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Abstract: In this work, we obtain a new formula for Fibonacci’s family m-step sequences. We use
our formula to find the nth term with less time complexity than the matrix multiplication method.
Then, we extend our results for all linear homogeneous recurrence m-step relations with constant
coefficients by using the last few terms of its corresponding Fibonacci’s family m-step sequence. As a
computational number theory application, we develop a method to estimate the square roots.
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1. Introduction

Currently, in modern science, extensive work has been done in the area of recurrence relations
and their applications (see, e.g., [1–5]).

In [6,7], the authors developed a transformation method of Tribonacci sequence and Tetranacci
sequence to find the nth term of any Tribonacci-Like sequence and Tetranacci-Like sequence,
respectively. In [8], the authors extended the previous transformation method to any Fibonacci-Like
m-step sequence.

In [9], the authors used matrix multiplication to find the nth term of Fibonacci’s family m-step
sequences. The time complexity of their result is of order m3 log n times the time of multiplying two
n-digit integers.

We generalize the transformation methods in [6,7] for Fibonacci’s family m-step sequences. We
also use matrix method as in [9] to obtain the closed form of our new formula. However, the time
complexity of our formula is of order m2 log n times the time of multiplying two n-digit integers. As a
computational number theory application, we develop a method to estimate the square root. The paper
is organized as follows:

• Section 2 contains the notations and definitions related to this work. Section 2.1 gives a look
into Fibonacci sequences and their properties. One of the most important features linked
to the evaluation of iterative methods is the order of convergence or the time complexity.
Time complexity shows how fast the algorithm converges to the solution. This aspect is discussed
briefly in Section 2.2.

• Section 3 provides the main results and is organized as follows. In Section 3.1, we state
and prove our main results. In Section 3.2, we provide a method of finding the nth term of
any linear homogeneous recurrence relation. In Section 3.3, we illustrate our method by a
numerical example.

• Section 4 deals with the computational number theory application; in particular, we give a
different method of approximating the square roots.
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2. Definitions and Notations

2.1. Fibonacci Primer

The Fibonacci sequence shows a certain numerical pattern. This pattern turns out to have an
interest and importance far beyond what its inventor imagined. It can be used to model or describe an
amazing variety of phenomena, in mathematics, science, and art (see, e.g., [3,8]).

The well-known Fibonacci sequence of numbers which are defined by the recurrence

Fn = Fn−1 + Fn−2, n ≥ 2,

with the initial values F0 = 0 and F1 = 1, is an example of a linear homogeneous recurrence sequence.

Definition 1. The linear homogeneous recurrence m-step sequence {Hn}, for m ≥ 2 an arbitrary integer,
is defined by the recurrence

Hn = k1Hn−1 + k2Hn−2 + · · ·+ km Hn−m, n ≥ m + 1, (1)

where k1, · · · , km are constants and H1, · · · , Hm are the initial values.

Miles [4] appears to be the first who studied such sequences, with constants ki = 1, 1 ≤ i ≤ m
and initial values H1 = 0, H2 = 0, · · · , Hm−1 = 0, Hm = 1.

Definition 2. The Fibonacci m-step sequence, for m ≥ 2 an arbitrary fixed integer, is defined by the recurrence

Un = Un−1 + Un−2 + · · ·+ Un−m, n ≥ 2,

with the initial values U2−m = U1−m = · · · = U0 = 0, and U1 = 1.

Definition 3. The Fibonacci family m-step sequence, for m ≥ 2 an arbitrary fixed integer, is defined by
the recurrence

Un = k1Un−1 + k2Un−2 + · · ·+ kmUn−m, n ≥ 2, (2)

with the initial values U2−m = U1−m = · · · = U0 = 0, and U1 = 1.

Definition 4. The characteristic equation of Fibonacci m-step sequence is

xm − xm−1 − · · · − x− 1 = 0. (3)

It is well known that such sequence has the following property:

Property 1. lim
n→∞

Un+1
Un

is equal to the leading root of Equation (3).

2.2. The Time Complexity

In [9], the authors used matrix multiplication to find the nth term of Fibonacci’s family m-step
sequences. The time complexity of their method is O(m3 × log(n) × M(n × n)), where M(n × n)
denotes the time of multiplying two n-digit integers. We also use matrix notation to obtain the
closed form of our formula. However, the time complexity of this new formula is O(m2 × log(n)×
M(n× n)). Notice that, in calculating the time complexity of iterative processes, it is often assumed
that the arithmetic operations of addition and multiplication can be computed in constant times.
This assumption is invalid if the number of digits depends on the index of the term n as the computation
proceeds. Therefore, it is important to distinguish between the process of multiplying two terms and
term by a constant. Our actual time complexity is O(m3 × log(1× n)×M(1× n) + m2 × log(n)×
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M(n× n)), based on the assumption that the terms of the sequence are integer numbers. As m << n,
our time complexity can be consider as O(m2 × log(n)×M(n× n)).

3. Main Results

Let Hn =
m
∑

i=1
ki Hn−i, where n ≥ m + 1, be a linear homogenous recurrence m-step relation

with constant coefficients ki, 1 ≤ i ≤ m, and initial values H1, H2, · · · , Hm. Let Un =
m
∑

i=1
kiUn−i,

where m ≥ 2, be a linear recurrence m-step relation with Ui = 0, for 2− m ≤ i ≤ 0 and U1 = 1,
i.e., {Un} is a Fibonacci family m-step sequence. We define the matrices Am×m, Km×m, tH1×m, tU1×m
as follows:

Am×m :=



k1 k2 k3 · · · km

1 0 0 · · · 0
0 1 0 · · · 0
...

...
...

. . .
...

0 0 1 · · · 0

 , Km×m :=



k1 k2 · · · km−1 km

k2 k3 · · · km 0
k3 k4 · · · 0 0
...

...
. . .

...
...

km 0 · · · 0 0


t H1×m :=

[
Ht Ht−1 · · · Ht−m+1

]
, tU1×m :=

[
Ut Ut−1 · · · Ut−m+1

]
.

The following technical proposition are used to prove our main result.

Proposition 1. For positive integers n, m, t with n ≥ m + 1, we have

Hn =
m

∑
i=1

(
Hn−i+1−t

m

∑
j=i

k jUt+i−j

)

Alternately, Hn = (n−t)H1×m × Km×m × tUT
1×m, where tUT denotes the transpose of the matrix tU.

Proof. Let Hn =
m
∑

i=1
Li,tHn−i+2−t, where Li,t is the coefficient of Hn−i+2−t. The following table

shows that
Ut = L1,t, for 2−m ≤ t ≤ 1. (4)

t
m
∑

i=1
Li,t Hn−i+2−t L1,t

1
m
∑

i=1
Li,1Hn−i+1 = (1)Hn +

m−1
∑

i=1
(0)Hn−i L1,1 = 1

0
m
∑

i=1
Li,0Hn−i+2 = (0)Hn+1 + (1)Hn +

m−2
∑

i=1
(0)Hn−i L1,0 = 0

−1
m
∑

i=1
Li,−1Hn−i+3 =

2
∑

i=1
(0)Hn+3−i + (1)Hn +

m−3
∑

i=1
(0)Hn−i L1,−1 = 0

...
...

...

3−m
m
∑

i=1
Li,3−m Hn−i+m−1 =

m−2
∑

i=1
(0)Hn+m−1−i + (1)Hn + (0)Hn−1 L1,3−m = 0

2−m
m
∑

i=1
Li,2−m Hn−i+m =

m−1
∑

i=1
(0)Hn+m−i + (1)Hn L1,2−m = 0
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Now,

Hn =
m
∑

i=1
Li,tHn−i+2−t

= L1,tHn+1−t +
m
∑

i=2
Li,tHn−i+2−t

= L1,t
m
∑

i=1
ki Hn+1−t−i +

m
∑

i=2
Li,tHn−i+2−t

=
m
∑

i=1
kiL1,tHn+1−t−i +

m−1
∑

i=1
Li+1,tHn−i+1−t

=
m−1
∑

i=1
(kiL1,t + Li+1,t)Hn−i+1−t + kmL1,tHn−m+1−t

=
m−1
∑

i=1
(kiL1,t + Li+1,t)Hn−i+2−(t+1) + kmL1,tHn−m+2−(t+1) (∗)

Since Hn =
m
∑

i=1
Li,t+1Hn−i+2−(t+1) =

m−1
∑

i=1
Li,t+1Hn−i+2−(t+1) + Lm,t+1Hn−m+2−(t+1), then from (*),

we have Lm,t+1 = kmL1,t and

Li,t+1 = kiL1,t + Li+1,t for 1 6 i 6 m− 1 (5)

By backward substitution in Equation (5), we have

Lm−1,t = km−1L1,t−1 + kmL1,t−2

Lm−2,t = km−2L1,t−1 + km−1L1,t−2 + kmL1,t−3
...

Li,t = kiL1,t−1 + ki+1L1,t−2 + · · ·+ kmL1,t+i−1−m,

and hence,

Li,t =
m

∑
j=i

k jL1,t+i−1−j (6)

Now, from Equations (4) and (6), we have L1,t = Ut ∀t and Li,t =
m
∑
j=i

k jUt+i−1−j. Thus,

Hn =
m

∑
i=1

Li,tHn−i+2−t =
m

∑
i=1

Hn−i+2−t

m

∑
j=i

k jUt+i−1−j.

Now, by replacing t by t + 1, we get

Hn =
m

∑
i=1

(
Hn−i+1−t

m

∑
j=i

k jUt+i−j

)
.

Alternately, Hn = (n−t)H1×m × Km×m × tUT
1×m.

3.1. Main Formulas

Lemma 1. For positive integers z, m, t with z = 2n and n ≥ m + 1, we have

H2n+1 = 2n−tH1×m × Km×m × Am×m × tUT
1×m (7)

Proof. By Proposition 1, we have

H2n+b = 2n+b−t H1×m × Km×m × tUT
1×m (8)
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In particular, we have

H2n+1 = 2n+1−tH1×m × Km×m × tUT
1×m. (9)

Thus,

H2n+1 =


H2n−t+1

H2n−t
...

H2n−t−m+2


T 

k1 k2 · · · km

k2 k3 · · · 0
...

...
. . .

...
km 0 · · · 0




Ut

Ut−1
...

Ut−m+1



=


0

H2n−t
...

H2n−t−m+2


T 

0 0 · · · 0
k2 k3 · · · 0
...

...
. . .

...
km 0 · · · 0




Ut

Ut−1
...

Ut−m+1



+ H2n−t+1


k1

k2
...

km


T 

Ut

Ut−1
...

Ut−m+1



=


H2n−t

...
H2n−t−m+2

0


T 

k2 k3 · · · 0
...

...
. . .

...
km 0 · · · 0
0 0 · · · 0




Ut

Ut−1
...

Ut−m+1



+


H2n−t

...
H2n−t−m+2

H2n−t−m+1


T 

k1

k2
...

km




k1

k2
...

km


T 

Ut

Ut−1
...

Ut−m+1



=


H2n−t

...
H2n−t−m+2

H2n−t−m+1


T 

k2 k3 · · · 0
...

...
. . .

...
km 0 · · · 0
0 0 · · · 0




Ut

Ut−1
...

Ut−m+1


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+


H2n−t

...
H2n−t−m+2

H2n−t−m+1


T 

k1k1 · · · km−1k1 kmk1

k1k2 · · · km−1k2 kmk2
...

. . .
...

...
k1km · · · km−1km kmkm




Ut

Ut−1
...

Ut−m+1



=


H2n−t

...
H2n−t−m+2

H2n−t−m+1


T 

k1k1 + k2 · · · km−1k1 + km kmk1

k1k2 + k3 · · · km−1k2 kmk2
...

. . .
...

...
k1km · · · km−1km kmkm




Ut

Ut−1
...

Ut−m+1



=


H2n−t

...
H2n−t−m+2

H2n−t−m+1


T 

k1 k2 · · · km

k2 k3 · · · 0
...

...
. . .

...
km 0 · · · 0




k1 k2 · · · km

1 0 · · · 0
...

. . . . . .
...

0 · · · 1 0




Ut

Ut−1
...

Ut−m+1


= 2n−tH1×m × Km×m × Am×m × tUT

1×m.

The following two results are used to get our main formula of U2n in terms of nU1×m only.

Theorem 1. For integers m, n, t, b with n > m > 1, we have

H2n+b = 2n−tH1×m × Km×m × Ab
m×m × tUT

1×m,

where tUT denotes the transpose of the matrix tU.

Proof. Lemma 1 gives the result for b = 1. Now, assume the statement is true for b− 1, i.e.,

H2n+b−1 = 2n−tH1×m × Km×m × Ab−1
m×m × tUT

1×m. (10)

Replacing n by n + 1
2 in Equation (10), we get

H2n+b = 2n−t+1H1×m × Km×m × Ab−1
m×m × tUT

1×m.

By repeating the same method of Lemma 1, one can easily show that

H2n+b = 2n−tH1×m × Km×m × Ab
m×m × tUT

1×m.

Now, assume the theorem is true for b + 1, i.e.,

H2n+b+1 = 2n−tH1×m × Km×m × Ab+1
m×m × tUT

1×m. (11)

Replacing n by n− 1
2 in Equation (11) and reversing the steps of the proof of Lemma 1, we have

H2n+b = 2n−tH1×m × Km×m × Ab
m×m × tUT

1×m.
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Lemma 2. Let m, n be positive integers. We have that

Hm+n = m H1×m × Km×m × nUT
1×m

where nUT denotes the transpose of the matrix nU.

Proof. By Proposition 1, we have Hn = (n−t)H1×m × Km×m × tUT
1×m

Now, by replacing t by n−m, we get

Hn = m H1×m × Km×m × n−mUT
1×m.

In particular, when n is replaced by n + m, we have

Hm+n = mH1×m × Km×m × nUT
1×m.

3.2. Procedure

In this subsection, we provide a method of finding the nth term of any linear homogeneous
recurrence m-step relation using the last few terms of its corresponding Fibonacci’s family m-step
sequence. To find the nth term of the recurrence relation Hn, n ≥ 3m, we apply the following steps:

1. Find mU.
2. Compute K× A−t, where 1 ≤ t ≤ m− 1.
3. Set z := blog2(n−m)c and w := blog2(m + b1)c.
4. Rewrite n−m as (((m + b1)× 2 + b2) · · · × 2 + bz−w+1), where bi = 0 or 1, 2 ≤ i ≤ z− w + 1,

and 0 ≤ b1 ≤ 2blog2(m)c+1 −m.
5. Find m+b1U.
6. Set 0S := m+b1U.
7. Use the following algorithm to find z−wS := n−mU, for i = 1 : z− w:

{
. for (j = 1 : m):
. {
. iS(1, j) = i−1S× (K× A1−j)× i−1ST

. }

. If bi+1 = 1:

. {

. set Q =
m
∑

j=1
k j

iS(1, j)

. set iS(1, j) = iS(1, j− 1), 2 ≤ j ≤ m

. set iS(1, 1) = Q

. }
}

8. Hn = mH × K× z−wST .

3.3. Numerical Example

Given Hn = Hn−1 − 2Hn−2 + Hn−3 − Hn−4 + Hn−6 + Hn−7, with initial values

H1 = 1, H2 = 2, H3 = 1, H4 = 4, H5 = −3, H6 = 6, H7 = −4.
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We use our previous procedure to compute H46.

1. 0S := mU1×m =
[

2 2 0 −2 −1 1 1
]

2. Km×m =



1 −2 1 −1 0 1 1
−2 1 −1 0 1 1 0
1 −1 0 1 1 0 0
−1 0 1 1 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0
1 0 0 0 0 0 0


,

Am×m =



1 −2 1 −1 0 1 1
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0


3. z = 5, n−m = 39 = (((7 + 2)× 2 + 1)× 2 + 1), b1 = 2, b2 = 1, b3 = 1 and w = 3.
4. 0S := 9U1×7 =

[
0 2 2 2 0 −2 −1

]
5. 1S =

[
0 −28 −28 −12 12 20 5

]
6. b2 = 1, then

1S =
[

65 0 −28 −28 −12 12 20
]

2S =
[

11409 4897 −2432 −4792 −2696 664 2312
]

7. b3 = 1, then

2S =
[

6951 11409 4897 −2432 −4792 −2696 664
]

8. H46 = 30091.

4. Application

In this section, we present an application that is concerned with computational number theory.
By Property 1, we have lim

n→∞
Fn

Fn−1
= 1+

√
5

2 , where Fn is the classical Fibonacci sequence. Therefore,

one can estimate
√

5 using two consecutive terms in the Fibonacci sequence.
It is well known that the explicit form of the recurrence relation Fn = (r1 + r2)Fn−1 − (r1r2)Fn−2

is given by
Fn = c1rn

1 + c2rn
2 ,

where r1, r2 are the roots of the characteristic equation x2 − x− 1 = 0 and c1, c2 are constants. We use
this fact to approximate imperfect square roots.

Let a be an imperfect square. To approximate
√

a, rewrite a as (b + i)2 × 10m, where b ∈ Z, 0 <

i < 1, 1 ≤ b ≤ 9, and m
2 ∈ Z. Since

√
a = 10m/2 × (b + i), we only need to find b + i.

Let Hn = rn
1 + rn

2 , where r1 = b − (b + i) and r2 = b + (b + i). Then Hn = (r1 + r2)Hn−1 −
(r1r2)Hn−2 = (2b)Hn−1 − (b2 − (b + i)2)Hn−2. Since lim

n→∞
Hn

Hn−1
= r2 = 2b + i, then

√
a = (b + i)×

10m/2 ≈ ( Hn
Hn−1

− b)× 10m/2.
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