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Abstract: We consider the coordination of transportation and batching scheduling with one single
vehicle for minimizing total weighted completion time. The computational complexity of the problem
with batch capacity of at least 2 was posed as open in the literature. For this problem, we show the
unary NP-hardness for every batch capacity at least 3 and present a polynomial-time 3-approximation
algorithm when the batch capacity is at least 2.
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1. Introduction

Tang and Gong [1] first raised and studied the problem of transportation and batching
scheduling (TBS). This model, which combines transportation and scheduling together, is motivated
by a production environment in which a set of semi-finished jobs are transported from a holding area
to a manufacturing facility for further processing by the available transporters and is used in many
manufacturing systems. This is particularly true in the iron and steel industry.

Formally, we can describe the TBS problem in the following way. We are given a set of jobs, a set
of vehicles (transporters), and a single batching machine that can handle batch jobs at the same time.
Initially, all jobs and all vehicles are located at a holding area and available from time zero onward.
When the production process begins, all jobs have to be transported by the vehicles to the batching
machine and further processing is then carried out, where each vehicle can deliver one job at a time.
The transportation time of a job is job-dependent, the empty moving times of the vehicles from the
batching machine back to the holding area are identical, and the processing times of the batches on the
batching machine are identical. The following notations are used in this scheduling model.

• J = {J1, J2, . . . , Jn} is a set of n jobs to be processed.
• M = {1, 2, . . . , m} is a set of m vehicles used to transport the jobs.
• τj is the transportation time of job Jj, j = 1, 2, . . . , n, from the holding area to the batching machine.
• τ is the empty moving time of each vehicle from the machine back to the holding area. In the

sequel, we simply call τ the vehicle return time.
• c is the capacity of the batching machine. We require that every batch consists at most c jobs.
• p is the processing time of each batch, which is independent of the jobs composing the batch.
• Cj is the completion time of jobs Jj in a schedule, j = 1, 2, . . . , n.
• α(b), which is an increasing function in b, is the processing (or batching) cost if a total of b batches

are generated in of a schedule. The more batches there are, the more processing costs there will be.
• f is the scheduling cost which depends on the completion times C1, C2, . . . , Cn of the jobs.

The goal of the TBS problem is to find a feasible schedule that minimizes the scheduling cost plus
the processing cost. We will denote this problem by (m, c)|τ| f + α(b), where “(m, c)” means that we
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have m vehicles in the transportation stage and the batching machine has a capacity c for forming a
batch and “τ" indicates the vehicle return time.

Production–transportation problems, which have some similarities as the TBS problems, have
also been extensively studied in the literature. Hall and Potts [2] introduced and studied various
single-machine and parallel-machine scheduling problems in which the various cost functions being
considered are based on the delivery times and delivery cost. Chen [3] surveyed the existing models of
integrated production and outbound distribution scheduling (IPODS) and presented a unified model
representation method. The author also classified the existing models into several different classes and
provided an overview for the optimality properties, computational tractability, and solution algorithms.
As mentioned by Tang and Gong [1], the TBS problem differs from the IPODS problem. In fact, in
the TBS setting, apart from the schedule of the semi-finished jobs in the transportation stage, we also
consider the schedule of these jobs on the batching machine in the production stage.

Recall that a combinatorial optimization problem is binary (unary) NP-hard if it is NP-hard in the
binary (unary) encoding.

Tang and Gong [1] studied the TBS problem which aims to minimize the sum of the total
completion time of the jobs and the processing cost of the batching machine. For this problem, the
authors proved the binary NP-hardness and further established a pseudo-polynomial-time algorithm
and an FPTAS for any fixed m.

For the more “classic" scheduling objectives that exclude the processing cost, Zhu et al. [4] showed
that the complexity result in Tang and Gong [1] is still valid, that is, the TBS problem with fixed m for
minimizing the total completion time of the jobs is binary NP-hard. When m is arbitrary, Zhu et al. [4]
showed that the TBS problem for minimizing the total completion time of the jobs is unary NP-hard.
Moreover, they proved that the TBS problem for minimizing the sum of the total weighted completion
time of the jobs and the processing cost of the batching machine is unary NP-hard even if m = 1
and c = 3. The computational complexity of the TBS problem with m = 1 for just minimizing the
total weighted completion time of the jobs was posed as an open problem in Zhu et al. [4]. It should
be noticed that, in the case where τ = 0, i.e., the vehicle return time is given by 0, the model of
transportation times in the TBS problems can be considered as a special case of setup times studied in
Allahverdi [5] and Ciavotta et al., [6]

In this paper, we consider the TBS problem (1, c)|τ|∑ wjCj, in which we have one single vehicle
in the transportation stage, the scheduling criterion is to minimize the total weighted completion time
of the jobs, and the processing cost is given by 0.

Note that when c = 1 and τ = 0, problem (1, c)|τ|∑ wjCj degenerates to the classical two-machine
flow-shop scheduling problem F2|p2j = p|∑ wjCj. Recently, Wei and Yuan [7] showed that problem
F2|p2j = p|∑ wjCj is unary NP-hard and admits a 2-approximation algorithm. More research of
problem F2||∑ wjCj can be found in Choi et al. [8] and Hoogeveen and Kawaguchi [9].

The unary NP-hardness of problem F2|p2j = p|∑ wjCj, established in the work by the authors
of [7], implies that problem (1, 1)|τ = 0|∑ wjCj is unary NP-hard. However, in general, the
computational complexity of problem (1, c)|τ|∑ wjCj for c ≥ 2 is unaddressed.

In this paper, first, we show that for every c ≥ 3 (including the possibility c = n), problem
(1, c)|τ = 0|∑ wjCj is unary NP-hard. Then, for the general problem (1, c)|τ|∑ wjCj with the batch
capacity c ≥ 2, we present a polynomial-time approximation algorithm, which has a worst-case
performance ratio of less than 3. The complexity of problem (1, 2)|τ|∑ wjCj is still open.

2. Unary NP-Hardness Proof

To show the unary NP-hardness of problem (1, c)|τ = 0|∑ wjCj with c ≥ 3, we will use the
following decision problem “3-Partition" as the source problem. As outlined by Garey and Johnson [10],
a 3-partition is unary NP-complete.

3-Partition: In an instance of the problem, we are given a set {a1, a2, . . . , a3t, B} of 3t + 1 positive
integers satisfying 1

4 B < aj <
1
2 B for j = 1, 2, . . . , 3t and ∑3t

j=1 aj = tB. The decision asks, is there a
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partition of the index set I = {1, 2, . . . , 3t} into t parts I1, I2, . . . , It such that |Ii| = 3 and ∑j∈Ii
aj = B

for all i = 1, 2, . . . , t?
The following useful lemma states a basic algebraic result.

Lemma 1. Let x1, x2, . . . , xk be k positive numbers. Then ∑k
i=1 x2

i ≥ k ·
( x1+x2+···+xk

k
)2, and moreover the

equality holds if and only if x1 = x2 = · · · = xk =
x1+x2+···+xk

k .

Theorem 1. For every c ≥ 3, problem (1, c)|τ = 0|∑ wjCj is unary NP-hard.

Proof. For a given instance (a1, a2, . . . , a3t; B) of 3-Partition, we first define

∆ = t2B2 + 1 = O(t2B2) (1)

and
M = t(t + 3)(3∆ + B)2 = O(t6B4). (2)

Then we construct a scheduling instance of problem (1, c)|τ = 0|∑ wjCj as follows.

• There are n = 3t + 1 jobs J0, J1, . . . , J3t of two types:

(i) J0, called the 0-job, has a transportation time τ0 = 0 and a weights w0 = M, and
(ii) J1, J2, . . . , J3t, called partition jobs, have transportation times τj = ∆ + aj and weights

wj = ∆ + aj for j = 1, 2, . . . , 3t.

• The number of vehicles is given by m = 1.
• The vehicle return time is given by τ = 0.
• The batch machine capacity c ≥ 3 is arbitrary, where c = n is allowed.
• The batch processing time is given by p = 3∆ + B = O(t2B2).
• The threshold value is given by

Q = M(3∆ + B) +
1
2

t(t + 3)(3∆ + B)2 = Mp +
1
2

t(t + 3)p2. (3)

The above scheduling instance has 6t + 6 parameters: τj, wj (j = 0, 1, . . . , 3t), τ, p, c, and Q,
with Q being the largest one. Since M = O(t6B4) and p = O(t2B2), from Equation (3), we have
Q = Mp + 1

2 t(t + 3)p2 = O(t8B6). This implies that the size of the above scheduling instance under the
unary encoding is upper bounded by O(t9B6). Note that the size of the 3-partition instance under
the unary encoding is given by O(tB). Then, our scheduling instance can be constructed from the
3-partition instance in a polynomial time under the unary encoding. From the general principle of
NP-hardness proof, we need to show in the following that the 3-Partition instance has a solution if and
only if the scheduling instance has a feasible schedule π such that ∑ wjCj(π) ≤ Q.

Let us first suppose that the 3-Partition instance has a solution, which means that there is a
partition of the index set I = {1, 2, . . . , 3t} into t parts I1, I2, . . . , It such that |Ii| = 3 and ∑j∈Ii

aj = B
for all i = 1, 2, . . . , t. Let J0 = {J0} and Ji = {Jj : j ∈ Ii} for all i = 1, 2, . . . , t. We define a schedule π

for the scheduling instance in the following way.

• The vehicle consecutively transports the 3t + 1 jobs in the order

J0 ≺ J1 ≺ · · · ≺ Jt (4)

one by one, where the transportation order of the three jobs in each Ji, i = 1, 2, . . . , t, does
not matter.

• The batching machine takes each Ji, i = 0, 1, 2, . . . , t, as a single batch and processes the t + 1
batches in the order described in Equation (4) as they are transported. Then we have totally t + 1
processing batches.
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Note that the transportation time of the 0-job in J0 is 0, and the total transportation time of the
three partition-jobs in Ji, i ∈ {1, 2, . . . , t}, is given by ∑Jj∈Ji

τj = ∑j∈Ii
(∆ + ai) = 3∆ + B. From p =

3∆ + B, the completion times of the t + 1 batches J0 ≺ J1 ≺ · · · ≺ Jt are given by p, 2p, . . . , (t + 1)p,
respectively. Moreover, the weight of the 0-job in J0 is M and the total weight of the three partition-jobs
in Ji, i ∈ {1, 2, . . . , t}, is given by ∑Jj∈Ji

wj = ∑j∈Ii
(∆ + ai) = 3∆ + B = p. Then we have

∑ wjCj(π) = M · p + p2 · (2 + 3 + · · ·+ (t + 1)) = Mp +
1
2

t(t + 3)p2.

From Equation (3), we have Q = Mp + 1
2 t(t + 3)p2, which leads to the relation ∑ wjCj(π) = Q.

Therefore, π is a required schedule. This proves the necessity.
We next prove the sufficiency. To this end, we suppose that π is a feasible schedule of the

scheduling instance, such that ∑ wjCj(π) ≤ Q. Recall that Q = Mp + 1
2 t(t + 3)p2. Let B0,B1, . . . ,BK

be the batch sequence processed by the batching machine in π in this order.
If the 0-job J0 completes after time p, we have ∑ wjCj(π) > w0C0(π) ≥ M(p + 1) = Mp + M.

From the definition of M in Equation (2), we have M = t(t + 3)(3∆ + B)2 = t(t + 3)p2. Thus,
∑ wjCj(π) > Mp + t(t + 3)p2 > Q, contradicting the choice of π. Consequently, we have

C0(π) = p, B0 = {J0}, and w0C0(π) = Mp. (5)

From Equation (5) and from the fact that ∑ wjCj(π) ≤ Q = Mp + 1
2 t(t + 3)p2, we have

3t

∑
j=1

wjCj(π) ≤ 1
2

t(t + 3)p2. (6)

From the above discussion, we know that the 3t partition-jobs J1, J2, . . . , J3t are distributed into
the K batches Bi, i = 1, 2, . . . , K. Then we define

Ii = {j : Jj ∈ Bi} and Ai = ∑j∈Ii
aj, i = 1, 2, . . . , K. (7)

For each i ∈ {1, 2, . . . , K}, we define w(i) = ∑j∈Ii
wj and τ(i) = ∑j∈Ii

τj. Since wj = τj = ∆ + aj for
j ∈ {1, 2, . . . , 3t}, we have

w(i) = τ(i) = |Ii|∆ + Ai, i = 1, 2, . . . , K. (8)

Since each batch Bi cannot be processed before all the jobs in B1 ∪ B2 ∪ · · · ∪ Bi are transported,
we have

CBi (π) ≥ τ(1) + τ(2) + · · ·+ τ(i) + p, i = 1, 2, . . . , K. (9)

Since the batches are processed in the order B0 ≺ B1 ≺ · · · ≺ BK on the batching machine in π,
we further have

CBi (π) ≥ (i + 1)p, i = 1, 2, . . . , K. (10)

Note that ∑K
i=1 τ(i) = ∑3t

j=1 τj = ∑3t
j=1(∆ + aj) = 3t∆ + tB = tp. We show in the following

that K = t.
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If K ≥ t + 1, let τ∗ = τ(t+1) + τ(t+2) + · · ·+ τ(K). Then ∆ < τ∗ < tp− t∆. From Equations (9)
and (10), we have

∑3t
j=1 wjCj(π) = ∑K

i=1 w(i)CBi (π)

= ∑t
i=1 τ(i)CBi (π) + ∑K

i=t+1 τ(i)CBi (π)

≥ ∑t
i=1 τ(i)(τ(1) + τ(2) + · · ·+ τ(i) + p) + τ∗(t + 2)p

= 1
2 (∑

t
i=1(τ

(i))2 + (∑t
i=1 τ(i))2) + ∑t

i=1 τ(i)p + τ∗(t + 2)p

= 1
2 ∑t

i=1(τ
(i))2 + 1

2 (tp− τ∗)2 + (tp− τ∗)p + τ∗(t + 2)p

≥ 1
2 ·

(tp−τ∗)2

t + 1
2 (tp− τ∗)2 + (tp− τ∗)p + τ∗(t + 2)p

> 1
2 t(t + 3)p2,

where the second inequality follows from Lemma 1 and the last inequality follows by a simple
calculation. This contradicts the relation in Equation (6).

If K ≤ t− 1, from Lemma 1 and Equation (9), we have

∑3t
j=1 wjCj(π) = ∑K

i=1 w(i)CBi (π)

≥ ∑K
i=1 τ(i)(τ(1) + τ(2) + · · ·+ τ(i) + p)

= 1
2 (∑

K
i=1(τ

(i))2 + (∑K
i=1 τ(i))2) + ∑K

i=1 τ(i)p

= 1
2 (∑

K
i=1(τ

(i))2 + t2 p2) + tp2

≥ 1
2 (t

2 p2/K + t2 p2) + tp2

> 1
2 (tp2 + t2 p2) + tp2

= 1
2 t(t + 3)p2,

contradicting the relation in Equation (6) again.
The above discussion shows that K = t. Thus, from Lemma 1 and Equation (9) again, we have

∑3t
j=1 wjCj(π) = ∑t

i=1 w(i)CBi (π)

≥ ∑t
i=1 τ(i)(τ(1) + τ(2) + · · ·+ τ(i) + p)

= 1
2 (∑

t
i=1(τ

(i))2 + (∑t
i=1 τ(i))2) + ∑t

i=1 τ(i)p

= 1
2 (∑

t
i=1(τ

(i))2 + t2 p2) + tp2

≥ 1
2 (tp2 + t2 p2) + tp2

= 1
2 t(t + 3)p2

≥ ∑3t
j=1 wjCj(π),

where the last inequality follows from Equation (6). This means that all the inequalities in the above
deduction must hold with equalities. In particular, we have ∑t

i=1(τ
(i))2 = tp2. From Lemma 1 again,

it holds that τ(1) = τ(2) = · · · = τ(t) = p = 3∆ + B. From Equation (8), we conclude that

|I1|∆ + A1 = |I2|∆ + A2 = · · · = |It|∆ + At = 3∆ + B. (11)

Since Ai = ∑j∈Ii
aj ≤ tB for all i = 1, 2, . . . , t and the value ∆ = t2B2 + 1 defined in (1) is

sufficiently large, from Equation (11), we can easily deduce that |Ii| = 3 and Ai = B for all i = 1, 2, . . . , t.
Consequently, the 3-partition instance has a solution. The result follows.
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3. Approximation

We assume in this section that c ≥ 2. Given a job instance J = {J1, J2, . . . , Jn} of problem
(1, c)|τ|∑ wjCj, we define

p1,j = τj + τ, j = 1, 2, . . . , n. (12)

In O(n log n) time, we can renumber the n jobs in the nondecreasing order of the ratios
(p1j + p/c)/wj such that

(p1,1 + p/c)/w1 ≤ (p1,2 + p/c)/w2 ≤ · · · ≤ (p1,n + p/c)/wn. (13)

In O(n log n) time, we can also obtain a permutation (1′, 2′, . . . , n′) of {1, 2, . . . , n} such that
τ1′ ≥ τ2′ ≥ · · · ≥ τn′ . Then, we define

α = min{τ1, τ2, · · · , τn, bp/cc} (14)

and
β = max{p, τ1′ + τ2′ + · · ·+ τc′ + cτ}. (15)

For a schedule π of the job instance J , we use C1,j(π) to denote the completion time of job Jj on
the vehicle. Since the batch containing Jj must start at or after time C1,j(π), we have

Cj(π) ≥ C1,j(π) + p, j = 1, 2, . . . , n. (16)

By the job-exchanging argument, we can show that there must be an optimal schedule π of
problem (1, c)|τ|∑ wjCj such that for the two jobs Ji and Jj,

C1,i(π) < C1,j(π)⇒ Ci(π) ≤ Cj(π). (17)

Then we only consider schedules with the property in (17) in the sequel.
In the following we present an approximation algorithm for problem (1, c)|τ|∑ wjCj with the

worst-case performance ratio at most 3β/(β + α) ≤ 3, where c ≥ 2. Our approximation algorithm can
be described in the following way.

Algorithm 1. For problem (1, c)|τ|∑ wjCj on instance J .

Step 1. Schedule the jobs in the order J1, J2, . . . , Jn on the vehicle without idle time.
Step 2. Form batches and process them on the batching machine by using the following strategy:
When the batching machine is idle at time t and some jobs are available for processing at time
t, it forms and process a new batch, which contains as many jobs as possible subject to the
batch capacity c, by the rule that jobs with small subscriptions have the priority to be processed.

Clearly, Algorithm 1 runs in O(n) time. To analyze the worst-case performance ratio of
Algorithm 1, we first establish a lower bound of the optimal cost of problem (1, c)|τ|∑ wjCj on
instance J .

Lemma 2. Let π∗ be an optimal schedule of instance J and, for each j ∈ {1, 2, . . . , n}, let J[j] denote the job
that occupies the jth position on the vehicle in π∗. Then

n

∑
j=1

w[j]C[j](π
∗) ≥ 1

3
( n

∑
j=1

j

∑
i=1

w[j](p1,[i] + p/c) + (3α + 2p− τ)
n

∑
j=1

w[j]
)
. (18)
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Proof. Since π∗ satisfies the property in (17), we may assume that C[1](π
∗) ≤ C[2](π

∗) ≤ · · · ≤ C[n](π
∗).

Note that c ≥ 2 is the batch capacity and each batch has a processing time p. Moreover, the
first batch on the batching machine starts at a time greater than τ[1] = p1,[1] − τ. For each
j = 1, 2, . . . , n, at least dj/ce batches are completed by time C[j](π

∗) on the batch machine. Then
we have C[j](π

∗) ≥ p1,[1] − τ + dj/cep for j = 1, 2, . . . , n. Consequently, we have

n

∑
j=1

w[j]C[j](π
∗) ≥ (p1,[1] − τ)

n

∑
j=1

w[j] + p
n

∑
j=1
dj/cew[j]. (19)

From (16), for each j = 1, 2, · · · , n, we also have C[j](π
∗) ≥ C1,[j](π

∗) + p, which implies that

C[j](π
∗) ≥ ∑

j
i=1 p1,[i] + p− τ. Consequently, we have

n

∑
j=1

w[j]C[j](π
∗) ≥

n

∑
j=1

j

∑
i=1

w[j]p1,[i] + (p− τ)
n

∑
j=1

w[j]. (20)

From the above two inequalities, (19) and (20), we obtain

3 ∑n
j=1 w[j]C[j](π

∗) ≥ ∑n
j=1 w[j]

(
p1,[1] − τ + dj/cep + 2 ∑

j
i=1 p1,[i] + 2(p− τ)

)
≥ ∑n

j=1 w[j]
(

∑
j
i=1(p1,[i] + p/c) + 3α + 2p− τ

)
= ∑n

j=1 ∑
j
i=1 w[j](p1,[i] + p/c) + (3α + 2p− τ)∑n

j=1 w[j].

Then the lemma follows immediately.

The following lemma is also useful in our discussion.

Lemma 3. For any c indices i1, i2, · · · , ic ∈ {1, 2, · · · , n}, we have

|p1,i1 + p1,i2 + · · ·+ p1,ic − p| ≤ β− α

β + α
(p1,i1 + p1,i2 + · · ·+ p1,ic + p).

Proof. Let x = min{p1,i1 + p1,i2 + · · · + p1,ic , p} and y = max{p1,i1 + p1,i2 + · · · + p1,ic , p}. Then
|p1,i1 + p1,i2 + · · ·+ p1,ic − p| = y− x and p1,i1 + p1,i2 + · · ·+ p1,ic + p = x + y. From the definitions
of α and β in Equations (14) and (15), we further have α ≤ x ≤ y ≤ β. This implies that yα ≤ βα ≤ xβ.
Now

|p1,i1 + p1,i2 + · · ·+ p1,ic − p|(β + α)

= (y− x)(β + α) = yβ + yα− xβ− xα

≤ yβ− yα + xβ− xα

= (x + y)(β− α)

= (β− α)(p1,i1 + p1,i2 + · · ·+ p1,ic + p).

It follows that |p1,i1 + p1,i2 + · · ·+ p1,ic − p| ≤ (β− α)(p1,i1 + p1,i2 + · · ·+ p1,ic + p)/(β + α).

Now we are ready to establish our final result. Recall that c ≥ 2.

Theorem 2. Algorithm 1 yields a schedule with cost no more than 3β/(α + β) times the cost of an
optimal schedule.
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Proof. Let π be the schedule of instance J generated by Algorithm 1. Since the jobs in J are scheduled
in the order J1 ≺ J2 ≺ · · · ≺ Jn on the vehicle without idle time, the implementation of Step 2 implies
that, for j = 1, 2, . . . , c, we have

Cj(π) ≤ ∑
j
i=1 p1,i + 2p− τ

= β(∑
j
i=1 p1,i + 2p− τ)/(β + α) + α(∑

j
i=1 p1,i + 2p− τ)/(β + α)

≤ β(∑
j
i=1 p1,i + 2p− τ)/(β + α) + 3αβ/(β + α)

≤ β(∑
j
i=1(p1,i + p/c) + 3α + 2p− τ)/(β + α).

For each j = c + 1, c + 2, . . . , n, we define k j = dj/ce − 1 and lj = j− k jc. Then, we have

Cj(π) ≤ p + max{C1,j(π) + p, Cj−c(π)}

≤ p + max{C1,j−c(π) + p + ∑c
h=1 p1,j−c+h, max{C1,j−c(π) + p, Cj−2c(π)}+ p}

≤ p + max{C1,j−c(π) + p, Cj−2c(π)}+ max{∑c
h=1 p1,j−c+h, p}

≤ p + max{C1,lj+c(π) + p, Clj
(π)}+ ∑

kj−1
i=1 max{∑c

h=1 p1,lj+ic+h, p}

≤ p + max{C1,lj+c(π) + p, C1,lj
(π) + 2p}+ ∑

kj−1
i=1 max{∑c

h=1 p1,lj+ic+h, p}

≤ 2p + C1,lj
(π) + ∑

kj−1
i=0 max{∑c

h=1 p1,lj+ic+h, p}

= ∑
lj
i=1 p1,i + 2p− τ + ∑

kj−1
i=0 max{∑c

h=1 p1,lj+ic+h, p}.

By Lemma 3 and using the algebraic equality

2 ·max{x, y} = x + y + |x− y|, for every two real numbers x and y,

we can obtain that

max{∑c
h=1 p1,lj+ic+h, p}

= 1
2
(

∑c
h=1 p1,lj+ic+h + p + |∑c

h=1 p1,lj+ic+h − p|
)

≤ 1
2
(

∑c
h=1 p1,lj+ic+h + p + (∑c

h=1 p1,lj+ic+h + p)(β− α)/(β + α)
)

= β(∑c
h=1 p1,lj+ic+h + p)/(β + α).

Then, we have

Cj(π) ≤ (∑
lj
i=1 p1,i + 2p− τ) + β

β+α ∑
kj−1
i=0 (∑c

h=1 p1,lj+ic+h + p)

= α
β+α (∑

lj
i=1 p1,i + 2p− τ) + β

β+α

(
∑k−1

i=0 (∑
c
h=1 p1,l+ic+h + p) + (∑

lj
i=1 p1i + 2p− τ)

)
≤ α

β+α · 3β + β
β+α

(
∑

j
i=1 p1,i + jp/c + 2p− τ

)
= β

β+α

(
∑

j
i=1(p1,i + p/c) + 3α + 2p− τ

)
,

where ∑
lj
i=1 p1,i + 2p− τ ≤ 3β follows from the definition of β. Consequently, we have

n

∑
j=1

wjCj(π) ≤ β

β + α

( n

∑
j=1

j

∑
i=1

wj(p1,i + p/c) + (3α + 2p− τ)
n

∑
j=1

wj
)
. (21)

Now let π∗ be an optimal schedule of instance J , and for each j ∈ {1, 2, . . . , n}, let J[j]
denote the job that occupies the jth position on the vehicle in π∗. Moreover, we consider the
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classical scheduling problem 1||∑ wjCj on job instance J ′ = {J′1, J′2, . . . , J′n}, where each job J′j has a
processing time p1,j + p/c and a weight wj. We consider the two schedules σ = (J′1, J′2, . . . , J′n) and
σ∗ = (J′[1], J′[2], . . . , J′[n]) of problem 1||∑ wjCj on job instance J ′. From Smith [11], the well-known
WSPT rule solves problem 1||∑ wjCj optimally. Thus, from the relations in (13), σ is an optimal
schedule of problem 1||∑ wjCj on job instance J ′. It follows that ∑n

j=1 wjCj(σ) ≤ ∑n
j=1 wjCj(σ

∗). Note

that ∑n
j=1 wjCj(σ) = ∑n

j=1 ∑
j
i=1 wj(p1,i + p/c) and ∑n

j=1 wjCj(σ
∗) = ∑n

j=1 ∑
j
i=1 w[j](p1,[i] + p/c). Then,

we have
n

∑
j=1

j

∑
i=1

wj(p1,i + p/c) ≤
n

∑
j=1

j

∑
i=1

w[j](p1,[i] + p/c). (22)

By applying the inequality in Equation (22) to Equations (18) and (21), we obtain

∑ wjCj(π) ≤ 3β

β + α ∑ w[j]C[j](π
∗)

This completes the proof.

4. Conclusions

We studied the coordination of transportation and batching scheduling with one single vehicle
for minimizing the total weighted completion time of the jobs without considering the processing cost
of the batching machine. For this problem, we showed a unary NP-hardness of at least 3 for each batch
capacity and presented a polynomial-time 3-approximation algorithm when the batch capacity is at
least 2.

Future research may consider to include the processing cost in the objective function. In particular,
approximation behavior of the problem (1, c)|τ|∑ wjCj + α(b) with α(b) = λb being a linear function
in b is worthy of study. Moreover, when the batch capacity is given by c = 2, the computational
complexity of problem (1, 2)|τ|∑ wjCj + α(b) is still open. A polynomial-time approximation scheme
for solving problem (1, c)|τ|∑ wjCj is also expected.
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