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Abstract: Let VIP indicate the variational inequality problem with Lipschitzian and pseudomonotone
operator and let CFPP denote the common fixed-point problem of an asymptotically nonexpansive
mapping and a strictly pseudocontractive mapping in a real Hilbert space. Our object in this article
is to establish strong convergence results for solving the VIP and CFPP by utilizing an inertial-like
gradient-like extragradient method with line-search process. Via suitable assumptions, it is shown that
the sequences generated by such a method converge strongly to a common solution of the VIP and CFPP,
which also solves a hierarchical variational inequality (HVI).
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1. Introduction

Throughout this paper we assume that C is a nonempty, convex and closed subset of a real Hilbert
space (H, || - ||), whose inner product is denoted by (-, -). Moreover, let Pc denote the metric projection of
H onto C.

Suppose A : H — H is a mapping. In this paper, we shall consider the following variational inequality
(VI) of finding x* € C such that

(x —x*,Ax*) >0, VxeC. 1)
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The set of solutions to Equation (1) is denoted by VI(C, A). In 1976, Korpelevich [1] first introduced
an extragradient method, which is one of the most popular approximation ones for solving Equation (1)
till now. That is, for any initial 1y € C, the sequence {u, } is generated by
vy = Pe(uy — TAuy), )

Upy1 = Pe(up — tAvy), VYn >0,

where T is a constant in (0, 1) for L > 0 the Lipschitz constant of mapping A. In the case where
VI(C, A) # @, the sequence {u,} constructed by Equation (2) is weakly convergent to a point in VI(C, A).
Recently, light has been shed on approximation methods for solving problem Equation (1) by many
researchers; see, e.g., [2-11] and references therein, to name but a few.

Let T : C — C be a mapping. We denote by Fix(T) the set of fixed points of T, i.e., Fix(T) = {x € C :
x = Tx}. T is said to be asymptotically nonexpansive if 3{6, } C [0, +o0) such that lim,_,c 8, = 0 and
|IT"u — T"0|| < ||u—v|| 4+ 64|lu —v||,Vn > 1,u,v € C.If 6, = 0, then T is nonexpansive. Also, T is said to
be strictly pseudocontractive if 3 € [0,1) s.t. | Tu — Tv||? < ||u— o[>+ Z||(I — T)u— (I - T)v||?, Yu,v € C.
If { = 0, then T reduces to a nonexpansive mapping. One knows that the class of strict pseudocontractions
strictly includes the class of nonexpansive mappings. Both strict pseudocontractions and nonexpansive
mappings have been studied extensively by a large number of authors via iteration approximation methods;
see, e.g., [12-18] and references therein.

Let the mappings A, B : C — H be both inverse-strongly monotone and let the mapping T : C — C
be asymptotically nonexpansive one with a sequence {6, }. Let f : C — C be a -contraction with é € [0,1).
By using a modified extragradient method, Cai et al. [19] designed a viscosity implicit rule for finding
a point in the common solution set () of the VIs for A and B and the FPP of T, i.e., for arbitrarily given
x1 € C, {x,,} is the sequence constructed by

Uy = SpXp + (1 - Sn)]/n/
Yn = Pc(I — AA)Pc(uy — pBuy),
X1 = Pe[(T"yn — anpFT"yn) + anf(xn)],

where {a,},{s,} C (0,1]. Under appropriate conditions imposed on {a, }, {s,}, they proved that {x, } is
convergent strongly to an element x* € Q) provided Y07 ; || Ty, — T"yy || < co.

In the context of extragradient techniques, one has to compute metric projections two times for
each computational step. Without doubt, if C is a general convex and closed set, the computation of
the projection onto C might be quite consuming-time. In 2011, inspired by Korpelevich’s extragradient
method, Censor et al. [20] first designed the subgradient extragradient method, where a projection onto
a half-space is used in place of the second projection onto C. In 2014, Kraikaew and Saejung [21] proposed
the Halpern subgradient extragradient method for solving Equation (1), and proved strong convergence
of the proposed method to a solution of Equation (1).

In 2018, via the inertial technique, Thong and Hieu [22] studied the inertial subgradient extragradient
method, and proved weak convergence of their method to a solution of Equation (1). Very recently, they [23]
constructed two inertial subgradient extragradient algorithms with linear-search process for finding
a common solution of problem Equation (1) with operator A and the FPP of operator T with demiclosedness
property in a real Hilbert space, where A is Lipschitzian and monotone, and T is quasi-nonexpansive.
The constructed inertial subgradient extragradient algorithms (Algorithms 1 and 2) are as below:



Mathematics 2019, 7, 860 30f19

Algorithm 1: Inertial subgradient extragradient algorithm (I) (see [[23], Algorithm 1]).

Initialization: Given ug, u; € H arbitrarily. Lety > 0, I € (0,1), u € (0,1).

Iterative Steps: Compute 1,1 in what follows:

Step 1. Put v, = ay,(uy — u,—_1) + uy, and calculate v, = Pc (v, — 1, Avy,), where T, is chosen to be
the largest T € {v, y1,yI?,...} satisfying 7||Avy, — Aya|| < ulon — yull-

Step 2. Calculate z, = Pr, (v, — TwAyn) With T;, := {x € H : (x — Yy, vy — TsAvy — yn) < 0}.

Step 3. Calculate 1,11 = BnTzn + (1 — Bn)vn. f v, = 2, = uy4q then v, € Fix(T) NVI(C, A).
Set n:=mn+1and go to Step 1.

Algorithm 2: Inertial subgradient extragradient algorithm (II) (see [[23], Algorithm 2]).

Initialization: Given 1o, u; € H arbitrarily. Lety > 0, [ € (0,1), u € (0,1).

Iterative Steps: Calculate 1,1 as follows:

Step 1. Put v, = ay,(uy — u,_1) + uy and calculate v, = Pc (v, — 1, Avy,), where T, is chosen to be
the largest T € {7, 7l, 7%, ...} satisfying || Avy, — Ay | < ptllon — yull-

Step 2. Calculate z,, = Pr, (v, — TwAyn) With T;, := {x € H : (x — Yy, vy — TsAvy — yn) < 0}

Step 3. Calculate w11 = BnTzn + (1 — Bn)tn. f vy = 2y = Uy = uy4q then
uy € Fix(T) NVI(C, A). Set n := n + 1 and go to Step 1.

Under mild assumptions, they proved that the sequences generated by the proposed algorithms are
weakly convergent to a point in Fix(T) N VI(C, A). Recently, gradient-like methods have been studied
extensively by many authors; see, e.g., [24-38].

Inspired by the research work of [23], we introduce two inertial-like subgradient algorithms with
line-search process for solving Equation (1) with a Lipschitzian and pseudomonotone operator and
the common fixed point problem (CFPP) of an asymptotically nonexpansive operator and a strictly
pseudocontractive operator in H. The proposed algorithms comprehensively adopt inertial subgradient
extragradient method with line-search process, viscosity approximation method, Mann iteration method
and asymptotically nonexpansive mapping. Via suitable assumptions, it is shown that the sequences
generated by the suggested algorithms converge strongly to a common solution of the VIP and CFPP,
which also solves a hierarchical variational inequality (HVI).

2. Preliminaries

Let x € H and {x,} C H. We use the notation x, — x (resp., x, — x) to indicate the strong (resp.,
weak) convergence of {x,} to x. Recall that a mapping T : C — H is said to be:

(i) L-Lipschitzian (or L-Lipschitz continuous) if | Tx — Ty|| < L||x —y||, Vx,y € C for some L > 0;
(ii) monotone if (Tu — Tv,u —v) >0, Yu,v € C;
(iii) pseudomonotone if (Tu,v —u) > 0= (Tv,v —u) >0, Vu,v € C;

(iv) B-strongly monotone if (Tu — Tv,u — v) > B|lu —v||?, Vu,v € C for some B > 0;

(v) sequentially weakly continuous if ¥{u, } C C, the relation holds: u,, — u = Tu, — Tu.

For metric projections, it is well known that the following assertions hold:

(i) (Pcu — Pco,u —v) > ||Pcu — Pcol||?, Yu,v € H;
(i) (u — Pcu,v— Pcu) <0, Vu € H,v € C;
(111) |lu—0||? > ||ju— Pcul||> + ||v — Pcul||?, Yu € H,v € C;
(@) [lu—ol*> = [lul]> — [lo]* - 2(u — v,0), Yu,v € H;
W) lrx+ 1 =yl? = x>+ A=) yll> - @ =) |x — [ ¥x,y € H Tt € [0,1].
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Lemma 1. [39] Assume that A : C — H is a continuous pseudomonotone mapping. Then u* € C is a solution to
the VI (Au*,v —u*) >0, Vv € C, iff (Av,v —u*) >0, Vv € C.

Lemma 2. [40] Let the real sequence {t,} C [0,00) satisfy the conditions: t, 1 < (1 —su)ty + Subp, Vn >
1, where {s,} and {b,} are sequences in (—oo,00) such that (i) {s,} C [0,1] and Y"1 s, = oo, and (ii)
limsup, by < 0o0r Y07 [spbn| < co. Then limy o0ty = 0.

Lemma 3. [33] Let T : C — C be a {-strict pseudocontraction. If the sequence {u,} C C satisfies u, — u € C
and (I — T)u, — 0, then u € Fix(T), where I is the identity operator of H.

Lemma 4. [33] Let T : C — C be a {-strictly pseudocontractive mapping. Let the real numbers vy,6 > 0 satisfy
(v +0)¢ <7 Then [|[y(x —y) +6(Tx = Ty)[| < (v +9)[lx —yl, Vx,y € C

Lemma 5. [41] Let the Banach space X admit a weakly continuous duality mapping, the subset C C X be nonempty,
convex and closed, and the asymptotically nonexpansive mapping T : C — C have a fixed point, i.e., Fix(T) # @.
Then I — T is demiclosed at zero, i.e., if the sequence {u,} C C satisfies u, — u € C and (I — T)u, — 0,
then (I — T)u = 0, where I is the identity mapping of X.

3. Main Results

Unless otherwise stated, we suppose the following.

e T : H — H is an asymptotically nonexpansive operator with {6, } and S : H — H is a {-strictly
pseudocontractive mapping.
e A: H — Hissequentially weakly continuous on C, L-Lipschitzian pseudomonotone on H, and A(C)
is bounded.
e f:H — Cisa d-contraction with 6 € [0, 1).
e () = Fix(T) NFix(S) N VI(C, A) # @.
e {0y} € [0,1] and {an}, {Bn}, {vn}, {6n} C (0,1) such that
(i) sup,-4 Z—Z <ocoand Bp+ v+ =1, Vn>1;
(ii) Zflo:f‘xn =00, limy e &y = limy 00 b — 0;
(i) (yn+n)l < n < (1—=26)5,, Vn > f"and liminf, e ((1 —26)6y — yn) > 0;
@(iv) limsup, .. Bn < 1,liminf; ;e By > 0 and liminf, e &, > 0.

We first introduce an inertial-like subgradient extragradient algorithm (Algorithm 3) with line-search
process as follows:

Algorithm 3: Inertial-like subgradient extragradient algorithm (I).

Initialization: Given x(, x; € H arbitrarily. Lety >0, [ € (0,1), u € (0,1).

Iterative Steps: Compute x,, 11 in what follows:

Step 1. Put w, = 0y, (x, — x,—1) + T"xy, and calculate y, = Pc(I — 1, A)wy,, where T, is chosen to
be the largest T € {7, 7,712, ...} such that

|| Awy — Ay || < pllwn — yull-

Step 2. Calculate z, = (1 — ay)Pc, (wn — T Ayy) + anf (x,) With
Cp:={x € H: (wy, — 7AWy — Yn,x — yn) < 0}.
Step 3. Calculate
Ynt1 = YuPe, (Wn — TAYn) + 6nSzn + BnT" xp.

Again set n := n 4 1 and return to Step 1.
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Lemma 6. In Step 1 of Algorithm 3, the Armijo-like search rule
|| Awy — Aynl| < pllwn = yall ®)
is well defined, and the inequality holds: min{vy, %l} <t <.

Proof. Since A is L-Lipschitzian, we know that Equation (3) holds for all 7" < ¥ and so Ty, is well defined.

It is clear that 7, < 7. Next we discuss two cases. In the case where 7, = 7, the inequality is valid.
In the case where T, < 7y, from Equation (3) we derive ||Aw, — APc(w;, — %Awn) | > % |wy — Pc(wy —

& Awy)||. Also, since A is L-Lipschitzian, we get 7, > ”Tl Therefore the inequality is true. [J
Lemma 7. Assume that {w,},{yn},{zn} are the sequences constructed by Algorithm 3. Then

Iz = plI* < [1—an(1=8)]xa — plI* + (1 — ) Ay — (1 — aa) (1 — p) X

4
% [on — Yl2 + 1t — yul2] + 200{(f — Dpr2a — p) Vp € D, @

where u, = Pc, (wy — TaAyy) and Ay = oy|xn — x,—1||[2(1 4 00) |20 — pl| + onllxn — xp-1]] + 6(2 +
0n)||xn — pl|? foralln > 1.

Proof. We observe that

2|uy — PHZ = 2||Pc, (Wn — TuAyn) — PCan2 < 2{un — p,wn — TAYn — p)
= |lun — plI? + llwn — plI* = lun — wnll* = 2(un — p, Tw Aya).

So, it follows that ||w, — p||> — ||un — wul|*> — 2(un — p, TwAys) > |lun — p||*>. Since A is
pseudomonotone, we deduce from Equation (3) that (Ayn, Yn — p> > 0 and

Jun = pl*> < lwn = plI? + 2T ((Ayn, p — Yn) + (AYu, yn — 1n)) — [|ttn — wal|?
< Nwn — plI* + 2T (AYn, Y — tn) — |l1tn — wn|? ®)
= [lwn — PH2 = lyn — wn”2 +2(wn — T AYn — Yn, tn — Yn) — |[ttn — yn||2'

Since u, = Pc,(wn — TwAyy) with C, := {x € H : 0 > (1,Awy — wy + Yun, yn — X)}, we have
(Un — Yn, Wy — TwAwy — yn) < 0, which together with Equation (3), implies that

2<wn - TnA:Vn — Yn,Up — ]/n> = 2<wn — T Awy, — Yn, Un — yn> + 2Tn<Awn - Ayn/ Up — yn>
< 2ullwyn — yall[lun — yall < p(llwn — ynHz + [[un _ynH2)~

Also, from w,, = 0y, (x, — x,—1) + T"x, we get

[wn = plI* = llon(xn — x4-1) + T"xu — p|?

< (14 60u) 0 — pll + oullxn — x0-1][]?

= (1+6n)?[|xn — PHZ + onllxn — xp-1[[[2(1 + 0n) X0 — pll + oullxn — x-1]

= [lxn = plI> + 02 (2 + 0u) X0 — pII* + Oullxn — xn 1 [[[2(1 + 62) |0 — pI| + Tl 20 — x5 1]
= |lxn — plI* + An,
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where A, = 0,(2 + 0y)|lxn — plI> + onllxn — xu_1||[2(1 + 64)||xn — p|| + oullxn — xn_1]|]]. Therefore,
substituting the last two inequalities for Equation (5), we infer that

Jun = pl*> < flwn —plI? = (1= ) lwn — yall> = (1 — p) ||ty — yu|?
2 2 2 (6)
< An— (A =plwn = yul* = 1= p)llun — yall* + llxn — pll*>, Yp € Q.

In addition, from Algorithm 3 we have

zn—p = (1—an)(un — p) +an(f = Dp+an(f(xa) — f(p))-

Since the function h(t) = t?, Vt € R is convex, from Equation (6) we have

120 — plI?

< [wndllxn = pll + (1 = an) un — plI1* + 20 ((f = Dp, 20 — p)

< wndllxn = pl> + (1 =) [[xn = plI> + Ap — (1= ) Jwn = yull* = (1= ) 11 — yu|1?]
+ 20, ((f = )p,zn — p)

=1 = an(1=)]llxn = pI*+ (1 = an) An = (1= a) (1 = p) [[|w0n = yu|[* + 1t — yu|*]
+2an((f = D)p,za — p)-

This completes the proof. [

Lemma 8. Assume that {x,},{yn},{zn} are bounded vector sequences constructed by Algorithm 3. If T"x, —
T xy =0, xp — Xy41 — 0, Wy — Xy — 0, Wy — 2z — 0and FH{wy, } C {wy,} such that w,, — z € H, then
z € Q.

Proof. In terms of Algorithm 3, we deduce w, — x, = T"x, — Xy + 0u(xy — x,—1), V1 > 1, and hence
IT"xn — xnl| < ||[wn — xnl| + oullxn — xp—1]| < ||wn — xu|| + ||xn — x,—1]|. Using the conditions x, —
Xp+1 — 0and w, — x, — 0, we get

nlgrolo [ T"xn — xu| = 0. @)

Combining the assumptions w, — x, — 0 and w,, — z,, — 0 yields
zn = xul < llwn — zul + [[wn — xull =0, (1 — o0).
Then, from Equation (4) it follows that
(1= )X = w)llwn = yull> + lltn = ya1?]
<[ —an(1=)]llxn — plI* + (1 = an)An — |20 — pII* + 200 ((f = D)p, 20 — p)
< |lxn = plI> = llzn = pI> + An + 20| (f = D)pll |20 — pll
< lxn = zall (1w = pll + 20 = pI) + An + 200 ([ (f = Dpllllzn — pll,

where Ay = 0,(2+ 0,)||xn — plI® + oullxn — x4 1[|[2(1 + 64)||xn — pI| + ullxn — x,_1]|]. Since a,, —
0, Ay — 0and x,, — z, — 0, from the boundedness of {x,}, {z,} we get

nligc}oﬂwn_ynﬂ =0 and ,}gIgOIIun—anIZO'
Thus asn — oo,

|wn — tnll < lwn —yull + lyn —unll =0 and ||xn — un|| < ||xn — wnl| + [[wn — unl] — 0.
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Furthermore, using Algorithm 3 we have x,11 — 2y = Yn(Un — zn) + 60 (Szn — zn) + Bn(T"xn — z1),
which hence implies

OnllSzn — zull = |xn41 — zn — Bu(T"xn — zun) — Yn(Un — zn)||
= |xn41 — X0+ 0n(xXn — zun) — Y (un — xun) — Bu(T"xn — xn) ||
< lxnr = xull + 10 =zl + Jun — xnll + [ T"x0 — xu]].

Note that x, —x;0.1 =+ 0, zy —x, = 0, x, —uy, — 0, x, — T"x;, — 0 and liminf, 6, > 0.
So we obtain
lim ||z, — Sz,|| = 0. 8)
n—,oo

Noticing y, = Pc(I — 17, A)wy, we have (x — yu, wy — T, Aw, — yn) < 0, Vx € C, and hence
(Wi — Yn, X — Yn) + T (Awn, Yn — wn) < Tw(Awp, x —wy), Vx € C. 9)

Since A is Lipschitzian, we infer from the boundedness of {wy, } that { Awy,, } is bounded. From w,, —
yn — 0, we get the boundedness of {y;, }. Taking into account 7, > min{-y, %}, from Equation (9) we
have liminfy_, o, (Awy,, x — wy, ) > 0, Vx € C. Moreover, note that (Ay,, x — yn) = (Ayy — Awy, x — wy) +
(Awp, x — wy) + (Ayn, wy — yn). Since A is L-Lipschitzian, from w, — y, — 0 we get Aw, — Ay, — 0.
According to Equation (9) we have lim infy_, o (Ayy,, ¥ — yu,) > 0, Vx € C.

We claim x,, — Tx, — 0 below. Indeed, note that

ITxn = xul < | Top — Ty || + | T oy — T || + | T2 — x|
< (2400 |lxn — T || + | T oy — T x|

Hence from Equation (7) and the assumption T"x,, — T"*1x, — 0 we get
nlgr.}o |xn — Tx,|| = 0. (10)

We now choose a sequence {ex} C (0,1) such that ¢ | 0 as k — co. For each k > 1, we denote by m;,
the smallest natural number satisfying

(Aynj, x —yn;) +&x >0, Vj > my.

From the decreasing property of {¢;}, it is easy to see that {my} is increasing. Considering that
{ym, } C Cimplies Ay, # 0, Yk > 1, we put

Al

e = Ay 2

So we have (Ay,, m,) = 1, Vk > 1. Thus, from Equation (9), we have (x + exptm, — Ymy, AYm,) > 0,
Vk > 1. Also, since A is pseudomonotone, we get

<A(x + ek:umk)/x + Extmy _ymk> >0, Vk>1
Consequently,

(X = Yy, Ax) > (X + exfim, — Yy, AX — A(X + €xpim,)) — €x(pm,, Ax), Yk > 1. 11)
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We show limy_, o, €xptm, = 0. In fact, since w,, — z and w,, —y, — 0, we get y,,, — z. So, {yn} C C
guarantees z € C. Also, since A is sequentially weakly continuous on C, we deduce that Ay,, — Az. So,
we get Az # 0. It follows that 0 < ||Az|| < liminfy o || Ay, ||. Since {ym, } C {yn, } and g, | 0 as k — oo,

we obtain that )
limsup,_, &k

0 < limsup |lexptm, || = limsup 0.

&k
k—oc0 k—o0 ”AymkH ~ liminfi e ”AynkH

Thus exptm, — 0.

The last step is to show z € (). Indeed, we have x,, — z. From Equation (10) we also have
Xn, — Txy, — 0. Note that Lemma 5 yields the demiclosedness of I — T at zero. Thus z € Fix(T).
Moreover, since w, — z;, — 0 and w,, — z, we have z,, — z. From Equation (8) we get z,, — Sz, — 0.
By Lemma 5 we know that I — S is demiclosed at zero, and hence we have (I — S)z =0, i.e., z € Fix(S).
In addition, taking k — oo, we infer that the right hand side of Equation (11) converges to zero by the
Lipschitzian property of A, the boundedness of {y, }, {#tm, }, and the limit limy_, o, €pty, = 0. Therefore,
(Ax,x — z) = liminfy_,(Ax,x — ym,) > 0, Vx € C. From Lemma 3 we get z € VI(C, A), and hence
z € Q). This completes the proof. [

Theorem 1. Let {x;,} be the sequence constructed by Algorithm 3. Suppose that T"x, — T""'x, — 0. Then

Xn — Xpy1 — 0,
m—xe & xy — T"x, — 0,

Sup;,>1 [(T" — f)xn|| < oo,

where x* € Q) is only a solution of the HVL: ((f — I)x*,p —x*) <0, Vp € Q.

Proof. Without loss of generality, we may assume that {,} C [a,b] C (0,1). We can claim that P o f is
a contractive map. Banach’s Contraction Principle ensures that it has a unique fixed point, i.e., Pof(x*) =
x*. So, there exists a unique solution x* € () to the HVI

((I-f)x*,p—2") >0, VpeqQ (12)

It is clear that the necessity of the theorem is valid. In fact, if x, — x* € (), then as n — oo, we obtain
that ||x, — x,01]| = 0, ||xn — T"xu|| < [Jxn — x*|| + ||x* — T"xy]| < (24 6,)||xn — x*|| — 0, and

sup|[T"x — f(xn) || < sup([T"xn — x*[| + [[x* = f(x*) | + [ £(x*) = f(xa) )

n>1 n>1
< sgg[(l 0 [l — 27| [l = )| +8]]x7 = xal]
nz
< sg};[(Z +0n) |20 — 27| + [l = fF(x) ] < co.
nz

We now assume that limy—eo(|[xn — Xp11[| + [|xn — T"xn||) = 0 and sup,-q [[(T" — fxa| < oo,
and prove the sufficiency by the following steps.

Step 1. We claim the boundedness of {x, }. In fact, take a fixed p € Q) arbitrarily. From Equation (6)
we get
leon = pII? = (1 = m)llwn =yl = (1= ) e = yu > = 1w — pl%, (13)
which hence yields
lwn = pll = flun = pll,  ¥n=>1. (14)
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By the definition of w;, we have

lwn —pll - < (1 +00)[|xn — pll + oullxn — xn1]l (15)
= (1+0n)|lxn — pll +an - 32 llxn — x4-1]]-

From sup,»; ¢ < o0 and sup,,~ [|xn — xu-1]| < oo, we deduce that sup, -1 7*[xn — x4-1]| < oo,

which immediately implies that IM; > 0 s.t.

M = 2y =2l Vi =1 (16)
n

From Equations (14)—(16), we obtain

un —pll < llwn —pll < (1 +0n)|[xn — pll +anMy, Yn>1. (17)

Note that A(C) is bounded, y, = Pc(I — t)Awy,, f(H) C C C Cy and u, = Pc, (wy — TwAYn).
Hence, we know that { Ay, } is a bounded sequence. So, from sup, - [|(T" — f)xx|| < oo, it follows that

[un — fCxn)ll = [Pc, (wn — TaAyn) — Pe, f(xn) | < lwn — TAyn — f(xa)|
< lwn = T"xnl| + | T"xn — f(xn)[| + Tul| Aya||
<l = xpall + [1(T" = f)aall + 7] Ayull < Mo,
where sup, - ([[xn — xp—1]| + [[(T" = f)xull + 7[[Ayul]) < Mo for some My > 0. Taking into account

im0 z:gfg;)) = 0, we know that 3ny > 1 such that

an(l—ﬁ;)(1—5) (< "‘n(lz_ 3) ), Vn > n.

0n(2+6,) <
So, from Algorithm 3 and Equation (17) it follows that for all n > ny,

lzn =Pl < andllxn = pll + (1 = an)llun = pll + anl (f = Dpll
<[ —an(1=6) +6n]llxn — pll + an(My+ [[(f = Dpll)
< [1 = 200l — pll + (M + (£ = D),

which together with Lemma 4 and (v, + 6,){ < y», implies that for all n > ny,

[xXne1 = pll = 1Bn(T"xn — p) + Yn(zn — p) + 6n(Szn — p) + Yn(tn — z4) ||

< Bun(L+0n)l[xn — pll + (1 = Bu)llzn — pll + vnulltin — f(xn) ||

< Bu(1+02) n — pll + (1= Bu) [(1 = 5D | — ]l + aen (Mo + My + [[(f — D))
< [1 - B o g, S CEBCE0] iy — |+ (L i) (Mo + M+ [ (F = D)

n(1=Bn)?(1-6 n(1=Bn)2(1-6 My+M I
=[1-¢ ( 52) ( )]Hx — ||+~ B ) (1-9) 2 0(+ 1)-{1“(]’;"))?\0
By induction, we obtain |lx, — pl| < max{||lx,, — pl, M°+1M15)+(q fb>1 PDY v >
1. Therefore, we derive the boundedness of {x,} and hence the one of sequences

{unt, {wn}, {yn} {zn}, {f (xn)}, {Szn}, {T"xu }.
Step 2. We claim that IM, > Os.t.

(1= an) (1= Bu) (1 = ) ll[e0n = yull* + l[tn = yulP] < llxn = plI* = llxur1 = pI* + auMs, Vi > np.
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In fact, using Lemmas 4 and 7 and the convexity of || - ||, we get

2011 — P”Z |Bn(T"xy — p) + ¥n(zn — p) + 0u(Szn — p) + vu(un — Zn)||2
< Bull T"xn = pl? + (1= Bu)ll =5 [vn (zn — p) + 8u(Sza — P)IIP
+2(1 = Bu)an]|un — f(xn) [l xn+1 — Pl
< Bull T — pl? + (1= Bu){[1 — an(1 = 0)]|xn — plI* + (1 — n) An (18)
=101~ )l — ol + 1 — 2]+ 280 (F ~ D)p, 20— )
+2(1 = Bu)an|un — f(xn) || %01 = pll
< Bull T"xw = plI> + (1 = Bu){[1 — an (1= 0)][|2n — pI* + (1 = atu) A
— (=) (1 = @) [lwn = yull? + llun = yal?] + an M2},

where
A i= 0, (2+6n)|xn — P”z + oullxn — xp—1l|2(1 4 0)[[xn — Pl + oullxn — x5-1l],

and
sup 2(|[(f — Dpllllzn — pll + lun — fF(x) [ 1xn11 — pIl) < Ma

n>1

for some M, > 0. Also, from Equation (16) we have

An = 0024 0)|xn — pI* + oullxn — xp || 201+ 62) || — pI| + 0l 20 — x5 1]]
< 04(2+0n) |20 — plI> + anMi[[[2(1+ 6,) [ xn — pl| + anM] (19)
= o {22 (24 0,) ||xn — Pl + Mu || [2(1 + 6n) 50 — pll + € Mi]} < anMs,

where
sup{ (24 60)|xn — plI* + M1 |[[2(1 + 62) |xn — pl| + auM1]} < M3

n>1 Xn

for some M3 > 0. Note that

0,(246,) < (1 _ﬁ;)(l _5), Vi > ny.

Substituting Equation (19) for Equation (18), we obtain that for all n > ny,

%01 = plI* < Bu(1+62)2(|x0 — plI* + (1= Bu) {1 — an(1 = 0)][|xn — plI* + (1 — an)tn M3
= (T=an)(1 = p)[flwn _ynHZ + [lun — .‘/n”z] +anMp}
< 1 — B0 v, — p|? + My
— (1 =) (1= Bu) (1 = ) [[lwn — yull* + [l — ynul?] + Mo
< lew = pl* = (1= ) (1= Bn) (1 = ) [[lwn — ynulI* + [[ttn — yul|*] + €My,

where My := Mj + Mj3. This immediately implies that for all n > n,,
(1= an)(1 =) (1= ) [llwn =yl + Nl = yul ] < e = plP* = %1 — Pl +@aMa. (20)

Step 3. We claim that M > 0 s.t.

||xn+1_PH25 ass
1-26)6,— —26)6— 2
<[ 2y |, — p|? 4 R el f B0 F () — ]|z — na |

2 £ ) = plllzn — 3l + (g2 (F(p) — poa — p)

n ‘S" Gn Un
+ (1_25;71_,},” (”‘n ' 2M + 7 ||xn - XVI—1||3M)}.
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In fact, we get

l[wn — plI* < [(1+64)[lxn — pll + o llxn — X1 1]
= llxn = pl* + 02 (2+ 60) [0 — pII* + oullxn — xp—1 12(1+ 60) X0 — pll + Oullxn — xuall] 1)
< lxew — plI* 4 6:2M? + 03 || X0 — x4—1[13M,

where M > sup,~1{(1 + 6n)[[xn — pll, onllxn — x4-1]|} for some M > 0. From Algorithm 3 and the
convexity of || - |2, we have

xns1 = plI* = 1Bn(T"x0 — p) 4+ Yu (20 — p) + 60(Sz0 — p) + Y (un — z0) |12
< ||Bu(T"xn — p) + Yu(zn — p) + 0u(Szn — P)”z + 29nen (un — f(Xn), Xn11 — p)
< Bull T"xn — plI* + (1 - ,Bn)Hﬁ['Yn(Zn —p)+6u(Szn = p)]II?

+ 29nan (Un — p, Xns1 — p) + 2n@n(p — f(xn), Xny1 — p),

which together with Lemma 4, leads to

[xn41 = pII* < Bu(1+60)* |0 — plI* + (1 = Bu)llzn — plI* + 27ntn|lun — plll|lx0s1 — pll
+29nan(p — f(xn), Xut1—p)

< Brn(146,) 100 — plI* + (1= Bu) [(1 — ) [[tn — plI* + 200 (f (xn) — p, 20 — P))]
+ Ynan(|lun — P”z + X011 — PHZ) + 29nan(p — f(xn), X1 — p)-

From Equations (17) and (21) we know that
1tn = pI? < 120 — pII* +6u2M? + |20 — 201 [|3M.
Hence, we have

%01 = pIP < [T —an(1 = Bu)]llxn — plI> + Bubn2M* + (1 — ) (1 — an) (652M
+ o[ xn — x4 1||3M) + 20,0u(f (Xn) — P, 20 — P) + Ynttn(||xn — sz
+ 1xns1 — pl?) + (1= Bu)an(8:2M? + 0 || Xy — X, _1]|3M)
+ 29nen (f (Xn) — P, 2Zn — Xnt1)
< 1= an(1 = Ba)lllxn = plIP + 2vnanl f (xn) = pllllzn — xn4all
+ 20,000 |2 — P||2 +20,0u(f(p) — P, Xn — p) + 2000 | f (xn) — P20 — x|
+ ynttn (10 = plI> + [xn1 = plI*) + (1 - ,Bn)(e'ZZM + onl|xn — x4 -1[|3M),

which immediately yields

l2n41 = plI>

1-26)6,— [(1-25)6,— 2
<1 -2y x, - pf? + L 15’;%7"]“" A= 1 () = pllllzn — sl

+ | f () = pllll2n — xull + G=g2——(f(P) — P, Xu — P)
+ e (B M 4 |, — x4 [3M)).

(22)



Mathematics 2019, 7, 860 12 of 19

Step 4. We claim the strong convergence of {x, } to a unique solution x* € Q) to the HVI Equation (12).
In fact, setting p = x*, from Equation (22) we know that

g — 27|
1-26)6,— 1-28)6,— 2
< [1— G20 ]y — |2 4 00l fe B £ () — ]2 — 2]

25 20,

_’_me(xn)_x*”HZn_xn”+m<f(x*)_x*,xn—x*>
+94 0 2

+ s (- 3 4 €l — xua[I3M) )

According to Lemma 4, it is sufficient to prove that limsup,,_, . ((f — I)x*,x, — x*) < 0. Since x, —
Xp+1 — 0, &y — 0and {B,} C [a,b] C (0,1), from Equation (20) we get

limsup(1 — ay) (1 = b) (1 — ) [[|wn — ynll* + [t — yul]*]
n—oo
<limsup|[|x, — pl|* = |xp1 — plI* + anMy]
n—oo
< limsup([lxn — p| + [[xn+1 — pID |20 — x041] =0,
n—oo
which hence leads to

nlgr.}o [wn —yul = nlgr.}o [un —yull = 0. (23)

Obviously, the assumptions ||x, — x,,41|| — 0 and ||x, — T"x,|| — 0 guarantee that ||w, — x,|| <
| T"xn — xu|| + ||xn — xy—1]] = 0 (n — o0). Thus,

20 = ynll < llxn — wull + |wn — yul — 0, (n — o0).

Since z;, = (1 — ay)uy + anf(xy) with u, = Pc, (wy — 7,Ay,), from Equation (23) and the
boundedness of {x,}, {u,}, we get

lzn — ynll < wn([|fCen) || + [[unll]) + ltn — yull = 0, (1 — o0), (24)

and hence
lzn = xull < llzn = yull + llyn — xull = 0, (1 — o0).

Obviously, combining Equations (23) and (24) guarantees that
lwn = znl| < [[wn = yull + [yn —zal =0, (n — o0).

Since {x,} is bounded, we know that 3{x,, } C {x,} s.t.

limsup((f — I)x*, x, — x*) = lim ((f — I)x™, x,, — x™). (25)

n—»00 k—o0

Next, we may suppose that x,, — %. Hence from Equation (25) we get

limsup((f — I)x*, x, — x*) = lim ((f — I)x™, x,, — x*) = ((f — D)x*, ¥ — x™). (26)

n—00 k—o0

From w,, — x, — 0 and x,, — % it follows that w,, — *.
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Since T"x, — T"t1x, — 0, x,, — Xp+1 — 0, wy — x4 — 0, wy — 2, — 0 and wy,, — %, from Lemma 8
we conclude that ¥ € Q). Therefore, from Equations (12) and (26) we infer that

limsup((f — I)x*, x, —x*) = ((f = I)x*, ¥ —x™) <0.

n—oo

Note that -
Z (1—-28)5, — &, = co.
= 1= txn'yn

It is clear that

29 20y,
hmsup{ oo, 1 o) = 20 = xnga | + = 25‘55 1 (xn) = x* |||z — 2l
n—"Yn n—Yn

24, wton (8 2M2 | oy
+ mg(ﬁ) — X%, xn —x*) + m(a 1o+ 2 X — x-1[I3M) } < 0.
Consequently, all conditions of Lemma 4 are satisfied, and hence we immediately deduce that x,, — x*.
This completes the proof. [

Next, we introduce another inertial-like subgradient extragradient algorithm (Algorithm 4) with
line-search process as the following.
It is remarkable that Lemmas 6-8 are still valid for Algorithm 4.

Algorithm 4: Inertial-like subgradient extragradient algorithm (II).
Initialization: Given xo, x; € H arbitrarily. Lety >0, [ € (0,1), u € (0,1).
Iterative Steps: Compute x,,11 in what follows:
Step 1. Put w, = 0y, (x — x,,—1) + T"x,, and calculate y, = Pc(w, — 1, Awy, ), where T, is chosen to
be the largest T € {7, 7,712, ...} such that

|| Awy — Ay || < pllwn — yull-

Step 2. Calculate z, = (1 — ay)Pc, (wn — T AYy) + anf (x,) With
Cp:={x € H: (wy, — AWy — Yn,x — yn) < 0}.
Step 3. Calculate
Xnt1 = YuPe, (Wn — T AYn) + 6,52y + BuT"wy.

Again set n := n + 1 and return to Step 1.

Theorem 2. Let {x,} be the sequence constructed by Algorithm 4. Suppose that T"x, — T"*1x,, — 0. Then

Xp — Xpy1 — 0,
m—xe & Xn — T"x, — 0,
sup,>q [[(T" = f)xn|| < oo,

where x* € Q) is only a solution of the HVI: ((I — f)x*,p—x*) >0, Vp € QL

Proof. Using the same reasoning as in the proof of Theorem 1, we know that there is only a solution
x* € () of Equation (12), and that the necessity of the theorem is true.



Mathematics 2019, 7, 860 14 of 19

We claim the sufficiency of the theorem below. For the purpose, we suppose that lim, e (|| —
Xpi1|| + |[xn — T"xn||) = 0 and sup,~; ||(T" — f)xu|| < oo. Then we prove the sufficiency by the
following steps. -

Step 1. We claim the boundedness of {x,}. In fact, using the same reasoning as in Step 1 of the
proof of Theorem 1, we obtain that inequalities Equations (13)—(17) hold. Noticing lim; z:girg';)) =0,

we infer that Ing > 1 s.t.

an(l_ﬁn)(l_é) (< a”(l_é) ), ¥n > ng.

0,(246,) < > < >

So, from Algorithm 4 and Equation (17) it follows that for all n > ny,

llzn — pll S“rt‘suxnl_fu+(1_D‘n)[(1+9n)”xn_PH"“"an]"‘“n”(f_I)PH
< [1— 2= lx, — pl| + wa (M1 + || (= Dpl]),

which together with Lemma 4 and (v, + 6,)C < 75, implies that for all n > n,

[xn41 = Pl = 1Bn(T"wn — p) + n(zn — P) + 6n(Szn — p) + 0 (un — zn) ||
< Bu(L40n) [wn — pll + (1= Bu)llzn — pIl + vnetnlltin — f(xn) ||
< [1— 08029 4 g 0,24 60,)] %0 — pll + Bul1+ 6n)ec My
+an(1— ﬁn)(Mo + M+ |[(f = Dpl)
< [1 _ zxn(l—ﬁn)(l—é) + Bn zxn(l—ﬁn)(l—é)]Hxn . P” +06n( ﬁn)(MO M, %—I—gt’ + ||(f_ I)PH)

) ) 2(Mo+M; 252+ (F=Dpl)
=[1- M]le = pll + t2lfyl0=0) 2 (=l

Hence, )
2(M0 +M11Tb + ”(f_ I)PH)
— < _ >
[0 — pll < max{||xn, —pl, T—0)1—b) Y, Vn > mng.

Thus, sequence {x, } is bounded.
Step 2. We claim that for all n > ng,
ll2cn — PHZ — [[xn41 — F’H2 FapMy > (1 —an) (1= Bu)(1— p)[[|[wn — ]/nHz + [lun — ynHz]/

with constant My > 0. Indeed, utilizing Lemmas 4 and 7 and the convexity of || - ||, one reaches
Hanrl_sz B (T"wy — p)"")/n(zn_p)+5n(szn_f7)+7n(un_zn)”2
< Bull s — I+ (1 = Bu)ll 1 a2 — p) + 60(S20 — ]|
+2(1 = Bu)anlun — f(xn) || 2541 — P
< Bu(1+ 802 n — pI + (1= B) (11~ (1 = 8)]s — pIP+ (1~ an) A o
— (1= an) (1 = p)[[lwn = yull> + lun — yull?] + 200 ((f = D)p, 20 — p)}
+2(1 = Bu)an[un — f (xn) [ 12041 — Pl
< Bu(1+6,)2([lxn — plI* + Au) + (1= Bu){[1 — (1= )] [lxn — plI*> + (1 — an) An
— (1= an)(1 = @) lllwn =yl + llun = yull’] + an Mo},
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where A, = 0,2 + 0)llxn — plI? + oullxn — 0 11[200 + 8)llxn — pll + oullxn — xu_1ll],

and sup,,., 2(|(f — Dpllllze — pll + llun — f(xa)lllxn41 = pl) < My for some M > 0. Also,
from Equation (16) we have

An = 0,24 00)llxn — plI* + oullxn — x5—111[2(1 + 04) |30 — pll + [l X0 — x4—1]]] (28)
< {2 (24 6,) |20 — plI? + M1|[[2(1 + 0n) |0 — pl| + @nMi]} < @aMs,

where supn21{%(2+9n)\|xn — >+ M ||[2(1+6,) || xn —
0n(2+0,) <
n Z no,

pll +anM;i]} < Mj3 for some M3 > 0. Note that
W, Vn > ng. Substituting Equation (28) for Equation (27), we obtain that for all

lxns1 = pIIP < [1—an(1 = Bu)(1 = 6) + Bubn(2+ 0)][lxn — plI> + Bu(1 + 61)an M3
+ (1= Bn)(1 —an)anMz — (1 —an)(1 = Bn)(1 — p)[llwn — ynHz
+ lun = yallP] + (1 = Bu)anMa
< lxw = plI? = (1= an) (1= Bn) (1 = ) [[lwn — ynl1* + [t — yul|*] + €n My,

where My := Mj + 4M3. This immediately implies that for all n > n,,

(1= an) (1= Bu) (1 = ) lllewn = yull? + n = yul*] < Nlxn = plI = llxus = pl* + anMa.

Step 3. We claim that M > 0 s.t.

201 = p?
< [1- U, 1||x = pIP o+ R (g 1 Can) = plllzn — v
B 2} ' " p 1- ’X”’Y” (1 25 (Sn Tn n p " n (29)
T (1-20 gn Tn Hf pHHZn xn” + (1- 25)571 T <f(p) PrXn — P>
n+0n 0, 2M2 14+b(1+6, o 3M(1+b6, (246,
t (1_’;5;;511_'%1 (“ ' ( 1_(17 ) ) g ||xn —Xn-1 ||+)}

In fact, we get

leon = plI? < 11+ 0u) |0 = pll + onlltn = xuall? < Jl2n = plI? + 0x2M + 0320 — 24-1[13M,  (30)

where 3M > 0s.t. sup, 1 { (1 + 6n)|[xn — pll, onlxn — x4—1(|} < M. From Algorithm 4 and the convexity
of || - ||>, we have

[xn11 = plI? = |Bu(T"wn — p) + Yn(zn — p) + 62(Szu — p) + Yn(ttn — 22 |2
< Bl T"wn — PHZ +(1- ﬁn)”l%ﬂn[%(zn —p) +0n(Szn — P)}Hz
+ 29nan (Un — P, Xng1 — P) + 29000 (p — f(Xn), X1 — P),

which together with Lemma 4, leads to

[xns1 = plI* < Bu(1 4 62)2[[wn — plI* + (1 = Bu)llzn — pII* + 2ynen || un
+ 2900 (p — f(Xn), Xus1 = p)

< Bu(1+60)*(lxn — plI> + 6:2M2 + 0y || X0 — %, 13M) + (1 = B) [(1 — an) ||
+ 20, (f (xn) — P20 — P)] + Ynttn ([t — pl* + | 2031 — pII?)
+ 29nen(p — f(xn), Xut1 — Pp)-

= plllxn41 = pll

—pl?
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By Step 3 of Algorithm 4, and from Equation (30) we know that ||u, — p||> < ||x, — pl|? + 6,2M? +
Oul|xn — x,—1]|3M. Hence, we have

xnir = pl* <1 —an(1 = Bu)lllxn — pII* + Bubn2M? + (1 = B) (1 — an) (6,2M2
+ 0| xn = X0-13M) + 2008, (f (x1) — P, 20 — p) + Yt (|20 — plI?
+ 101 = plI?) + (1= Br)@n(0,2M2 + 0| x5 — x,-1([3M)
+ 29nen (f(xn) — P, 20 — Xni1) + Bn (1 + 60,)2(0,2M2? + 0y || Xy — X_1]|3M)
<1 —an(1 = Bu)lllxn — pII* + 2yneu |l f (xn) = pllllz0 — X011

+20n0u (f (xn) — p, Xn — P) + 20000 (f (Xn) — P, 20 — Xn)

2 2
+ ([0 = pI2 + 21 — pI2) + (1 = Ba) [0, 2L ErAEOS)

- 0 — 30| AL (2400

> [1 —an(1— ﬁn>”|xn - PHZ +27n“n||f(xn) - PH”Zn — X1l
+ 20,656 || — plI* + 2006 (f (p) = P, X — P) + 20080]| f (x) — pllllzn — X

o ntn (= pI2 4 1 = pl[2) 4 (1= ) [0 G
T 0 [ — g | MO 240)) )
which immediately yields Equation (29).

Step 4. We claim the strong convergence of {x, } to a unique solution x* € Q) of HVI Equation (12).
In fact, using the same reasoning as in Step 4 of the proof of Theorem 1, we derive the desired conclusion.
This completes the proof. [

Next, we shall show how to solve the VIP and CFPP in the following illustrating example.

The initial point xg = x; is randomly chosen in R = (—o0,0). Take f(x) = Lsinx, v =1 =y =
%, Op = 0y = %—‘rl’ Bn = %, Y = %, and 6, = % Then we know that é = % and f(R) C [—%,%].

We first provide an example of Lipschitz continuous and pseudomonotone mapping A, asymptotically
nonexpansive mapping T and strictly pseudocontractive mapping S with QO = Fix(T) N Fix(S) N
VI(C,A) # @. Let C = [-1.5,1] and H = R with the inner product (a,b) = ab and induced norm
I|-l=1-| Let A, T,S : H— H be defined as Ax := m 1+|X\’ Tx:= %sinxand Sx := fx+ Jsinx
for all x € H. Now, we first show that A is pseudomonotone and Lipschitz continuous with L = 2 such
that A(C) is bounded. Indeed, it is clear that A(C) is bounded. Moreover, for all x,y € H we have

[Ax — Ay||

S R S I Y
Tsinx] ~ T ~ T simny] 1]
S 3L 7 4
= st sy | T
< [Isinx —sinyl| +[lx —y[ < 2[]x —y].

This implies that A is Lipschitz continuous with L = 2. Next, we show that A is pseudomonotone.
For any given x,y € H, itis clear that the relation holds:

1 1 1 1

_ — _ _ > _ — _
Ay =0 = oy~ T )V Y 207 Ay =0 = gy~ 13y

)y —x) >0,

Furthermore, it is easy to see that T is asymptotically nonexpansive with 8, = (%)”, Vn > 1, such
that || T"*1x, — T"x,| — 0 as n — co. Indeed, we observe that

—
1T = Tyl < S| T e = Ty < - ( ) llx =yl < (14 0a)[[x —yll,
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and

4 4 4 4 4
||T”+1xn —T'xy|| < (g)"*lHszn — Tx,|| = (g)”*lﬂgsin(Txn) G sinxy|| < 2(5)" — 0, (n — o).

It is clear that Fix(T) = {0} and

n
lim 6—" = lim (4/5)

e A T Gr1)

Moreover, it is readily seen that sup,,~, |(T" — f)xu| = sup,~; | sin(T" " 1x,) — }sinx,| < 35 < co.
In addition, it is clear that S is strictly pseudocontractive with constant { = }1. Indeed, we observe that for
allx,y € H,

1 1, . . 1
|Sx — Sy||* < [Fllx =yl + §||smx—smy||}2 < [lx—yl*+ I I=8)x— (I~ S)yl*.

It is clear that (v, +6,)0 = (z +
Therefore, O = Fix(T) N Fix(S

follows:

3)1<

§+3 Yn < (1-20)6, =(1—2-7)-3 = jforalln > 1.
VI(C, A) ca

— 1 _

= 1 -

)N {0} # @. In this case, Algorithm 3 can be rewritten as
=T"xn + n+1( - xn—l)/

yl’l - PC(ZUn - TnAwn)

Zn = %Hf(xn) + n+1 PC,, (wn TnAyn)/

Xpy1 = %Tnxn + Pcn(wn — TyAYn) + 3Sz0, Yn>1,

where C,, and T, are picked up as in Algorithm 3. Thus, by Theorem 1, we know that {x, } converges to
0 € Qif and only if |x, — x,41| + [xn — T"xx| — 0, (n — o).
On the other hand, Algorithm 4 can be rewritten as follows:

Wy = T + 757 (X0 — X41),

Yn = Pc(wy, — TnAwn)

Zn = %Hf(xn) + n+1 Pe, (wn — T Ayn),

Xpi1 = %T”w,1 + PCH (wn — TwAyn) + %Szn, Vn > 1,

where C, and 1, are picked up as in Algorithm 4. Thus, by Theorem 2, we know that {x, } converges to
0 € Qif and only if |x, — x,41| + [xp — T"x,| = 0, (n — 0).
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