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Abstract: A set S ⊆ V(G) in a graph G is a dominating set if S dominates all vertices in G, where we
say a vertex dominates each vertex in its closed neighbourhood. A set is independent if it is pairwise
non-adjacent. The minimum cardinality of an independent dominating set on a graph G is called the
independent domination number i(G). A graph G is ID-stable if the independent domination number of
G is not changed when any vertex is removed. In this paper, we study basic properties of ID-stable
graphs and we characterize all ID-stable trees and unicyclic graphs. In addition, we establish bounds
on the order of ID-stable trees.
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1. Introduction

Throughout this paper, V(G) and edge set E(G) (briefly V, E) are used to denote the vertex set
and edge set of G, respectively. For every vertex v ∈ V(G), the open neighborhood of v is the set NG(v) =
N(v) = {u ∈ V(G) | uv ∈ E(G)}, and its closed neighborhood is the set NG[v] = N[v] = N(v) ∪ {v}.
The degree of a vertex v ∈ V is dG(v) = |N(v)|. A leaf of G is a vertex with degree one, and a support
vertex is a vertex adjacent to a leaf. The set of all leaves adjacent to a vertex v is denoted by L(v).
For two vertices u and v, the distance dG(u, v) from u to v is the number of the edges of a shortest
uv-path in G. The diameter diam(G) of a graph G is the greatest distance among a pair of vertices of G.
Assume T is a rooted tree and v ∈ V(T), let C(v) and D(v) denote the set of children and descendants
of v, respectively, and D[v] = D(v) ∪ {v}. The maximal subtree at v, denoted by Tv, is the subgraph of
T induced by D[v], and is denoted by Tv. For a graph G, let I(G) be the set of vertices with degree 1.
The path and cycle on n vertices are denote by Pn and Cn, respectively.

A set S ⊆ V in a graph G is a dominating set if every vertex of G is either in S or adjacent to a
vertex of S. The domination number γ(G) equals the minimum cardinality of a dominating set in G.
There are many variants of the dominating set which are studied extensively, such as the independent
dominating set [1], total domination [2,3], Roman domination [4,5], semitotal domination [6,7], etc.
For a comprehensive treatment of domination in graphs, see the monographs by Haynes, Hedetniemi,
and Slater [8,9].

A set is independent if it is pairwise non-adjacent. The minimum cardinality among all independent
dominating sets on a graph G is called the independent domination number i(G) of G. An i(G)-set is an
independent dominating set of G of cardinality i(G). This variation of graph domination has been
studied extensively in the literature; see for example the books [8,9], and the readers can consult the
new survey of Goddard and Henning [1].
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The removal of a vertex from a graph can increase the independent domination number,
decrease the independent domination number, or leave it unchanged. A graph G is independent
domination vertex-critical or i-vertex-critical if i(G− v) < i(G) for every v ∈ V(G). The independent
domination vertex-critical graphs have been studied by Ao [10] and Edwards [11] and elsewhere [12–14].
Here we focus on the case where the removal of any vertex leave the independent domination
number unchanged.

A graph G is independent domination stable (ID-stable) if the independent domination number of
G is not changed when any vertex is removed. The domination stable problem consists of characterize
graphs whose domination number (a type of domination number, e.g. total domination number,
Roman domination number) remains unchanged under removal of any vertex or edge, or addition of
any edge [2,15–17].

In this paper, we study basic properties of ID-stable graphs and we characterize all ID-stable trees
and unicyclic graphs. In addition, we establish bounds on the order of ID-stable trees.

We make use of the following results in this paper.

Proposition 1 ([1]). For n ≥ 3, i(Pn) = i(Cn) = d n
3 e.

The next result is an immediate consequence of Proposition 1.

Corollary 1. If n ≥ 3, then Cn is an ID-stable graph if and only if n 6≡ 1 (mod 3).

In the next sections, we will use the following notations:
For a graph G, let:

W(G) = {u ∈ V(G) | there exists an i(G)-set containing u}

and:

W1,1(G) = {(u, v)|u, v ∈ V(G) and there exists an i(G)-set containing both of u and v}.

2. Basic Properties

In this section, we study the basic properties of the ID-stable graph, and we construct new
ID-stable graphs from an old one.

Proposition 2. If G is an ID-stable graph, then every support vertex in G is adjacent to exactly one leaf.

Proof. Let G be an ID-stable graph. Suppose, to the contrary, that G has a support vertex x with
|L(x)| ≥ 2, and let y, z ∈ L(x). If G has an i(G)-set S such that x 6∈ S, then y, z ∈ S, and clearly,
S− {y} is an independent dominating set of G− y yielding i(G− y) < i(G), which is a contradiction.
Hence, we assume that every i(G)-set contains x. Now, consider the graph G − x, and let D be an
i(G − x)-set. Since each vertex in L(x) is isolated in G − x, D contains all vertices in L(x). Clearly,
D is an independent dominating set of G such that x 6∈ D. It follows from the assumption that
i(G− x) = |D| > i(G), a contradiction again. This completes the proof.

Proposition 3. If G is an ID-stable graph, then G does not have two adjacent support vertices.

Proof. Let G be an ID-stable graph. Suppose, to the contrary, that there exist two adjacent support
vertices x, y in G. Assume that L(x) = {x′}, L(y) = {y′}, and let S be an i(G)-set. Then, x′ ∈ S or
y′ ∈ S. Assume, without loss of generality, that y′ ∈ S. Then, y /∈ S. If (NG(y) − {y′}) ∩ S 6= ∅,
then S − {y′} is an independent dominating set of G − y′, which leads to a contradiction. Hence,
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(NG(y) − {y′}) ∩ S = ∅. In particular, x 6∈ S, and so, x′ ∈ S. Now, (S − {y′, x′}) ∪ {y} is an
independent dominating set of G− x′, which leads to a contradiction.

The spider Sq is the graph obtained from the star K1,q by subdividing its edges once. Clearly,
i(Sq) = q. Assume that V(Sq) = {s} ∪ {ai, bi|i = 1, 2, . . . , q} and E(Sq) = {sai, aibi|i = 1, 2, . . . , q}.
The vertex s is called the head; the vertices ai are called the knees; and the vertices bi are called the feet of
the spider for 1 ≤ i ≤ q.

Proposition 4. Let G be a graph and v ∈ V(G). Let G′ be the graph obtained from G by adding a spider
Sq (q ≥ 1) and possibly joining the head s to v. Then, i(G′) = i(G) + q.

Proof. Clearly, any i(G)-set can be extended to an independent dominating set of G′ by adding
a1, . . . , aq, and so, i(G′) ≤ i(G) + q.

Now, we show that i(G′) ≥ i(G) + q. Let S be an i(G′)-set. To dominate bi, we must have
|S ∩ {ai, bi}| ≥ 1 for each i. If s 6∈ S or sv 6∈ E(G′), then the set S − V(Sq) is an independent
dominating set of G, and this implies that i(G′) ≥ i(G) + q. Suppose that s ∈ S and sv ∈ E(G′).
It follows that {b1, . . . , bq} ⊆ S and S ∩ NG[v] = ∅. Then, the set (S − {s, b1, . . . , bq}) ∪ {v} is an
independent dominating set of G yielding i(G′) ≥ i(G) + q. Thus, i(G′) = i(G) + q, and the proof
is complete.

Proposition 5. Let G be an ID-stable graph. Then:

1. if u ∈W(G) and G′ is a graph obtained from G by adding a spider S1 with head s and an edge us, then G′

is an ID-stable graph,
2. if u ∈ V(G) and G′ is a graph obtained from G by adding a spider Sq (q ≥ 2) with head s and an edge us,

then G′ is an ID-stable graph.

Proof. Our arguments apply equally well to both parts, so we prove them simultaneously. Let
v ∈ V(G′) be an arbitrary vertex. If v ∈ V(G), then we have i(G− v) = i(G) because G is an ID-stable
graph, and by Proposition 4, we have

i(G′ − v) = i(G− v) + q = i(G) + q = i(G′).

Assume that v ∈ V(Sq). We consider three cases.

Case 1. v = s.
Then, clearly, G′ − v is the union of G with qK2 (q ≥ 1), and so, i(G′ − v) = i(G) + q. It follows

from Proposition 4 that i(G′ − v) = i(G′).

Case 2. v = ai for some i ∈ {1, 2, . . . , q}.
Assume, without loss of generality, that v = aq. First, we prove (1). Clearly, we have G′ − v =

(G + us)∪ K1. Obviously, any i(G)-set containing u can be extended to an independent dominating set
of G′ − v by adding b1, and so, i(G′ − v) ≤ i(G) + 1 = i(G′). On the other hand, any i(G′ − v)-set is
obviously an independent dominating set of G′, and so, i(G′ − v) ≥ i(G′), yielding i(G′ − v) = i(G′).
Now, we prove (2). Clearly, any i(G)-set can be extended to an independent dominating set of G′ − v
by adding {bq, a1, . . . , aq−1}, and so, i(G′ − v) ≤ i(G) + q = i(G′). Furthermore, any i(G′ − v)-set is
obviously an independent dominating set of G′, and so, i(G′ − v) ≥ i(G′). Thus, i(G′ − v) = i(G′).

Case 3. v = bi for some i ∈ {1, 2, . . . , q}.
Assume, without loss of generality, that v = b1. Obviously, any i(G)-set can be extended to an

independent dominating set of G′ − v by adding {a1, . . . , aq}, and so, i(G′ − v) ≤ i(G) + q = i(G′).
Now, let S′ be an i(G′ − v)-set. If a1 ∈ S′, then S′ is obviously an independent dominating set of
G′, and so, i(G′ − v) ≥ i(G′). Assume that a1 /∈ S′. Then, s ∈ S′. If (NG′(u) − {s}) ∩ S′ 6= ∅,
then (S′ − {s})∪ {a1} is an independent dominating set of G′, and so, i(G′ − v) ≥ i(G′). Suppose that



Mathematics 2019, 7, 820 4 of 17

(NG′(u)−{s})∩ S′ = ∅. Then, S′−{s, b2, . . . , bq} is an independent dominating set of G− u, and since
G is an ID-stable graph, we deduce that i(G′ − v) = (|S′| − q) + q ≥ i(G) + q = i(G′). Hence, i(G′ −
v) = i(G′). Therefore, G′ is an ID-stable, and the proof is complete.

Let k1 and k2 be non-negative integers, and let Hk1,k2 be the graph obtained from the star K1,3

centered at s with V(K1,3) = {s, a, b, c} by attaching k1 pendent paths P2 to a and k2 pendent paths
P2 to b (see, e.g., Figure 1). For each 1 ≤ i ≤ k1, the vertex set of ith P2 is {ri, ti} with ari ∈ E(Hk1,k2),
and for each 1 ≤ j ≤ k2, the vertex set of jth P2 is {pj, qj} with bpj ∈ E(Hk1,k2).

Figure 1. The operations O3, or O4, or O5.

Proposition 6. Let G be a graph and x, y ∈ V(G) (possibly x = y). Let G′ be the graph obtained from G by
adding a graph Hk1,k2 and adding possibly the edges xa or yb. Then, i(G′) = i(G) + k1 + k2 + 1.

Proof. Clearly, any i(G)-set can be extended to an independent dominating set of G′ by adding
s, r1, . . . , rk1 , p1, . . . , pk2 , and so, i(G′) ≤ i(G) + k1 + k2 + 1.

Now, we show that i(G′) ≥ i(G) + k1 + k2 + 1. Let S be an i(G′)-set such that |S ∩ {a, b}| is as
small as possible. To dominate c, ti (1 ≤ i ≤ k1) and qj (1 ≤ j ≤ k2), we must have |S ∩ {s, c}| ≥ 1,
|S ∩ {ri, ti}| ≥ 1 (1 ≤ i ≤ k1) and |S ∩ {pj, qj}| ≥ 1 (1 ≤ j ≤ k2). We claim that |S ∩ {a, b}| = 0.
Suppose, on the contrary, that |S ∩ {a, b}| ≥ 1. We consider the following cases.

Case 4. |S ∩ {a, b}| = 1.
Assume without loss of generality that a ∈ S and b 6∈ S. Then, we must have c ∈ S and

t1, . . . , tk1 ∈ S if k1 ≥ 1. If xa 6∈ E(G′) or S ∩ NG(x) 6= ∅, then the set (S − {a, c}) ∪ {s} is an
independent dominating set of G′ of size less that i(G′), which is a contradiction. Hence, xa ∈ E(G′)
or S ∩ NG(x) = ∅, but then the set (S− {a}) ∪ {x} is an i(G′)-set, which contradicts the choice of S.

Case 5. |S ∩ {a, b}| = 2.
Then, we must have c ∈ S, {t1, . . . , tk1} ⊆ S if k1 ≥ 1 and {q1, . . . , qk2} ⊆ S if k2 ≥ 1. If S ∩

NG[x] 6= ∅ and S ∩ NG[y] 6= ∅, then (S− {a, b, c}) ∪ {s} is an independent dominating set of G′ of
size i(G′)− 2, which is a contradiction. Assume without loss of generality that S∩NG[x] = ∅. If x = y,
then (S− {a, b, c}) ∪ {x, s} is an independent dominating set of G′ of size i(G′)− 1, a contradiction
again. Hence, x 6= y. Now, to dominate x, we must have xa ∈ E(G′), but then the set (S− {a}) ∪ {x}
is an i(G)′-set, contradicting the choice of S.

Therefore a, b 6∈ S. Now, the set S ∩V(G) is an independent dominating set of G, and this implies
that i(G′) ≥ i(G) + k1 + k2 + 1. Thus, i(G′) = i(G) + k1 + k2 + 1, and the proof is complete.

Proposition 7. Let G be an ID-stable graph. Then:

(a) if (x, y) ∈W1,1(G) and G′ is a graph obtained from G by adding H0,0 and adding the edges xa, yb, then
G′ is an ID-stable graph,
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(b) if x ∈ W(G), y ∈ V(G), and G′ is a graph obtained from G by adding H0,k2 (k2 ≥ 1) and adding the
edges xa, yb, then G′ is an ID-stable graph,

(c) if x, y ∈ V(G) and G′ is a graph obtained from G by adding Hk1,k2 (k1, k2 ≥ 1) and adding the edges
xa, yb, then G′ is an ID-stable graph.

Proof. Let v be a vertex in G′. If v ∈ V(G), then by Proposition 6, we have i(G′ − v) = i(G− v) + k1 +

k2 + 1. Since G is an ID-stable graph, we have i(G− v) = i(G), and so, i(G′− v) = i(G)+ k1 + k2 + 1 =

i(G′). Assume that v 6∈ V(G). We consider the following cases.

Case 6. v = s.
Clearly, any i(G′ − v)-set is an independent dominating set of G′, and so, i(G′ − v) ≥ i(G′). In the

case (a), any i(G)-set containing x, y can be extended to an independent dominating set of G′ − v
by adding c, and so, i(G′ − v) ≤ i(G) + 1 = i(G′). In the case (b), any i(G)-set containing x can be
extended to an independent dominating set of G′ − v by adding c, p1, . . . , pk2 , and so, i(G′ − v) ≤
i(G) + k2 + 1 = i(G′). In the case (c), any i(G)-set can be extended to an independent dominating
set of G′ − v by adding c, p1, . . . , pk2 , r1, . . . , rk1 , and so, i(G′ − v) ≤ i(G) + k1 + k2 + 1 = i(G′). Thus,
i(G′ − v) = i(G′).

Case 7. v = a (the case v = b is similar).
It is easy to see that there exists an i(G′ − v)-set containing s. On the other hand, any i(G′ − v)-set

containing s is an independent dominating set of G′, and so, i(G′ − v) ≥ i(G′). Using an argument
similar to that described in Case 6, we obtain i(G′ − v) = i(G′).

Case 8. v = c.
Obviously, any i(G)-set can be extended to an independent dominating set of G′− v by adding the

vertices s, r1, . . . , rk1 if k1 ≥ 1 and p1, . . . , pk2 if k2 ≥ 1, and so, i(G′ − v) ≤ i(G) + k1 + k2 + 1 = i(G′).
Now, let S be an i(G′ − v)-set. To dominate s, ti (1 ≤ i ≤ k1) and qj (1 ≤ j ≤ k2), we must have
|S ∩ {a, b, s}| ≥ 1, |S ∩ {ri, ti}| ≥ 1 for 1 ≤ i ≤ k1 and |S ∩ {pj, qj}| ≥ 1 for 1 ≤ j ≤ k2. If s ∈ S,
then S is obviously an independent dominating set of G′, and so, i(G′ − v) ≥ i(G′). Assume that s /∈ S.
Then, a ∈ S or b ∈ S. Assume, without loss of generality, that a ∈ S. If b /∈ S, then S−V(Hk1,k2) is an
independent dominating set of G− x, and since G is an independent domination stable graph, we have
i(G′ − v) = (|S| − k1 − k2 − 1) + k1 + k2 + 1 ≥ i(G) + k1 + k2 + 1 = i(G′). Let b ∈ S. This implies
that {q1, . . . , qk2} ⊆ S if k2 ≥ 1. If (N(y) − {b}) ∩ S 6= ∅, then the set S − {b} if k2 = 0, and the
set (S− {b, q1, . . . , qk2}) ∪ {p1, . . . , pk2} if k2 ≥ 1 is an independent dominating set of G′ − v, which
leads to a contradiction. Hence, (N(y)− {b}) ∩ S = ∅, and similarly, (N(x)− {a}) ∩ S = ∅. Then,
(S−V(Hk1,k2)) ∪ {y} is an independent dominating set of G− x, and since G is an ID-stable graph,
we deduce that i(G′ − v) = (|S| − k1 − k2 − 1) + k1 + k2 + 1 ≥ i(G) + k1 + k2 + 1 = i(G′). Therefore,
i(G′ − v) = i(G′).

Case 9. v = ri for some i ∈ {1, 2, . . . , k1} or v = pj for some j ∈ {1, 2, . . . , k2}.
Assume, without loss of generality, that v = r1. Obviously, any i(G)-set can be extended

to an independent dominating set of G′ − v by adding s, t1, r2, . . . , rk1 and p1, . . . , pk2 if k2 ≥ 1,
and so, i(G′ − v) ≤ i(G) + k1 + k2 + 1 = i(G′). On the other hand, any i(G′ − v)-set is obviously an
independent dominating set of G′, and so, i(G′ − v) ≥ i(G′). Therefore, i(G′ − v) = i(G′).

Case 10. v = ti for some i ∈ {1, 2, . . . , k1} or v = qj for some j ∈ {1, 2, . . . , k2}.
Assume, without loss of generality that v = t1. Clearly, any i(G)-set can be extended to an

independent dominating set of G′ − v by adding the vertices s, r1, . . . , rk1 and p1, . . . , pk2 if k2 ≥ 1,
and so, i(G′− v) ≤ i(G) + k1 + k2 + 1 = i(G′). To prove the inverse inequality, let S be an i(G′− v)-set.
To dominate c, ti (2 ≤ i ≤ k1) and qj (1 ≤ j ≤ k2), we must have |S ∩ {c, s}| ≥ 1, |S ∩ {ri, ti}| ≥ 1
for 2 ≤ i ≤ k1 and |S ∩ {pj, qj}| ≥ 1 for 1 ≤ j ≤ k2. If r1 ∈ S, then S is obviously an independent
dominating set of G′, and so, i(G′ − v) ≥ i(G′). Assume that r1 /∈ S′. It follows that a ∈ S yielding
c, ti ∈ S for 2 ≤ i ≤ k2. If b 6∈ S, then we may assume that p1, . . . , pk2 ∈ S, and clearly, the set
S− V(Hk1,k2) is an independent dominating set of G− x. Since G is an ID-stable graph, we obtain
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i(G′− v) = (|S| − k1− k2− 1)+ k1 + k2 + 1 ≥ i(G)+ k1 + k2 + 1 = i(G′). Let b ∈ S. Then, q1, . . . , qk2 ∈
S if k2 ≥ 1. It is easy to see that (N(y)− {b})∩ S = ∅. If (N(x)− {a})∩ S 6= ∅, then (S− {a})∪ {r1}
is an independent dominating set of G′, and so, i(G′ − v) ≥ i(G′). Suppose that (N(x)− {a})∩ S = ∅.
Then, (S− V(Hk1,k2)) ∪ {y} is an independent dominating set of G− x, and since G is an ID-stable
graph, we have i(G′ − v) = (|S| − k1 − k2 − 1) + k1 + k2 + 1 ≥ i(G) + k1 + k2 + 1 = i(G′). Hence,
i(G′ − v) = i(G′). Thus, G′ is an ID-stable graph, and the proof is complete.

Let N be the set of non-negative integers, n ≥ 3 and Q ∈ Nn with Q = (q1, q2, . . . , qn). Let D(Q) =

{i | qi > 0}. For any i with qi > 0 and qi+1 = 0, if qj = 0 for j = i + 1, i + 2, . . . , i + k and
qi+k+1 > 0 where the subscript is taken modulo n, we define H(Q, i) = k. For example, if Q =

(0, 2, 0, 1, 3, 0, 1, 2, 0, 0), then H(Q, 2) = 1, H(Q, 5) = 1 and H(Q, 8) = 3.
The graph C(n, Q) (resp. P(n, Q)) is the graph obtained from Cn = (v1v2 . . . vn)

(resp. Pn = v1v2 . . . vn) by attaching qi disjoint pendent paths P2 to vi. If qi > 0, then let
Hvi = {vi+1, . . . , vi+H(Q,i)}, and assume for any 1 ≤ j ≤ qi, the vertex set of jth P2 attached to vi
is {vi,j,a, vi,j,b} with leaf vi,j,b (see Figure 2).

v4
v5

v6

v1
v2

v3

v9 v1
v2

v3

v4v5v6

v7

v8

v1,1,a v1,1,b

v1,1,a v1,1,b

v1,2,a v1,2,b

v3,1,a v3,1,b

v4,3,a v4,2,a
v4,1,a

v4,1,bv4,2,bv4,3,b

v6,1,a

v6,1,b

v7,2,b v7,2,a

v7,1,b v7,1,a

(a) (b)

Figure 2. (a) The graph C(6, (1, 0, 0, 0, 0, 0)); (b) the graph C(9, (2, 0, 1, 3, 0, 1, 2, 0, 0)).

Proposition 8. Let G be a graph, and x, y ∈ V(G) (possibly x = y). If G′ is a graph obtained from G by
adding H = P(n, (0, 0, k1, 0, . . . , 0, k2, 0, 0)), where n ≡ 0 (mod 6), k1 ≥ 0, k2 ≥ 0, and adding possibly the
edges xv3 and yvn−2, then i(G′) = i(G) + k1 + k2 +

n
3 .

Proof. Clearly, any i(G)-set can be extended to an independent dominating set of G′ by adding
v3i−1 (1 ≤ i ≤ n

3 ), v3,j,a (1 ≤ j ≤ k1) and vn−2,j,a (1 ≤ j ≤ k2), and so, i(G′) ≤ i(G) + k1 + k2 +
n
3 .

Now, we show that i(G′) ≥ i(G) + k1 + k2 +
n
3 . Let S be an i(G′)-set. To dominate the vertices

v1, vn, v3i−1 (2 ≤ i ≤ n
3 −1), v3,j,b (1 ≤ j ≤ k1) and vn−2,j,b (1 ≤ j ≤ k2), we must have |S ∩ {v1, v2}| ≥ 1,

|S ∩ {vn−1, vn}| ≥ 1, |S ∩ {v3i−2, v3i−1, v3i}| ≥ 1 (2 ≤ i ≤ n
3 − 1), |S ∩ {v3,j,a, v3,j,b}| ≥ 1 (1 ≤ j ≤

k1), and |S ∩ {vn−2,j,a, vn−2,j,b}| ≥ 1 (1 ≤ j ≤ k2). We may assume without loss of generality that
{v3i−1 | 2 ≤ i ≤ n

3 − 1} ⊆ S. If v3, vn−2 6∈ S, then the set S ∩ V(G) is an independent dominating
set of G, and this implies that i(G′) ≥ i(G) + k1 + k2 +

n
3 . Assume without loss of generality that

v3 ∈ S. Then, we must have {v3,1,b, . . . , v3,k1,b} ⊆ S and S ∩ NG(v3) = ∅. If v3 is not adjacent
to x or NG(x) ∩ S 6= ∅, then the set S′ = (S − {v1, v2, v3, v3,1,b, . . . , v3,k1,b}) ∪ {v2, v3,1,a, . . . , v3,k1,a}
is an independent dominating set of G′ of size i(G′) − 1, a contradiction. Hence, v3x ∈ E(G′),
NG(x) ∩ S 6= ∅, and so, x 6∈ S. If vn−2 6∈ S, then the set (S − V(H)) ∪ {x} is an independent
dominating set of G, yielding i(G′) ≥ i(G) + k1 + k2 +

n
3 . Assume that vn−2 ∈ S. Then, we have

{vn−2,1,b, . . . , vn−2,k2,b} ⊆ S and S ∩ NG(vn−2) = ∅. Using the above arguments, we have vn−2y ∈
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E(G′), y 6∈ S, and NG(y) ∩ S = ∅. If x = y or x and y are adjacent in G, then the set (S− V(H)) ∪
{x, v2, v5, . . . , vn−2, v3,1,a, . . . , v3,k1,a, vn−2,1,a, . . . , vn−2,k2,a} is an independent dominating set of G′ of
size i(G′)− 1, which is a contradiction. Hence, x 6= y and x and y are not adjacent in G. Now, the set
(S−V(H)) ∪ {x, y} is an independent dominating set of G, implying that i(G′) ≥ i(G) + k1 + k2 +

n
3 .

Therefore, i(G′) = i(G) + k1 + k2 +
n
3 , and the proof is complete.

Proposition 9. Let G be an ID-stable graph. If x, y ∈ V(G) and G′ is a graph obtained from G by adding
P(6, (0, 0, k1, k2, 0, 0)) and adding the edges xv3, yv4, then G′ is an ID-stable graph.

Proof. Let v be a vertex in G′. If v ∈ V(G), then by Proposition 8 and the fact that G is an ID-stable
graph, we obtain:

i(G′ − v) = i(G− v) + k1 + k2 + 2 = i(G) + k1 + k2 + 2 = i(G′).

Let v 6∈ V(G). We consider the following cases.

Case 11. v ∈ {v2, v5, v3,j,a, v4,k,a | 1 ≤ j ≤ k1 and 1 ≤ k ≤ k2}.
As in Case 9 in Proposition 7, we have i(G′ − v) = i(G′).

Case 12. v ∈ {v1, v6, v3,j,b, v4,k,b | 1 ≤ j ≤ k1 and 1 ≤ k ≤ k2.
As in Case 10 in Proposition 7, we have i(G′ − v) = i(G′).

Case 13. v ∈ {v3, v4}.
We may assume, without loss of generality, that v = v3. Clearly, any i(G′ − v)-set containing v2

is an independent dominating set of G′, and so, i(G′ − v) ≥ i(G′). On the other hand, any i(G)-set
can be extended to an independent dominating set of G′ − v by adding {v2, v5, v3,j,a, v4,l,a | 1 ≤ j ≤
k1 and 1 ≤ l ≤ k2}, and Proposition 8 yields i(G′ − v) ≤ i(G) + k1 + k2 + 2 = i(G′).

Proposition 10. Let Q = (q1, q2, . . . , qn) ∈ Nn such that |D(Q)| ≥ 2 and H(Q, i) ≥ 1 for each i ∈ D(Q).
If H(Q, i) ≡ 1(mod 3) for some i ∈ D(Q) or H(i, Q) ≡ 2 (mod 3) for each i ∈ D(Q), or H(Q, i) ≡
0 (mod 3) and H(Q, j) ≡ 0 (mod 3) for some i, j ∈ D(Q), then the graph C(n, Q) is not an ID-stable graph.

Proof. Suppose, to the contrary, that G = C(n, Q) is an ID-stable graph. If G has an i(G)-set S
containing vi for some i ∈ D(Q), then S−{vi,1,b} is an independent dominating stable set for G− vi,1,b,
which leads to a contradiction. Hence, for any i(G)-set S and any i ∈ D(Q), we have vi 6∈ S. Assume
that D(Q) = {i1, i2, . . . , ir}. Now, we show that:

i(G) =
r

∑
j=1

qij +
r

∑
j=1

⌈H(ij, Q)

3

⌉
.

For 1 ≤ j ≤ r, let Pij be the path vij+1vij+2 . . . vij+H(Q,ij)
, and let Sj be an i(Pij)-set. Clearly, the set

I = ∪r
j=1(Sij ∪ {vij ,k,a | 1 ≤ k ≤ qij}) is an independent dominating set of G, and we conclude

from Proposition 1 that i(G) ≤ ∑r
j=1 qij + ∑r

j=1

⌈H(ij ,Q)
3

⌉
. To prove the inverse inequality, let S be

an i(G)-set. To dominate the vertices vij ,k,b for 1 ≤ j ≤ r and 1 ≤ k ≤ qij , we must have |S ∩

{vij ,k,a, vij ,k,b}| ≥ 1, and since S ∩ {vi1 , . . . , vir} = ∅, we must have |S ∩ Hvij
| ≥

⌈H(ij ,Q)
3

⌉
for each j,

by Proposition 1. This implies that i(G) = |S| ≥ ∑r
j=1(dG(vij)− 2) + ∑r

j=1

⌈H(ij ,Q)
3

⌉
. Hence, i(G) =

∑r
j=1 qij) + ∑r

j=1

⌈H(ij ,Q)
3

⌉
.

If H(Q, ij) ≡ 1 (mod 3) for some ij ∈ D(Q), say j = 1, then the set (I − (Si1 ∪ {vi1,k,a | 1 ≤
k ≤ qi1})) ∪ ({vi1,k,b | 1 ≤ k ≤ qi1} ∪ {vi1+3s | 0 ≤ s ≤ d qi1

3 e − 1}) when qir ≡ 0 (mod 3), the
set (I − (Si1 ∪ Si2 ∪ {vi1,k,a | 1 ≤ k ≤ qi1})) ∪ ({vi1,k,b | 1 ≤ k ≤ qi1} ∪ {vi1+3s | 0 ≤ s ≤ d qi1

3 e} ∪
{vir+3s+1 | 0 ≤ s ≤ d qir

3 e − 1}) when qir ≡ 2 (mod 3), and the set (I − (Si1 ∪ Si2 ∪ {vi1,k,a | 1 ≤ k ≤
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qi1})) ∪ ({vi1,k,b | 1 ≤ k ≤ qi1} ∪ {vi1+3s | 0 ≤ s ≤ d qi1
3 e} ∪ {vir+qir−1, vir+3s+1 | 0 ≤ s ≤ d qir

3 e − 2})
when qir ≡ 1 (mod 3) is an i(G)-set, which is a contradiction. Thus, H(Q, ij) 6≡ 1 (mod 3) for each
ij ∈ D(Q).

Suppose H(i, Q) ≡ 2 (mod 3) for each i ∈ D(Q). Then, clearly, n = ∑r
j=1

⌈H(ij ,Q)
3

⌉
, and the set

{vi1+3s | 0 ≤ i ≤ d n
3 e − 1} ∪ {vij ,k,b | 1 ≤ k ≤ qij}) is an independent dominating set of G, which leads

to a contradiction again.
Finally let, without loss of generality, H(Q, i1) ≡ 0 (mod 3) and H(Q, i`) ≡ 0 (mod 3) for some

i1, i` ∈ D(Q) and H(Q, ij) ≡ 2 (mod 3) for each ij ∈ D(Q)− {ij, i`}. If |D(Q)| = 2, then it is not
hard to see that i(G− vi1+2) > i(G), which is a contradiction. Assume that |D(Q)| ≥ 3. By symmetry,
we may assume that ` ≥ 3. Let G′ = G− vi`+2, and let S′ be an i(G′)-set such that |S′ ∩ {vi1 , . . . , vir}|
is as large as possible. Since G is an independent domination stable graph, we have i(G) = i(G′). It is
not hard to see that the set:

D1 =

{vi2 , . . . , vi`} ∪ (
`−1⋃
j=2

{vij+3k | 1 ≤ k ≤
⌊H(ij, Q)− 1

3

⌋
})


is a subset of S′. It follows that D2 = ∪`−1

j=2{vij ,k,b | 1 ≤ k ≤ qij} ⊆ S′. We may also assume that

{vi1+3s−1 | 1 ≤ s ≤
⌊

H(i1,Q)
3

⌋
} ⊆ S′. Let D3 = ∪`j=2{vij ,k,a | 1 ≤ k ≤ qij}. Clearly, the set:

(S′ − (D1 ∪ D2)) ∪ {vi`} ∪ D3 ∪

⋃̀
j=2

{vij+3k+1 | 0 ≤ k ≤
⌊H(ij, Q)− 1

3

⌋
}


is an independent dominating set of G of cardinality |S′| = i(G) containing vi` , which is a contradiction.
This completes the proof.

3. Independent Domination Stable Trees

In this section, we give a constructive characterization of all ID-stable trees.
In order to present our constructive characterization, we define a family of trees as follows. Let T

be the family of trees T that can be obtained from a sequence T1, T2, . . ., Tk of trees for some k ≥ 1,
where T1 is P2 and T = Tk. If k ≥ 2, Ti+1 can be obtained from Ti by one of the following operations.

Operation T1: If u ∈ W(Ti), then T1 adds a spider S1 with head s and an edge us to obtain Ti+1 (see
Figure 3).

Operation T2: If u ∈ V(Ti), then T2 adds a spider Sq (q ≥ 2) with head s and an edge us to obtain Ti+1
(see Figure 3).

Theorem 1. If T ∈ T , then T is an ID-stable tree.

Proof. If T is P2, then obviously T is an ID-stable tree. Suppose now that T ∈ T . Then there exists a
sequence of trees T1, T2, . . . , Tk (k ≥ 1) such that T1 is P2, and if k ≥ 2, then Ti+1 can be obtained from
Ti by one of the Operations T1 or T2. We proceed by induction on the number of operations used to
construct T. If k = 1, the result is trivial. Assume the result holds for each tree T ∈ T which can be
obtained from a sequence of operations of length k− 1 and let T′ = Tk−1. By the induction hypothesis,
T′ is an ID-stable tree. Since T = Tk is obtained by one of the Operations T1 or T2 from T′, we conclude
from the Proposition 5 that T is an ID-stable tree.

Next, we characterize all ID-stable trees.

Theorem 2. Let T be a tree of order n ≥ 2. Then, T is an ID-stable tree if and only if T ∈ T .
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u

b1

b2

b3

bq

Ti (or Gi) Sq

s

Figure 3. The operations: T1 or T2.

Proof. According to Theorem 1, we need only to prove necessity. Let T be an ID-stable tree of
order n ≥ 2. The proof is by induction on n. If n = 2, then T = P2 ∈ T . Let n ≥ 3, and let the
statement hold for all ID-stable trees of order less than n. Assume that T is an ID-stable tree of order n.
By Propositions 2 and 3, we deduce that diam(T) ≥ 4. Let v1v2 . . . vk (k ≥ 5) be a diametrical path in
T and root T at vk. By Proposition 2, any support vertex adjacent to v3 has degree two. In particular
dT(v2) = 2. By Proposition 3, v3 is not a support vertex, and so, Tv3 = SdT(v3)−1. Let T′ = T − Tv3 .
Since T is an ID-stable tree, we deduce from Proposition 4 that for any vertex v ∈ V(T′),

i(T′ − v) + dT(v3)− 1 = i(T − v) = i(T) = i(T′) + dT(v3)− 1

and this implies that i(T′ − v) = i(T′). Hence, T′ is an ID-stable tree. It follows from the induction
hypothesis that T′ ∈ T . If dT(v3) ≥ 3, then T ∈ T since T can be obtained from T′ by operation T2.

Assume that dT(v3) = 2. By Proposition 4, we have i(T′) + 1 = i(T). Since T is an ID-stable tree,
we have i(T − v2) = i(T). Let S be an i(T − v2)-set. Clearly, v1 ∈ S. If v3 ∈ S, then S− {v1} is an
independent dominating set of T− v1, which is a contradiction. Hence, v3 /∈ S, and this implies that
v4 ∈ S. Now, S− {v1} is an independent dominating set of T′, and we deduce from i(T′) + 1 = i(T)
that S− {v1} is an i(T′)-set. Thus, v4 ∈W(T′). Now, T can be obtained from T′ by operation T1, and
so, T ∈ T . This completes the proof.

4. Independent Domination Stable Unicyclic Graphs

In this section, we give a constructive characterization of all ID-stable unicyclic graphs. We start
with introducing the following families of graphs.

• J1 = {Cn|n ≥ 3 and n 6≡ 1 (mod three)}.
• J2 = {C(3k + 1, (q1, 0, 0, . . . , 0))|k ≥ 1 and q1 ≥ 2}.
• J3 is the family of graphs C(n, Q) where Q = (q1, . . . , qn) ∈ Nn satisfies (i) D(Q) ≥ 2, (ii) H(Q, i) 6≡

1 (mod 3) for each i ∈ D(Q), and (iii) H(Q, i) ≡ 0 (mod 3) for exactly one i ∈ D(Q).
• J4 is the family of graphs obtained from P(6, (0, 0, k1, k2, 0, 0)) (k1 ≥ 0, k2 ≥ 0) by adding a new

vertex w, joining w to v3, v4, and adding a pendant edge at w (see, e.g., the graph of the second
column and the fifth row in Figure A2 (Appendix A)).

• J = J1 ∪ J2 ∪ J3 ∪ J4 ∪ T .

Next, we show that each graph in J is an ID-stable graph. By Corollary 1 and Theorem 1,
any graph in the family T ∪ J1 is an independent domination stable graph.

Proposition 11. If G ∈ J2, then G is an ID-stable graph.

Proof. Let G ∈ J2. First, we show that i(G) = k + q1. Clearly, the set {v3i | 1 ≤ i ≤ k} ∪ {v1,j,a | 1 ≤
j ≤ q1} is an independent dominating set of G yielding i(G) ≤ k + q1. To prove the inverse inequality,
let S be an i(G)-set. To dominate v1,j,b, we must have |S ∩ {v1,j,a, v1,j,b}| ≥ 1 for each j ∈ {1, . . . , q1}.
On the other hand, to dominate the vertices v3i (1 ≤ i ≤ k), we must have |S ∩ {v3i−1, v3i, v3i+1}| ≥ 1
for each i ∈ {1, . . . , k}, and this implies that i(G) ≥ k + q1. Hence, i(G) = k + q1.
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Next we show that G is an ID-stable graph. Let v ∈ G. If v = v1, then G = P3k ∪ q1K2, and by
Proposition 1, we have i(G− v) = i(P3k) + i(q1K2) = k + q1 = i(G). If v = v1,j,a for some 1 ≤ j ≤ q1,
then G = K1 ∪C(3k + 1, (q1− 1, 0, 0, . . . , 0)), and as above, we have i(G− v) = k + q1 = i(G). Suppose
that v = v1,j,b for some 1 ≤ j ≤ q1, say j = 1. Clearly, the set {v3i | 1 ≤ i ≤ k} ∪ {v1,j,a | 1 ≤ j ≤ q1} is
an independent dominating set of G yielding i(G− v) ≤ k + q1 = i(G). To prove i(G− v) ≥ k + q1,
let S′ be an i(G − v)-set. To dominate v1,j,a, we must have |S′ ∩ {v1,j,a, v1}| ≥ 1, and to dominate
the vertex v1,j,b, we must have |S′ ∩ {v1,j,a, v1,j,b}| ≥ 1 for each j ∈ {2, . . . , q1}. On the other hand, to
dominate the vertices in V(Cn)− {v1, v2, v3}, S′ must contain at least k− 1 vertices in {v2, . . . , vn},
and so, i(G − v) ≥ k + q1. Hence, i(G − v) = i(G) in this case. Let now v = vi (i 6= 1). Clearly,
any i(P3k)-set of P3k = vi−1 . . . v1vn . . . vi+1 can be extended to an independent dominating set of
G − v by adding v1,j,a for j = 1, 2, . . . , q1, and so, i(G − v) ≤ i(P3k) + q1 = k + q1 = i(G). On the
other hand, if S is an i(G − v)-set, then to dominate the vertices in {v1,j,b | 1 ≤ j ≤ q1}, we must
have |S ∩ {v1,j,a, v1,j,b | 1 ≤ j ≤ q1}| ≥ q1, and to dominate the vertices in V(Cn) − {vi, v1}, we
must have |S ∩ (V(Cn) − {vi})| ≥ k. Thus, i(G − v) = |S| ≥ k + q1 = i(G), and hence, G is an
ID-stable graph.

Theorem 3. Let G = C(n, Q) where n ≥ 3 and D(Q) = 1. Then, G is an ID-stable graph if and only
if G ∈ J2.

Proof. According to Proposition 11, we only need to prove necessity. Let G be an independent
domination stable graph. Assume, without loss of generality, that Q = (q1, 0 . . . , 0) where q1 ≥ 1.
As Proposition 11, we can see that i(G) = d n−1

3 e+ q1. If n 6≡ 1 (mod 3), then the set {v3i+1 | 0 ≤
i ≤ d n−1

3 e − 1} ∪ {v1,j,a | 2 ≤ j ≤ q1} is an independent dominating set of G− v1,1,b of size i(G)− 1,
which is a contradiction. Assume that n ≡ 1 (mod 3). If q1 = 1, then clearly G− v1,1,a = K1 ∪ Cn, and
by Proposition 1, we have i(G) = i(Cn) + 1 = d n−1

3 e+ 2, which is a contradiction. Therefore, q1 ≥ 2,
and so, G ∈ J2.

Proposition 12. If G ∈ J3, then G is an independent domination stable graph.

Proof. Let G = C(n, Q) ∈ J3, and let ω = ∑r
j=1 qij + ∑r

j=1

⌈H(Q,ij)
3

⌉
. Assume that D(Q) = {i1, . . . , ir},

and suppose, without loss of generality, that H(Q, i1) ≡ 0 (mod 3). Let S′ = ∪r
j=1{vij ,s,a | 1 ≤ s ≤ qij},

S′′ = ∪r
j=2{vij ,s,b | 1 ≤ s ≤ qij}, Sp

j = {vij+3k+p | 0 ≤ k ≤ dH(Q,ij)
3 e − 1} for j ∈ {1, . . . , r} and

p ∈ {1, 2, 3}.
First, we show that i(G) = ω. Clearly, the set S = (∪r

j=1S2
j ) ∪ S′ is an i(G)-set, and so, i(G) ≤ ω.

To prove the inverse inequality, let T be an i(G)-set. To dominate the vertices vij ,s,b, we must have
|T ∩ {vij ,s,a, vij ,s,b}| ≥ 1 for each 1 ≤ j ≤ r and 1 ≤ s ≤ qij . Now, to dominate the vertices vi1+3k+2,

we must have |T ∩ {vi1+3k+1, vi1+3k+2, vi1+3k+3}| ≥ 1 for 0 ≤ k ≤
⌈H(Q,ij)

3

⌉
− 1, and to dominate the

vertices vij+2, . . . , vij+1−1, we must have |T ∩ {vij+1, vij+2, . . . , vij+1−1, vij+1}| ≥ 1 for each j ∈ {2, . . . , r}
yielding i(G) ≥ ω. Thus, i(G) = ω as desired.

Now, we show that G is an independent domination stable graph. Let v ∈ V(G). Consider the
following cases.

Case 14. v ∈ S′.
Clearly, any i(G− v)-set is an independent dominating set of G, and so, i(G− v) ≥ i(G). On the

other hand, (∪r
j=1S2

j ) ∪ S′′ ∪ {vi1,s,b | 1 ≤ s ≤ qi1} is an independent dominating set of G − v, and
hence, i(G) ≥ i(G− v). Thus, i(G) = i(G− v) in this case.

Case 15. v ∈ {vi1 , . . . , vir}.
Suppose, without loss of generality, that v = vi1 . Obviously, S is an independent dominating set

of G− v, and hence, i(G) ≥ i(G− v). Let D be an i(G− v)-set such that |D ∩ {vi1,j,a | 1 ≤ j ≤ q1}| is
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as large as possible. Then, {vi1,j,a | 1 ≤ j ≤ q1} ⊆ D. As above, we can see that |D| = i(G− v) ≥ i(G).
Therefore, i(G) = i(G− v) in this case.

Case 16. v ∈ S′′.
Assume, without loss of generality, that v = vi1,1,b. Clearly, S is an independent dominating

set of G − v, and hence, i(G) ≥ i(G − v). To prove the inverse inequality, let T be a i(G − v)-set.
As above, we have |T ∩ {vi1,s,a, vi1,s,b}| ≥ 1 for 2 ≤ s ≤ qi1 , and |T ∩ {vij ,s,a, vij ,s,b}| ≥ 1 for each
2 ≤ j ≤ r and 1 ≤ s ≤ qij . Furthermore, we must have |T ∩ {vi1 , vi1,1,a}| ≥ 1. Now, to dominate the

vertices vi1+2, . . . , vi2−1, we must have |T ∩ {vi1+1, . . . , vi2−1}| ≥ H(Q,i1)
3 , and to dominate the vertices

vir+1, . . . , vi1−2, we must have |T ∩ {vir , vir+1, . . . , vi1−2, vi1−1}| ≥ H(Q,ir)
3 . Repeating this process,

we must have |T ∩ {vij , vij+1, . . . , vij+1−2, vij+1−1}| ≥
H(Q,ij)

3 for each 2 ≤ j ≤ r − 1. It follows that
|T| ≥ i(G), and so, i(G) = i(G− v).

Case 17. v ∈ S1
1 (the case v ∈ S3

1 is similar).
Assume that v = vi1+3k+1. Clearly, the set (∪r

j=2S3
j )∪{vi1+3t+2 | 0 ≤ t ≤ k− 1}∪ {vi1+3t | k+ 1 ≤

t ≤
⌈

H(Q,i1)−3k−1
3

⌉
} is an independent dominating set of G− v of size i(G), and so, i(G) ≥ i(G− v).

To prove the inverse inequality, let T be an i(G− v)-set. As above, we have |T ∩ {vij ,s,a, vij ,s,b}| ≥ 1

for each 1 ≤ j ≤ r and 1 ≤ s ≤ qij , and |T ∩ {vij+1, . . . , vij+1−1, vij+1}| ≥
H(Q,ij)

3 for 2 ≤ j ≤ r. Now to
dominate the vertices vi1+j (1 ≤ j ≤ 3k), we must have |T ∩ {vi1+1, . . . , vi1+3k}| ≥ k, and to dominate

the vertices vi1+3k+2, . . . , vi2−1, we must have |T ∩ {vi2+3k+2, . . . , vi2−1, vi2}| ≥
H(Q,i1)

3 − k. This implies
that |T| ≥ i(G), and so, i(G) = i(G− v).

Case 18. v ∈ S2
1. Assume that v = vi1+3k+2. Clearly, the set (∪r

j=2S3
j ) ∪ {vi1+3t+3 | 0 ≤ t ≤

k− 1} ∪ {vi1+3t+1 | k+ 1 ≤ t ≤
⌈

H(Q,i1)−3k−2
3

⌉
} is an independent dominating set of G− v of size i(G),

and so, i(G) ≥ i(G− v). To prove the inverse inequality, let T be an i(G− v)-set. As above, we have
|T ∩ {vij ,s,a, vij ,s,b}| ≥ 1 for each 1 ≤ j ≤ r and 1 ≤ s ≤ qij , and |T ∩ {vij+2, . . . , vij+1−1, vij+1}| ≥
H(Q,ij)

3 for 2 ≤ j ≤ r. If k = 0, then to dominate the vertices vi1+3, . . . , vi2−1, we must have

|T ∩ {vi2+3, . . . , vi2−1, vi2}| ≥
H(Q,i1)

3 yielding |T| ≥ i(G). If k ≥ 1, then to dominate the vertices
vi1+1, . . . , vi1+3k+1, we must have |T ∩ {vi1+2, . . . , vi1+3k+1}| ≥ k, and to dominate the vertices

vi1+3k+2, . . . , vi2−1, we must have |T∩{vi2+3k+2, . . . , vi2−1, vi2}| ≥
H(Q,i1)

3 − k, so |T| ≥ i(G). Therefore,
i(G) = i(G− v).

Case 19. v ∈ ⋃r
j=2 S1

j (the case v ∈ ⋃r
j=2 S3

j is similar).

Suppose, without loss of generality, that v = vi2+3k+1. Clearly, the set S2
1 ∪ (∪r

j=3S2
j ) ∪ {vi2+3t+2 |

0 ≤ t ≤ k − 1} ∪ {vi3 , vi2+3t | k + 1 ≤ t ≤
⌈

H(Q,i2)−3k−1
3

⌉
} is an independent dominating set of

G − v of size i(G), and so, i(G) ≥ i(G − v). Now, we show that i(G − v) ≥ i(G). Let T be a
i(G − v)-set. As above, we have |T ∩ {vij ,s,a, vij ,s,b}| ≥ 1 for each 1 ≤ j ≤ r and 1 ≤ s ≤ qij ,

and |T ∩ {vi1+1, vi1+2, . . . , vi2−1}| ≥ H(Q,i1)
3 . Furthermore, to dominate the vertices vij+2, . . . , vij+1−1,

we must have |T ∩ {vij+2, . . . , vij+1−1, vij+1}| ≥
H(Q,ij)

3 for 3 ≤ j ≤ r. Now, to dominate the
vertices vi2+1, . . . , vi2+3k, we must have |T ∩ {vi2+1, . . . , vi2+3k}| ≥ k, and to dominate the vertices

vi2+3k+2, . . . , vi3−1, we must have |T ∩ {vi2+3k+2, . . . , vi3−1, vi3}| ≥
H(Q,i2)

3 − k. This implies that
|T| ≥ i(G), yielding i(G) = i(G− v).

Case 20. v ∈ ⋃r
j=2 S2

j .

Suppose, without loss of generality, that v = vi2+3k+2. Clearly, the set S2
1 ∪ (∪r

j=3S2
j ) ∪ {vi2+3t |

0 ≤ t ≤ k} ∪ {vi2+3t+1 | k + 1 ≤ t ≤
⌈

H(Q,i2)−3k−2
3

⌉
} is an independent dominating set

of G − v of size i(G), and so, i(G) ≥ i(G − v). To prove the inverse inequality, let T be an
i(G − v)-set. As above, we have |T ∩ {vij ,s,a, vij ,s,b}| ≥ 1 for each 1 ≤ j ≤ r and 1 ≤ s ≤ qij , and

|T ∩ {vi1+1, vi1+2, . . . , vi2−1}| ≥ H(Q,i1)
3 . Furthermore, to dominate the vertices vij+2, . . . , vij+1−1, we
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must have |T ∩ {vij+2, . . . , vij+1−1, vij+1}| ≥
H(Q,ij)

3 for 3 ≤ j ≤ r. Now, to dominate the vertices
vi2+1, . . . , vi2+3k+1, we must have |T ∩ {vi2 , . . . , vi2+3k+1}| ≥ k + 1, and to dominate the vertices

vi2+3k+3, . . . , vi3−1, we must have |T ∩ {vi2+3k+3, . . . , vi3−1}| ≥ H(Q,i2)
3 − k − 1. This implies that

|T| ≥ i(G), and so, i(G) = i(G− v).
Thus, G is an independent domination stable graph, and the proof is complete.

The proof of the next result is straightforward and therefore omitted.

Proposition 13. If G ∈ J4, then G is an independent domination stable graph.

In order to present our constructive characterization of independent domination stable unicyclic
graphs, we define a family of graphs as follows. Let G be the family of graphs G that can be obtained
from a sequence G1, G2, . . . , Gk of graphs for some k ≥ 1, where G1 ∈ J − T if k = 1 and G1 ∈ J if
k ≥ 2, and G = Gk. If k ≥ 2, Gi+1 can be obtained from Gi by one of the following operations.

Operation O1: If u ∈W(Gi), then O1 adds a spider S1 with head s and an edge us to obtain Gi+1 (see
Figure 3).

Operation O2: If u ∈ V(Gi), then O2 adds a spider Sq (q ≥ 2) with head s and an edge us to obtain
Gi+1 (see Figure 3).

Operation O3: If Gi is a tree and (x, y) ∈ W1,1(Gi), then O3 adds a graph Hk1,k2 (k1 = k2 = 0) and
edges ax, by to obtain Gi+1 (see Figure 1).

Operation O4: If Gi is a tree, x ∈ W(Gi) and y ∈ V(Gi), then O4 adds a graph Hk1,k2 (k1 = 0, k2 ≥ 1)
and edges ax, by to obtain Gi+1 (see Figure 1).

Operation O5: If Gi is a tree, x, y ∈ V(Gi), then O5 adds a graph Hk1,k2 (k1 ≥ 1, k2 ≥ 1) and edges ax,
by to obtain Gi+1 (see Figure 1).

Operation O6: If Gi is a tree, x, y ∈ V(Gi), then O6 adds a graph P(6, (0, 0, k1, k2, 0, 0)) (k1 ≥ 0, k2 ≥ 0)
and edges v3x, v4y to obtain Gi+1 (see Figure 4).

Theorem 4. Let G ∈ G be a graph of order n ≥ 3. Then, G is an independent domination stable graph.

Proof. Suppose that G ∈ G. Then, there exists a sequence of graphs G1, G2, . . . , Gk (k ≥ 1) such that
G1 ∈ J − T if k = 1 and G1 ∈ J if k ≥ 2, and if k ≥ 2, then Gi+1 can be obtained from Gi by one of the
operations O1,O2, · · · ,O6. We proceed by induction on the number of operations used to construct G.
If k = 1, the result holds by Propositions 11, 12, and 13. Assume that the result holds for each graph
G ∈ G, which can be obtained from a sequence of operations of length k− 1, and let G′ = Gk−1. By the
induction hypothesis, G′ is an independent domination stable graph. Since G = Gk is obtained by
one of the operations O1,O2, · · · ,O6 from G′, we conclude from Propositions 5, 7, and 9 that G is an
independent domination stable unicyclic graph.

Theorem 5. Let G be a unicyclic graph of order n ≥ 3. Then, G is an ID-stable graph if and only if G ∈ G.

Proof. According to Theorem 4, we need only to prove necessity. Let G be an ID-stable unicyclic
graph of order n ≥ 3. The proof is by induction on n. Let n ≥ 11, and let the statement hold for all
ID-stable unicyclic graphs of order less than n. Assume that G is an ID-stable unicyclic graph of order
n. Let C = (v1v2 . . . vp) be the unique cycle of G. If G is a cycle, then p = n, and Proposition 1 implies
that G ∈ J3 ⊆ G. Now, we consider the case p < n. Choose a vertex u ∈ V(G)−V(C) such that the
distance between the vertex u and the set V(C) is as large as possible. Assume that v1u1u2 · · · u`u is
the shortest (u, V(C))-path. If ` ≥ 2, then similar to the proof of Theorem 2, G can be obtained from
Gk−1 by one of the operations O1 or O2, and so, G ∈ G. Assume that ` ≤ 1.

First, assume vi is not a support vertex for each i ∈ {1, . . . , p}. Then, G = C(n, Q) for some
Q ∈ N n. If D(Q) = 0, then it follows from Corollary 1 that G ∈ J1. If D(Q) = 1, then it follows from
Theorem 3 that G ∈ J2. If D(Q) ≥ 2, then we conclude from Propositions 10 and 12 that G ∈ J3.
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Now, suppose that vi is a support vertex for some i ∈ {1, . . . , p}, say i = 2. Assume c is a leaf
adjacent to v2. We conclude from Propositions 2 and 3 that v2 is not a strong support vertex and is not
adjacent to a support vertex. It follows that dG(v2) = 3 and that v1, v3 are not support vertices. Let k1

be the number of pendant paths of length two beginning at v1 and k2 be the number of pendant paths
of length two beginning at v3. Let G′ be the graph obtained from G by removing v1, v2, v3 and the
vertices of all pendant paths at v1, v3. By Proposition 6, we have i(G) = i(G′) + k1 + k2 + 1. If G′ is not
an ID-stable graph, then i(G′− v) 6= i(G′) for some vertex v ∈ V(G′), and it follows from Proposition 6
that i(G− v) = i(G′ − v) + k1 + k2 + 1 6= i(G′) + k1 + k2 + 1 = i(G), which is a contradiction. Hence,
G′ is an ID-stable graph, and by the induction hypothesis, we have G′ ∈ G. If k1 ≥ 1, k2 ≥ 1, then T
can be obtained from G′ by operation O5, and so, G ∈ G. Assume that k1 = k2 = 0. Then, we have
dG(v1) = dG(v3) = 2. Let S be a i(G− v2)-set. Since G is an ID-stable graph, we have i(G) = i(G− v2).
To dominate the vertices c, v1, v3, we must have c ∈ S, |s ∩ {v1, vn}| ≥ 1 and |s ∩ {v3, v4}| ≥ 1.
Suppose, without loss of generality, that v4, vn ∈ S. Then, S− {c} is an i(G′)-set containing v4, vn, and
so, (v3, vn) ∈W1,1. Now, T can be obtained from G′ by operation O3, and so, G ∈ G. Finally, let k1 = 0
and k2 ≥ 1. As above, we can see that v4 ∈W(G′), and since T can be obtained from G′ by operation
O4, we have T ∈ G. This completes the proof.

Figure 4. The operation O6.

5. Bounds

In this section, we provide sharp bounds on ID-stable trees. First, we present a lower bound and
characterize all extremal trees. Let T1 be the family of trees T that can be obtained from a sequence T1,
T2, . . ., Tk of trees for some k ≥ 1, where T1 is P2 and T = Tk. If k ≥ 2, then all but at most one of Ti+1
can be obtained from Ti by operation T1, and that one (if any) can be obtained from Ti by operation T2

for q = 2.

Theorem 6. Let T be an ID-stable tree of order n ≥ 2. Then:

i(T) ≥
⌈n

3

⌉
with equality if and only if T ∈ T1.

Proof. By Theorem 2, we have T ∈ T . Thus, there exists a sequence of trees T1, T2, . . . , Tk (k ≥ 1)
such that T1 is P2, and if k ≥ 2, then Ti+1 can be obtained from Ti by one of the operations T1 or T2.
We proceed by induction on the number of operations used to construct T. If k = 1, the result is trivial.
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Assume the result holds for each tree T ∈ T , which can be obtained from a sequence of operations of
length k− 1, and let T′ = Tk−1. By Proposition 4 and the induction hypothesis, we obtain:

i(T) = i(T′) + i(Sq) ≥
⌈

n− 2q− 1
3

⌉
+

⌈
2q + 1

3

⌉
≥
⌈n

3

⌉
. (1)

The equality holds if and only if i(T′) =
⌈

n−2q−1
3

⌉
and i(Sq) =

⌈
2q+1

3

⌉
. It follows from the

induction hypothesis that T′ ∈ T1. Furthermore, we deduce from i(Sq) =
⌈

2q+1
3

⌉
that q ≤ 3. First,

let q = 3. It follows from Equation (1) that:⌈
n− 7

3

⌉
+

⌈
7
3

⌉
=
⌈n

3

⌉
yielding n ≡ 1(mod 3). This implies that 3|n(T′), which is a contradiction by construction of
trees in T1. Hence, q ≤ 2. If Ti+1 is obtained from Ti by operation T1 for each 2 ≤ i ≤ k − 1,
then clearly, T ∈ T1. Assume that one of the Ti+1’s is obtained from Ti by operation T2 for q = 2.
Then, clearly, n(T′) = n− 2q− 1 = 3(k− 1) + 1. If q = 2, then n(T) = 3(k − 1) + 6, and we have⌈

n−2q−1
3

⌉
+
⌈

2q+1
3

⌉
= k + 2 > k + 1 =

⌈
n(T)

3

⌉
, which is a contradiction. Thus, q = 1, and this implies

that T ∈ T1.

Let F1 be the family of all spiders Sq for q ≥ 2, F2 be the family of trees obtained from two spiders
Sp and Sq by joining their heads, F3 be the family of trees obtained from two spiders Sp and Sq by
joining the head of Sp to a knee of Sq, and F4 be the family of trees obtained from two spiders Sp and
Sq by joining the head of Sp to a foot of Sq where p ≥ q = 2 or p, q ≥ 3. For example, the trees obtained
by F2, F3, and F4 when p = q = 3 are illustrated in Figure 5.

(a) (b) (c)

Figure 5. (a) Tree F2; (b) tree F3; (c) tree F4.

The next result is an immediate consequence of Proposition 4.

Observation 1. If T ∈ ∪4
i=1Fi, then i(T) = d n−2

2 e.

Theorem 7. Let T be an ID-stable tree of order n ≥ 5. Then:

i(T) ≤
⌈

n− 2
2

⌉
with equality if and only if T ∈ ∪4

i=1Fi.

Proof. The proof is by induction on n. If n = 5, then by Propositions 2 and 3, we have T = P5,
and the result holds. Let n ≥ 6, and let the statement hold for all ID-stable trees of order less
than n. Assume that T is an ID-stable tree of order n. By Propositions 2 and 3, we deduce that
diam(T) ≥ 4. If diam(T) = 4, then by Propositions 2 and 3, T is the healthy spider Spider(dT(v3)),
and so, i(T) = dT(v3) =

⌈
n(T)−2

2

⌉
and T ∈ F1. Suppose that diam(T) ≥ 5. Let v1v2 . . . vk (k ≥ 5)

be a diametrical path in T such that dT(v3) is as large as possible and root T at vk. By Propositions 2
and 3, we have dT(v2) = 2 and that v3 is not a support vertex. Hence, Tv3 = SdT(v3)−1. Assume that
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p = dT(v3)− 1. Let T′ = T − Tv3 . Since T is an ID-stable tree, we deduce from Proposition 4 that for
any vertex v ∈ V(T′),

i(T′ − v) + p = i(T − v) = i(T) = i(T′) + p

and this implies that i(T′ − v) = i(T′). Hence, T′ is an ID-stable tree. It follows from the induction
hypothesis that i(T′) ≤

⌈
n−2p−3

2

⌉
, and hence,

i(T) ≤ i(T′) + i(Sp)

≤
⌈

n− 2p− 3
2

⌉
+ p

=

⌈
n− 3

2

⌉
≤
⌈

n− 2
2

⌉
.

The equality holds if and only if diam(T) = 4 or diam(T) ≥ 5 and i(T′) =
⌈

n(T′)−2
2

⌉
=
⌈

n−2p−3
2

⌉
and n is even, and this if and only if T ∈ F1 or diam(T) ≥ 5 and T′ ∈ F1 by the induction hypothesis.
Thus, the equality holds if and only if T ∈ ∪4

i=1Fi, and the proof is complete.

6. Conclusions

In this note, we studied the ID-stable graphs. Some basic properties of ID-stable graphs were
presented and new independent domination stable graphs constructed from an old one. We also
characterized all independent domination stable trees and unicyclic graphs. In addition, we proved
that for any tree T of order n ≥ 5,

⌈ n
3
⌉
≤ i(T) ≤

⌈ n−2
2
⌉
, and we characterized all trees attaining

the lower and upper bound. An interesting problem is to find sharp lower and upper bounds on
the independent domination number of ID-stable graphs. The other problem is to characterize all
ID-stable bicyclic graphs. Another problem is to study algorithm running times to decide independent
domination graphs.

Author Contributions: Z.S. and S.M.S. contributed to the supervision, methodology, validation, project
administration, and formal analysis. P.W., H.J., S.N.-M., and L.V. contributed to the investigation, resources, and
some computations and wrote the initial draft of the paper, which was investigated and approved by Z.S. S.M.S.
wrote the final draft.

Funding: This work is supported by the Natural Science Foundation of Guangdong Province under
Grant 2018A0303130115, the Science and Technology Program of Guangzhou (No. 201904010493), and
the Specialized Fund for Science and Technology Platform and Talent Team Project of Guizhou Province
(No. QianKeHePingTaiRenCai [2016]5609).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Appendix A.1. Trees

By applying the constructive method as above, we obtain all ID-stable trees with order up to 12,
and the statistics of the number of trees with different orders is presented in Table A1.

We list all the independent domination stable trees with orders from 5 to 12 in Figure A1.

Appendix A.2. Unicyclic Graphs

By applying the constructive method as above, we obtain all independent domination stable
unicyclic graphs with order from 3 to 10, and the statistics of the number of unicyclic graphs with
different orders is presented in Table A2.
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We here list all the independent domination stable unicyclic graphs with orders from 3 to 10 in
Figure A2.

T1
5 T1

7 T1
8 T2

8 T1
9

T1
10 T2

10 T3
10 T1

11 T2
11

T3
11 T4

11 T5
11 T6

11 T1
12

T2
12 T3

12 T4
12 T5

12

Figure A1. Independent domination stable trees with orders from 5 to 12.

Figure A2. All independent domination stable unicyclic graphs of orders from 3 to 10.
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Table A1. The number of independent domination stable trees with different orders.

Order 2 3 4 5 6 7 8 9 10 11 12
Number 1 0 0 1 0 1 2 1 3 4 5

Table A2. The number of independent domination stable unicyclic graphs with different orders.

Order 3 4 5 6 7 8 9 10
Number 1 0 1 3 0 8 10 9
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