now correct the assertion. Namely, SC2,4
K cannot be a space against the

conjecture (2) (see Theorem 3 and Remark 6). In this paper we will often use the notation: For a, b ∈ Z,
[a, b]Z := {x ∈ Z | a ≤ x ≤ b} with K-topology or only a set depending on the situation [12].

The rest of the paper is organized as follows: Section 2 provides basic terminology which
can be used in this paper. Section 3 explores some properties involving K-homotopies and
K-homeomorphisms. Section 4 firstly proves that SCn,l

K , n ≥ 2, l ≥ 4 is not K-contractible. Besides,
we study some properties of “contractibility relative to a certain subset" compared with the typical
contractibility in K-homotopy theory. Finally, we conclude that the conjecture (2) still remains open.
Section 5 investigates some properties of the so-called A-homotopy and A-contractibility. Besides,
in the category KAC, after proposing a new version inherited from the conjecture (2) which is suitable
for studying the FPP or the AFPP for spaces in KAC, we prove that this new conjecture is negative
with respect to the FPP or the almost fixed point property (AFPP, for brevity) [13]. Section 6 concludes
the paper with summary and a further work.

2. Preliminaries

Let Z, N and Zn represent the sets of integers, natural numbers and points in the Euclidean
n-dimensional space with integer coordinates, respectively. Let us now briefly recall some notions
related to K-topology. The Khalimsky line topology on Z, as an Alexandroff space [14], is induced by the
set {[2n− 1, 2n + 1]Z : n ∈ Z} as a subbase [14]. Furthermore, the product topology on Zn induced
by (Z, κ) is called the Khalimsky product topology on Zn (or Khalimsky n-dimensional space) which is
denoted by (Zn, κn). A point x = (x1, x2, · · · , xn) ∈ Zn is pure open if all coordinates are odd; and it is
pure closed if each of the coordinates is even [15]. The other points in Zn are called mixed [15]. For a
point p := (p1, p2) in (Z2, κ2), its smallest open neighborhood SOK(p) is obtained, as follows [15].
For m, n ∈ Z,

SOK(p) :=


{p} if p = (2m + 1, 2n + 1),

{(p1 − 1, p2), p, (p1 + 1, p2)} if p = (2m, 2n + 1),

{(p1, p2 − 1), p, (p1, p2 + 1)} if p = (2m + 1, 2n),

[2m− 1, 2m + 1]Z × [2n− 1, 2n + 1]Z if p = (2m, 2n).

(3)
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In this paper each space X(⊂ Zn) related to K-topology is considered to be a subspace (X, κn
X)

induced by (Zn, κn) [15,16].
Let us now recall the structure of (Zn, κn). In each of the spaces of Figures 1–6, a black jumbo dot
means a pure open point and further, the symbols� and •mean a pure closed point and a mixed point,
respectively. Many studies have examined various properties of a K-continuous map, connectedness,
K-adjacency, a K-homeomorphism [15–20].

Let us recall the following terminology for studying K-topological spaces.

Definition 1. [16] Let X := (X, κn
X) be a K-topological space.

(1) Distinct points x, y ∈ X are said to be K-adjacent if x ∈ SOK(y) or y ∈ SOK(x).
(2) We say that a sequence (xi)i∈[0,l]Z , l ≥ 2 in X is a K-path from x to y if x0 = x, xl = y and each point xi

is K-adjacent to xi+1 and i ∈ [0, l]Z. The number l is called the length of this path.
(3) We say that an (injective) sequence (xi)i∈[0,l]Z in X is a simple K-path if xi and xj are K-adjacent if and

only if | i− j | = 1.
(4) A simple closed K-curve with l elements in Zn, n ≥ 2, l ≥ 4, denoted by SCn,l

K , is a simple K-path (or just
a sequence) (xi)i∈[0,l−1]Z in Zn such that xi and xj are K-adjacent if and only if | i− j | = ±1(mod l).

For instance, we can see SC3,4
K in Figure 4.

3. K-Homotopies and K-Homeomorphisms

In this section we examine if a K-homeomorphism preserves a K-homotopy between two
K-continuous maps. Let us now recall the notion of K-continuity of a map from f : X → Y, where
X := (X, κn0

X ) and Y := (Y, κn1
Y ), as follows:

f (SOK(x)) ⊂ SOK( f (x)), (4)

because each point x in a K-topological space X always has SOK(x) ⊂ X, where SOK(x) (resp.
SOK( f (x))) is the smallest open set of x (resp. f (x)) in X(resp. Y).

Using spaces X := (X, κn
X) and K-continuous maps, we have a topological category, denoted by

KTC, consisting of the following two data [16]:

(1) For any set X ⊂ Zn, the set of spaces (X, κn
X) as objects of KTC denoted by Ob(KTC);

(2) for all pairs of elements in Ob(KTC), the set of all K-continuous maps between them as
morphisms.

To study K-topological spaces, we need to recall a K-homeomorphism as follows:

Definition 2. [15,16] For two spaces X := (X, κn0
X ) and Y := (Y, κn1

Y ), a map h : X → Y is called a
K-homeomorphism if h is a K-continuous bijection, and h−1 : Y → X is K-continuous.

Owing to (4), the Alexandroff topological structure of a K-topological space and the bijection of a
K-homeomorphism, we obtain the following:

Proposition 1. A K-homeomorphism h : X → Y implies that for any point x ∈ X,

h(SOK(x)) = SOK(h(x)). (5)

In view of (5), we can represent a K-homeomorphism as follows: A map h : X → Y is a
K-homeomorphism if and only if h is a bijection satisfying the property h(SOK(x)) = SOK(h(x)) for
any point x ∈ X.
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Example 1. Consider the two K-topological spaces (X, κ2
X) and (Y, κ2

Y) in Figure 1. Although they have
the same shape with the same cardinality, they are not K-homeomorphic. To be precise, for the points p1 :=
(0, 0, 0), p2 := (2, 0, 0) ∈ X, we obtain

| SOK(p1) | = 9 and | SOK(p2) | = 11,

where | · | mean the cardinality of the given set. However, the space (Y, κ2
Y) does not contain any points whose

cardinalities are 9 or 11. Thus, we complete the proof contrary to (5).

(0, 0, 0)


(2, 0, 0)


(1, -1, 0)


(0, 0, 1)


(1, 1, 1)


(1, 0, 1)


(0, 1, 2)


(0, 2, 2)
 (2,2, 2)


X
 Y


Figure 1. Comparison between the two K-topological spaces X := (X, κ2
X) and Y := (Y, κ2

Y) in terms of
a K-homeomorphism.

Let us recall the notion of K-homotopy for K-topological spaces. Consider (X, κn
X) and

([a, b]Z, κ[a,b]Z), where [a, b]Z ∈ {[0, m]Z, [1, m + 1]Z}.

Definition 3. [1] In KTC, for two spaces X := (X, κn0
X ) and Y := (Y, κn1

Y ), let f , g : X → Y be K-continuous
functions. Suppose there exist a K-interval ([a, b]Z, κ[a,b]Z), and a function F : X × ([a, b]Z, κ[a,b]Z) → Y
such that
(∗ 1) for all x ∈ X, F(x, a) = f (x) and F(x, b) = g(x);
(∗ 2) for all x ∈ X, the induced function Fx : ([a, b]Z, κ[a,b]Z) → Y defined by Fx(t) = F(x, t) for all
t ∈ ([a, b]Z, κ[a,b]Z) is K-continuous;
(∗ 3) for all t ∈ [a, b]Z, the induced function Ft : X → Y defined by Ft(x) = F(x, t) for all x ∈ X is
K-continuous.

Then we say that F is a K-homotopy between f and g, and f and g are K-homotopic in Y. In addition, we
use the notation f 'K g.

Example 2. Consider certain three K-continuous self-maps f , g, and h of X shown in Figure 2 with their
Im( f ), Im(g), and Im(h) in Figure 2. Then we observe 1X 'K f , 1X 'K g, and f 'K h (the improvement of
Figure 3c of [1]).

Remark 1. In view of the properties (∗ 2) and (∗ 3) of Definition 3, for the homotopy F : X× [a, b]Z → Y, the
set X× ([a, b]Z, κ[a,b]Z) need not be a subspace of the product space (Zn0+1, κn0+1). Namely, we may consider
it as just a Cartesian product of two K-topological spaces X and ([a, b]Z, κ[a,b]Z).
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X


Im(f)


Im(g)


Im(h)


Figure 2. Several types of K-homotopies in KTC, 1X 'K f , 1X 'K g, and f 'K h.

Let us now examine if a K-homeomorphism preserves a K-homotopy between two
K-continuous maps.

Theorem 1. A K-homeomorphism preserves a K-homotopy.

Proof. Suppose a K-homotopy between two K-continuous maps f and g. Namely, given two spaces
X := (X, κn0

X ), Y := (Y, κn1
Y ), and the two K-continuous functions f , g : X → Y, we consider

a K-homotopy F : X × ([a, b]Z, κ[a,b]Z) → Y supporting f 'K g. Besides, further assume two
K-homeomorphisms h1 : X → X′ and h2 : Y → Y′, where X′ := (X′, κn0

X′) and Y′ := (Y′, κn1
Y′ ).

Indeed, the dimensions n0 and n1 of X′ and Y′ need not be equal to those of X and Y, respectively.
Then, it is obvious that the two composites

h2 ◦ f ◦ h−1
1 and h2 ◦ g ◦ h−1

1

are also K-continuous maps from X′ to Y′. To be specific, based on the given K-homotopy and the two
K-homeomorphisms h1 and h2, let us now define the new map

H := h2 ◦ F ◦ h−1
1 : X′ × [a, b]Z → Y′.

Then, we obtain the following:
(F 1) for all x′ ∈ X′, H(x′, a) = h2 ◦ f ◦ h−1

1 (x′) and F(x′, b) = h2 ◦ g ◦ h−1
1 (x′);

(F 2) for all x′ ∈ X′, the induced function Hx′ : ([a, b]Z, κ[a,b]Z)→ Y′ defined by Hx′(t) = H(x′, t) for
all t ∈ ([a, b]Z, κ[a,b]Z) is K-continuous;
(F 3) for all t ∈ [a, b]Z, the induced function Ht : X′ → Y′ defined by Ht(x′) = H(x′, t) for all x′ ∈ X′

is K-continuous.
Thus, we conclude that H is a K-homotopy between h2 ◦ f ◦ h−1

1 and h2 ◦ g ◦ h−1
1 , i.e., h2 ◦ f ◦

h−1
1 'K h2 ◦ g ◦ h−1

1 .

Indeed, Theorem 1 will be strongly used in Section 4.
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4. The Non-K-contractibility of SCn,4
K and the Non-FPP of SCn,l

K

In this section, given a K-topological space X, after developing the notion of K-contractibility
relative to each singleton {x0}(⊂ X), we compare it with the concept of K-contractibility of X. Finally,
we prove that the K-contractibility does not imply the K-contractibility relative to each singleton
{x0}(⊂ X). Besides, every SCn,l

K , n ≥ 2, l ≥ 4, is proved not to be K-contractible. Indeed, this feature
is quite different from that of the (3n − 1)-contractibility of a simple closed (3n − 1)-curve with four
elements in Zn (see [21] for more details). Based on this fact, we correct the assertion relating to the
K-contractibility of SC2,4

K in [1]. Then, we deal with the issue proposed in (2). To do this work, we need
to recall the notion of a K-homotopy involving with both contractibility and local contractibility for
K-topological spaces.

Definition 4. [1] In KTC, we say that a K-topological space X is K-contractible if the identity map 1X is
K-homotopic in X to a constant map with a singleton consisting of a certain point x ∈ X. We use the notation
1X 'K C{x}.

Motivated by many kinds of homotopy equivalences for digital images [16,18,22,23], the
K-topological version of them were established in [1]. To classify K-topological spaces in terms
of a certain homotopy equivalence in KTC, we use the following:

Definition 5. [1] In KTC, for two spaces X := (X, κn0
X ) and Y := (Y, κn1

Y ), if there are K-continuous maps
h : X → Y and l : Y → X such that l ◦ h is K-homotopic to 1X and h ◦ l is K-homotopic to 1Y, then the map
h : X → Y is called a K-homotopy equivalence. We use the notation X 'K·h·e Y.

Owing to Theorem 1, we obtain the following:

Remark 2. A K-homeomorphism preserves a K-homotopy equivalence and the K-contractibility.

Definition 6. Consider a subspace (B, κn0
B ) and B ⊂ X. Then we call (X, B) a K-topological pair. Then, with

the K-homotopy in Definition 3, we further consider the following:
(∗ 4) For all t ∈ [a, b]Z, assume that Ft(x) = f (x) = g(x) for all x ∈ B.

Then we call F an K-homotopy relative to B between f and g, and we say that f and g are K-homotopic
relative to B in Y, f 'K·rel.B g in symbol.

Definition 7. We say that (X, κn
X) is K-contractible relative to a certain singleton {x}(⊂ X) if X 'K·h·e {x}

relative to a certain singleton {x}(⊂ X). Then we use the notation 1X 'K·rel.{x} C{x}.

Using a method similar to the proof of Theorem 1, we obtain the following:

Remark 3. A K-homeomorphism preserves the K-contractibility of X relative to a certain singleton {x}(⊂ X).

Let us compare the K-contractibility of a K-topological space X with the K-contractibility relative
to each singleton {x}(⊂ X). Namely, although the K-contractibility relative to each singleton {x}(⊂ X)

implies the K-contractibility of X, the converse does not hold, as follows:

Theorem 2. The K-contractibility of X does not imply the K-contractibility relative to each singleton
{x}(⊂ X).

Proof. To prove the assertion, we consider the space X := (X, κ3
X) in Figure 3.
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(Step 1) It is obvious that the given space X is K-contractible relative to the singleton {p}, i.e.,
X 'K·rel.{p} C{p}, where

p ∈
{
(0, 0, 0), (0, 1, 0), (1,−1, 0), (1, 0, 0),

(1, 1, 0), (2,−1, 0), (2, 0, 0), (2, 1, 0)

}
⊂ X.

(Step 2) We prove that the given space X is not K-contractible relative to the singleton {q} ⊂ X, where

q ∈ {(0, 0, 1), (0, 1, 1), (1,−1, 1), (1, 1, 1), (2,−1, 1), (2, 0, 1), (2, 1, 1)}. (6)

Namely, we may consider the point q to be a point in the second level of the set X of Figure 3.
Without loss of generality, we may take any point q in (6) and prove that X is not K-contractible

relative to the singleton {q}. For convenience, let us consider q := (1, 1, 1). Then we prove X is not
K-contractible relative to the singleton {q}. Using the ‘reductio ad absurdum’, suppose that there is a
K-homotopy, F : X× ([a, b]Z, κ[a,b]Z)→ X, satisfying 1X 'K·rel.{q} C{q}. Let us now consider the point
x := (2, 0, 0). Then we obtain

SOK(x) = X \ {(0, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1)}.

According to the K-homotopy satisfying 1X 'K·rel.{q} C{q}, based on (6), we may assume the
mappings of the point x by F in the following way:

x → p( 6= x) ∈ SOK(q) (7)

or

x → p( 6= x) ∈ SOK((0, 0, 0)). (8)

In case we follow the mapping (7), we observe that the mapping does not support the property
(∗2) of Definition 3. In case we take the mapping (8), we find that the mapping does not support the
property (∗2) of Definition 3 either. The other cases are similarly proved by using the above method.
Thus, we conclude that for the point q of (6), there is no K-homotopy supporting 1X 'K·rel.{q} C{q}.

(0, 0, 0)


(2, 0, 0)


(1, -1, 0)


(0, 0, 1)


(1, 1, 1)


Figure 3. The K-contractibility of X need not imply the K-contractibility relative to the singleton {q}(⊂
X), q = (1, 1, 1).

Based on the properties of contractibility, regarding the conjecture (1), we need to deal with the
notion of local K-contractibility. As referred in (1), the notions of contractibility and locally contractibility
play important role in many areas of mathematics [2,5,6,24]. In typical homotopy theory, we say
that a contractible space is precisely one with the same homotopy type of a singleton [24]. In typical
mathematics, it is well known that contractible spaces are not necessarily locally contractible nor vice
versa [11] (see [1] for more details). To deal with the conjecture (2), we need to recall the K-topological
version of the local contractibility, as follows:
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Definition 8. [1] In KTC, a K-topological space (X, κn
X) is said to be locally K-contractible if it has a basis of

open subsets each of which is a K-contractible space under the subspace K-topology.

Proposition 2. [1] Every space in KTC is locally contractible.

A paper [1] proved the following:

Lemma 1. [1] Any K-path in (Zn, κn) is K-contractible.

Proposition 3. [1] In KTC, the FPP is a K-topological invariant.

For SCn,4
K , n ≥ 2, we prove the following which can be essentially used in Section 4.

Theorem 3. SCn,4
K is not K-contractible, n ≥ 2.

Proof. Suppose SCn,4
K is K-contractible. By Remark 2, since a K-homeomorphism preserves

the K-contractibility and SCn,4
K is K-homeomorphic to SC3,4

K in Figure 4, we may suppose the
K-contractibility of SC3,4

K . Then we must prove that there is a K-homotopy making SC3,4
K K-contractible,

i.e., 1SC3,4
K
'K C{x} for a certain point x ∈ SC3,4

K . For convenience, put SC3,4
K := {c0, c1, c2, c3} (see

Figure 4). Take any singleton as a subset of SC3,4
K for the examination of the K-contractibility of SC3,4

K .
Without loss of generality, we may take a singleton {c0} or {c1} because the former is pure closed point
and the latter is pure open point. Then we prove that 1SC3,4

K
cannot be K-homotopic to the constant

maps C{c0} and C{c1}. First suppose 1SC3,4
K

is K-homotopic to C{c0}. Then, for some b ∈ Z, consider a
certain K-homotopy

F : SC3,4
K × [0, b]Z → SC3,4

K (9)

satisfying 1SC3,4
K
'K C{c0}. Then the point c2 must be mapped by the homotopy F onto the point c0, c1

or c3.
(Case 1): In case c2 is assumed to be mapped onto the point c0, the mapping does not satisfy the
property (∗2) of Definition 2 because of the non-K-continuity of the mapping from the point c2 to c0,
contrary to the given property (∗ 2) of the K-homotopy (9).
(Case 2): As another case, let us now assume that the point c2 is mapped by the homotopy F onto the
point c1. Since

SOK(c2) = {c1, c2, c3} and SOK(c1) = {c1},

owing to the property of the K-homotopy, F must map SOK(c2) onto SOK(c1) (see the property (∗ 3)
of Definition 2). Then the homotopy F does not satisfy the property (∗2) of Definition 2 because of the
non-K-continuity of the mapping from the point c3 to c1, contrary to the given K-homotopy (9). Finally,
let us now assume that the point c2 is mapped by the homotopy F onto the point c3. Then, using a
method similar to the just above case, this case is also proved to be negative. Thus, we conclude that
there is no K-homotopy supporting 1SC3,4

K
'K C{c0}.

Next, using a method similar to the proof of the above assertion that 1SC3,4
K

is not K-homotopic
to the constant map C{c1}, we prove that there is no K-homotopy supporting 1SC3,4

K
'K C{c1} or

1SC3,4
K
'K C{c3}. In view of the above all cases, we have a contradiction to the hypothesis of the

K-contractibility of SCn,4
K . Finally, we complete that SCn,4

K is not K-contractible.
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SC

3, 4


2

c


1

c


0

c


3

c


(1, -1, -1)


(2, 0, 0)


(0, 0, 0)


(1, 1, 1)


2

c


1

c


0

c


3

c


(1, -1, -1)


(2, 0, 0)


(0, 0, 0)


(1, 1, 1)


2

c


1

c


0

c


3

c


(1, -1, -1)


(2, 0, 0)


(0, 0, 0)


(1, 1, 1)


K


Figure 4. Explanation of the non-K-contractibility of SC3,4
K .

In view of the proof of Theorem 3, we observe the following:

Remark 4. SCn,4
K is not K-contractible relative to a certain singleton {x} ⊂ SCn,4

K , n ≥ 2.

By Theorem 3 and Remark 4, we obtain the following (correction of the assertion of the
K-contractibility of SC2,4

K of Lemma 4.3 of [1]).

Remark 5. Every SCn,l
K is neither K-contractible nor K-contractible relative to a certain singleton {x} ⊂ SCn,l

K ,
n ≥ 2, l ≥ 4.

This feature is quite different from the k-contractibility of simple closed k-curve with four elements
in Zn, n ≥ 2, in typical digital topology using digital k-graphs in Zn, n ≥ 2, k = 3n − 1 (see [21,23,25]).

Let us now move onto the conjecture posed in (2). We say that a K-topological space (X, κn
X) has

the FPP if every K-continuous self-map f of X has a point x ∈ X such that f (x) = x.
Let us now study some properties of K-topological spaces from the viewpoint of fixed point theory.
In KTC, we say that a K-topological invariant is a property of a K-topological space which is

invariant under K-homeomorphisms.

Theorem 4. [1,26] Let X be a simple K-path in the n-dimensional K-topological space. Then it has the FPP.

Theorem 5. [26,27] Let (X, κ2
X) be a convex and compact K-plane as a subspace of (Z2, κ2), where X :=

[a, b]Z × [c, d]Z. Then it has the FPP.

Corollary 1. SCn,l
K does not have the FPP, n ≥ 2, l ≥ 4.

For SCn,l
K := (xi)i∈[0,l−1]Z , consider the self-map f of SCn,l

K given by f (xi) = xi+2(mod l). Then it is
clear that f is a K-continuous map without any fixed point [1].

Regarding the conjecture (2), owing to Lemma 1, Theorems 3–5, Remark 5 and Corollary 1, we
have observed that the conjecture (2) seems to be positive. However, we now obtain the following:

Remark 6. In KTC, the conjecture (2) still remains open.
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Let us now consider another category, the so-called KDTC, which means the KD-topological
category in [17,28]. To do this work, let us just recall two concepts for objects and morphisms for this
category. For any set X ⊂ Zn, let Xn,k be a space (X, κn

X) with digital k-connectivity [17]. For two
spaces X := Xn1,k1 and Y := Yn2,k2 , a map f : X → Y is called KD-(k1, k2)-continuous at a point x ∈ X
[17] if f is K-continuous at the point x and further, digitally (k1, k2)-continuous at a point x. In case f is
KD-(k1, k2)-continuous at every point x ∈ X, we say that f is a KD-(k1, k2)-continuous map. In other
words, a map with the KD-(k1, k2)-continuity is equivalent to the map satifying both K-continuity and
the typical digital (k1, k2)-continuity in [21]. The category KDTC consists of the following two data.

(1) The set of spaces Xn,k with digital k-connectivity as objects of KDTC denoted by Ob(KDTC);
(2) for all pairs of elements in Ob(KDTC), the set of all KD-continuous maps between them as

morphisms.

A paper [28] established the notion of KD-(k1, k2)-homotopy in the category KDTC (see
Definition 6 of [28]) by replacing Obj(KTC) (resp. Mor(KTC)) with Obj(KDTC) (resp. Mor(KDTC)).
Based on this replacement, it also formulated the notion of KD-k-contractibility considered as
the KDTC-version of Definitions 3 and 6 using (∗ 1)–(∗ 4) in the present paper. Namely, for
X := Xn,k ∈ Obj(KDTC), X is called KD-kcontractible relative to a certain singleton {x}(⊂ X) (or
KD-kcontractible for short) if 1X is KD-k-homotopic to a constant map C{x} relative to a certain singleton
{x}(⊂ X). Then we use the notation 1X 'KD·k·rel.{x} C{x}. Then, the paper asserted that the spaces
Y, Z ∈ Obj(KDTC) are KD-8contractible (see Example 4.1 of [28]). However, we need to correct it
as follows:

Example 3. (correction of Example 4.1 of [28]) Each of Y, Z ∈ Obj(KDTC) in Figure 5 is not
KD-8-contractible. To be specific, by Theorem 3 and Remark 4, we observe the non-KD-8-contractibility
of Y. Similarly, we see the non-KD-8-contractibility of Z.

Y


1

y


0

y


2

y


3

y


(0,0)

Z


Figure 5. Explanation of the non-KD-8-contractibility of each of Y and Z.

5. Homotopies in the Category KAC and a Certain Conjecture Involving the FPP in KAC

Unlike the conjecture (2) studied in Section 4, let us now consider the conjecture in the more
generalized category, the so-called category KAC which is a topological graph version of KTC. Namely,
after establishing KAC-versions of the K-contractibility and the local K-contractibility, we may pose a
more generalized version of (2) (see (11) and (13)). This approach can facilitate the study of the FPP
and the almost fixed point property (AFPP, for short) of some digital spaces. Indeed, the K-homotopy
in KTC in Section 4 is focused on studying the FPP for K-topological spaces. Let us now generalize
the conjecture (2) with respect to the FPP and the almost fixed point property (AFPP, for brevity) in
KAC (see (11) and (13) for more details). To do this work, objects and morphisms in KAC are certainly
assumed, as follows: Considering K-topological spaces (X, κn

X) with K-adjacency (see Definition
9(1)), we call them KA-spaces which are objects of KAC (see Definition 9). Indeed, a KA-space is a
K-topological graph with a K-adjacency inherited from a K-topological space (X, κn

X) (see Definition 9).
Besides, regarding morphisms in KAC, we will use the so-called A-maps (see Definition 10).
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Definition 9. [29] (1) A KA-space is a set X with K-adjacency derived from a K-topological space (X, κn
X).

Namely, a KA-space X is a K-topological graph inherited from the K-topological space (X, κn
X) with the adjacency

between two distinct points introduced in Definition 1(1).
(2) For a KA-space X := (X, κn

X) and a point p ∈ X, we define a K-adjacency neighborhood of p to be
the set

ANX(p) := AX(p) ∪ {p}

which is called an A-neighborhood of p, where AX(p) = {x ∈ X | x is K-adjacent to p.}.

As mentioned above, since a KA-space X is totally derived from the K-topological space (X, κn
X),

we often denote a KA-space X with X := (X, κn
X) or X in short. Hereafter, for convenience, in a

KA-space X := (X, κn
X), we will use AN(p) instead of ANX(p) if there is no danger of ambiguity.

In view of (3) and the notion of AN(x), we obtain the following:

Lemma 2. Given a KA-space X := (X, κn
X) and a point x ∈ X,

SOK(x) ⊂ AN(x). (10)

Proof. For a KA-space X := (X, κn
X), for a point x ∈ X, since

AN(x) = {y ∈ X | x ∈ SOK(y) or y ∈ SOK(x)},

the proof is completed.

For a KA-space X and a point x ∈ X, since for x ∈ X we always have AN(x) ⊂ X, we can develop
an A-map and an A-isomorphism (see Definitions 10 and 11).

Definition 10. [29] Given two KA-spaces X := (X, κn0
X ) and Y := (Y, κn1

Y ), we say that a function f : X → Y
is an A-map at x ∈ X if

f (AN(x)) ⊂ AN( f (x)).

Furthermore, we say that a map f : X → Y is an A-map if the map f is an A-map at every point x ∈ X.

In view of Definition 10, we observe that an A-map f : X → Y implies a map preserving
connected subsets of X into connected ones [29]. For instance, let us consider the self-map f of an
SCn,l

K := (xi)i∈[0,l−1]Z , n ≥ 2, such that f (xi) = xi+1(mod l), l ≥ 4. Whereas f is an A-map, it is not a
K-continuous map [29].

Using both KA-spaces and A-maps, we establish the so-called KA-category [29], denoted by KAC,
consisting of the following data.

(1) The set of KA-spaces as objects, denoted by Ob(KAC),
(2) for every ordered pair of objects (X, κn0

X ) and (Y, κn1
Y ), the set of all A-maps f : (X, κn0

X )→ (Y, κn1
Y )

as morphisms.

As observed in the above self-map f of an SCn,l
K , comparing a K-continuous map and an A-map,

owing to (10), we obtain the following:

Theorem 6. (Theorem 4.5 of [29]) Given a map from X := (X, κn0
X ) to Y := (Y, κn1

Y ), a K-continuous map
implies an A-map. But the converse does not hold.

Proof. Owing to (10) and Definition 10, we complete the proof.

Based on the notion of an A-map, we obtain the following:
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Definition 11. [29] For two KA-spaces X := (X, κn0
X ) and Y := (Y, κn1

Y ), a map h : X → Y is called an
A-isomorphism if h is a bijective A-map (for brevity, A-bijection) and if h−1 : Y → X is an A-map.

Hereafter, we denote an A-isomorphism between KA-spaces X and Y with X ≈A Y.
In view of Definition 11, we obtain the following:

Remark 7. An A-isomorphism h : X → Y implies that for any point x ∈ X,

h(AN(x)) = AN(h(x)).

In view of Remark 7, we can represent an A-isomorphism as follows: A map h : X → Y is an
A-isomorphism if and only if h is a bijection satisfying the property h(AN(x)) = AN(h(x)) for any
point x ∈ X.

Definition 12. [29] A simple closed KA-curve with l elements in Zn, n ≥ 2, l ≥ 4, denoted by SCn,l
A :=

(xi)i∈[0, l−1]Z , is an (injective) sequence (xi)i∈[0, l−1]Z such that xi and xj are K-adjacent if and only if |i− j| =
±1(mod l).

Let us now study an A-homotopy in KAC [30]. For a space X ∈ Ob(KAC), let B be a subset
of X. Then (X, B) is called a KA-space pair. Motivated by many kinds of homotopy equivalences
[16,18,22,23,28,31], let us consider the notions of an A-homotopy relative to a subset B ⊂ X [30],
A-contractibility [30] and an A-homotopy equivalence [30,32,33].

Definition 13. [30,33] Let (X, B) and Y be a space pair and a space in Ob(KAC), respectively. Let f , g : X →
Y be A-maps. Suppose there exist m ∈ N and a function F : X× [0, m]Z → Y such that
(•1) for all x ∈ X, F(x, 0) = f (x) and F(x, m) = g(x);
(•2) for all x ∈ X, the induced function Fx : [0, m]Z → Y given by
Fx(t) = F(x, t) for all t ∈ [0, m]Z is an A-map;
(•3) for all t ∈ [0, m]Z, the induced function Ft : X → Y given by Ft(x) = F(x, t) for all x ∈ X is an A-map.
Then we say that F is an A-homotopy between f and g.
(•4) Furthermore, for all t ∈ [0, m]Z, assume that Ft(x) = f (x) = g(x) for all x ∈ B.

Then we call F an A-homotopy relative to B between f and g, and we say that f and g are A-homotopic
relative to B in Y, f 'A·rel.B g in symbol.

In Definition 13, if B is a certain singleton of X, then we say that F is a pointed A-homotopy at
{x0}. If, for some x0 ∈ X, 1X is A-homotopic to the constant map C{x0} relative to {x0}, then we say
that (X, x0) is pointed A-contractible (A-contractible if there is no danger of ambiguity) [28]. Let us now
recall an A-homotopy equivalence and A-contractibility in KAC.

Definition 14. [28] In KAC, for two spaces X and Y, if there are A-maps f : X → Y and g : Y → X such that
g ◦ f is A-homotopic to 1X and f ◦ g is A-homotopic to 1Y, then the map f : X → Y is called an A-homotopy
equivalence. We use the notation X 'A·h·e Y.

Definition 15. A KA-space X is said to be locally A-contractible if for every x ∈ X and every AN(x)(3 x) of
X is A-contractible.

Owing to Lemma 1 and Theorem 6, it is obvious that a KA-space X is locally A-contractible.

Lemma 3. Every KA-space is locally A-contractible.

Proof. For a KA-space X, for each point x ∈ X, AN(x)(3 x) is A-contractible in terms of just an
A-homotopy with one step.
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Let us propose a certain conjecture in KAC which is the KAC-version of (2) in the KTC. Namely,
let X be a KA-space with A-contractibility.

Then it has the FPP for A-mappings. (11)

Owing to Lemma 1 and Theorem 6, we obtain the following:

Proposition 4. (1) An A-homotopy in KAC is a generalization of a K-homotopy in KTC.
(2) A-contractibility is a generalization of the K-contractibility relative to a certain singleton (see

Definition 7).

Proof. Since an A-homotopy is define by using the properties (•1)–(•3) of Definition 13, after replacing
K-continuous maps in Definition 3 with A-maps, owing to Theorem 6, we prove the assertion.

Owing to Lemma 2, Theorem 6, and Remarks 2 and 3, we obtain the following:

Proposition 5. (1) An A-isomorphism preserves an A-homotopy between two A-maps.
(2) An A-isomorphism preserves an A-homotopy equivalence.
(3) An A-isomorphism preserves an A-contractibility of a KA-space.

Proof. (1) Using a method similar to the proof of Theorem 6, we can complete the proof. To be specific,
after replacing K-continuous maps (resp. K-homeomorphism and K-homotopy) used in Theorem 6
with A-maps (resp. A-isomorphism and A-homotopy), we only follow the proof of Theorem 6, the
proof is completed.

(2) Based on the fact (1), the proof is completed.
(3) Owing to the property (1), the proof is also completed.

In KAC, we say that a KA-space X := (X, κn
X) has the FPP if every self-A-map f of X has a point

x ∈ X such that f (x) = x.

Lemma 4. In KAC, the FPP is invariant up to A-isomorphism.

Proof. Consider a KA-space X := (X, κn0
X ) with the FPP. With an A-isomorphism i : X → Y, where

Y := (Y, κn1
Y ), we prove that Y has the FPP. Let f be any self-A-map of Y. Then consider the composite

f := i ◦ g ◦ i−1 : Y → Y, where g is a self-A-map of X. Owing to the hypothesis, assume x ∈ X is
a fixed point for a self-A-map g of X. Due to the A-isomorphism i, there is a point y ∈ Y such that
i(x) = y. Let us consider the mapping

g(x) = i−1 ◦ f ◦ i(x) = i−1( f (i(x))) = i−1( f (y)). (12)

Thus, from (12) we obtain i(g(x)) = f (y) and further, owing to the hypothesis of the FPP of X and the
A-isomorphism i, we obtain

i(g(x)) = i(x) = y = f (y),

which implies that the point i(x) := y is a fixed point of the map f , which implies that Y has the
FPP.

Using Lemma 4 and the local A-contractibility of a KA-space, we obtain the following:

Theorem 7. The conjecture (11) is negative in KAC.

Proof. We prove that SCn,4
A := {c0, c1, c2, c3} is A-contractible. To be specific, owing to Lemma 4, we

suffice to prove that SC3,4
A is both locally A-contractible and A-contractible. It is obvious that SC3,4

A
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is locally A-contractible because for any point x ∈ SC3,4
A , AN(x) is obviously A-contractible, e.g.,

1AN(x) 'A·rel.{x} C{x}. Let us now prove the A-contractibility of SC3,4
A , as follows:

Consider the map (see Figure 6)

H : SC3,4
A × [0, 2]Z → SC3,4

A

defined by 
H(x, 0) = 1SC3,4

A
,

H(x, 1) = c1, where x ∈ {c1, c2} and H(x, 1) = c0, where x ∈ {c0, c3},

H(x, 2) = c1 where x ∈ SC3,4
A .

Then the map H is an A-homotopy on SC3,4
A making

1SC3,4
A
'A·rel.{c1} C{c1}.

Finally, using Proposition 5, we observe that SCn,4
A is A-contractible.

Next, consider a self-map f of SCn,4
A := {c0, c1, c2, c3} defined by f (ci) = ci+1(mod 4). Then the map is

obviously an A-map which does not support the FPP of SCn,4
A .

SC

3, 4


2
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1

c


0

c


3

c


(1, -1, -1)


(2, 0, 0)


(0, 0, 0)


(1, 1, 1)


2
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1

c


0

c


3

c


(1, -1, -1)


(2, 0, 0)


(0, 0, 0)


(1, 1, 1)
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0

c
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(1, -1, -1)


(2, 0, 0)


(0, 0, 0)


(1, 1, 1)


A


H(x,1)


H(x,2)


Figure 6. Explanation of the A-contractibility of SC3,4
A .

Remark 8. In Theorem 7, although we proved 1SC3,4
A
'A·rel.{c1} C{c1}, using a same method as the proof of

Theorem 7, we can obtain that for any point x ∈ SC3,4
A , 1SC3,4

A
'A·rel.{x} C{x}.

In KAC, we say that a KA-space X := (X, κn
X) has the almost (or approximate) fixed point property

(AFPP, for short) if every self-A-map f of X has a point x ∈ X such that f (x) = x or f (x) is K-adjacent
to x. Regarding the conjecture (11) related to FPP, we now propose the following: Let X be a KA-space
with A-contractibility.

Then it has the AFPP for A-mappings. (13)

In view of Theorem 7, we obtain the following:

Corollary 2. The conjecture (13) is negative.
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Proof. Although SCn,4
A := {c0, c1, c2, c3} is A-contractible, n ≥ 2, for the self-A-map f of SCn,4

A defined
by f (ci) = ci+2(mod 4), we find that this map f does not support the AFPP of SCn,4

A .

6. Concluding Remark and Further Work

We have proved that a K-homeomorphism preserves a K-homotopy, a K-homotopy equivalence
and K-contractibility. Besides, we have firstly proved that SCn,l

K is not K-contractible, n ≥ 2, l ≥ 4.
In addition, we proved that the K-contractibility of X does not implies the K-contractibility relative to
each singleton {x0}(⊂ X). Using these properties, we confirmed that in KTC, the conjecture (2) can
be positive. Indeed, this feature is very different from that of the k-contractibility of a simple closed
k-curve followed from the Rosenfeld’s approach [25]. In addition, the conjecture (2) is slightly more
generalized version of the conjecture (1.3) of [1] because the K-contractibility involving (1.3) of [1]
is equal to the the K-contractibility relative to a certain singleton (see Definition 7 in the present paper).
Next, we proved that in KAC the conjectures (11) and (13) are negative.

As a further work, after developing new digital topological structures on Zn or a certain space
[34], we can propose a new type of homotopy on the newly-established digital topological spaces.
Furthermore, we can examine if the conjecture of (2) is positive or not, and we finally use them in
applied sciences such as image processing, homotopic thinning and so on.
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