
mathematics

Article

Bayesian Inference of δ = P(X < Y) for Burr Type
XII Distribution Based on Progressively First
Failure-Censored Samples

Jessie Marie Byrnes 1, Yu-Jau Lin 2, Tzong-Ru Tsai 3,* and Yuhlong Lio 1

1 Department of Mathematical Sciences, University of South Dakota, Vermillion, SD 57069, USA
2 Department of Applied Mathematics, Chung Yuan Christian University, Chung Li District,

Taoyuan City 32023, Taiwan
3 Department of Statistics, Tamkang University, Tamsui District, New Taipei City 25137, Taiwan
* Correspondence: tzongru@gms.tku.edu.tw

Received: 8 July 2019; Accepted: 27 August 2019; Published: 1 September 2019
����������
�������

Abstract: Let X and Y follow two independent Burr type XII distributions and δ = P(X < Y). If X
is the stress that is applied to a certain component and Y is the strength to sustain the stress, then δ

is called the stress–strength parameter. In this study, The Bayes estimator of δ is investigated based
on a progressively first failure-censored sample. Because of computation complexity and no closed
form for the estimator as well as posterior distributions, the Markov Chain Monte Carlo procedure
using the Metropolis–Hastings algorithm via Gibbs sampling is built to collect a random sample of δ

via the joint distribution of the progressively first failure-censored sample and random parameters
and the empirical distribution of this collected sample is used to estimate the posterior distribution
of δ. Then, the Bayes estimates of δ using the square error, absolute error, and linear exponential
error loss functions are obtained and the credible interval of δ is constructed using the empirical
distribution. An intensive simulation study is conducted to investigate the performance of these
three types of Bayes estimates and the coverage probabilities and average lengths of the credible
interval of δ. Moreover, the performance of the Bayes estimates is compared with the maximum
likelihood estimates. The Internet of Things and a numerical example about the miles-to-failure of
vehicle components for reliability evaluation are provided for application purposes.

Keywords: gibbs sampling; Markov Chain Monte Carlo; maximum likelihood estimation;
Metropolis–Hastings algorithm; progressive first failure-censoring scheme

1. Introduction

In industry, components are becoming more reliable due to rapid advances in manufacturing
technology and sustained quality-improvement efforts. Practitioners have been encouraged to
adopt censoring schemes for lifetime testing to save time and cost for making reliability inferences.
Numerate censoring schemes, such as the first failure, group, type II, and progressive type II censoring
schemes have been developed in the past years. Readers can refer Balakrishnan and Aggarwala [1] as
well as Balasooriya [2] for more information. Considering the advantages from the first failure and
progressive type II censoring schemes, a censoring scheme called progressive first failure-censoring
scheme was studied by Lio and Tsai [3] for the Burr type XII distribution and by Wu and Kuş [4] for
the Weibull distribution. Wu and Kuş [4] demonstrated that the progressive first failure-censoring
scheme is more efficient than the progressive type II censoring scheme in terms of the total expected
run time.

A progressive first failure-censoring scheme is implemented by placing n test units independently
into m independent groups of size k, where n = m× k, to be tested at the same initial time, labeled
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by t0, and by collecting r lifetimes through the following procedure: At the first failure time, X1:r:m:k
from n items is observed; the group with that failed item along with a randomly selected R1 groups
are removed. At the next first failure time, X2:r:m:k from the rest groups is observed; the group with
that failed item along with randomly selected R2 groups are removed. This process continues until
the rth first failure time Xr:r:m:k is observed; then all remaining surviving items are removed from the
life test. The lifetimes, X1:r:m:k < X2:r:m:k < · · · < Xr:r:m:k, are progressively type II first failure-censored
ordered statistics. Let R = (R1, R2, · · · , Rr), where m = r + R1 + R2 + · · ·+ Rr.

Let the lifetimes of all test units follow a cumulative distribution function (cdf) F(t|Θ), which has
the probability density function (pdf) f (t|Θ). The likelihood function based on a progressively first
failure-censored sample can be presented by

L(Θ|X1:r:m:k, X2:r:m:k, · · · , Xr:r:m:k) = ckr
r

∏
i=1

f (Xi:r:m:k|Θ)(1− F(Xi:r:m:k|Θ))k(Ri+1)−1 (1)

where
c = m(m− R1 − 1)(m− R1 − R2 − 1) · · · (m− R1 − R2 − · · · − Rr−1 − r + 1). (2)

The likelihood function in Equation (1) covers the following as special cases:

i If R = (0, . . . , 0), then Equation (1) reduces to the the likelihood function of first failure-censored
ordered statistics.

ii If k = 1, then Equation (1) becomes the likelihood function of progressively type
II-censored statistics.

iii If k = 1 and R = (0, . . . , 0), then n = m = r and Equation (1) is the likelihood function of
complete sample.

iv If k = 1 and R = (0, . . . , m− r), then Equation (1) simplifies to the likelihood function of type
II-censored order statistics.

In mechanical reliability, let X be the “stress” that is applied to a certain component and Y be
the “strength” to sustain the stress. The stress–strength parameter can be denoted by δ = P(X < Y).
δ is comprised of components that receive a certain level of stress and that survive due to their
strength. If a higher level of stress than their strength is able to sustain is applied, the component
is broken-down. When the pdfs of the stress and strength variables are known, the reliability of the
system may be determined analytically. Since a connection between the classical Mann–Whitney
statistic and the stress–strength inference was mentioned by Birnbaum [5], the estimation of δ has
received considerable attention in the statistical literatures. The statistical inferences of δ for complete
samples have been studied by Tong [6], Surles and Padgett [7], Kundu and Gupta [8,9], Raqab et al. [10],
Kim and Chung [11], and Kundu and Raqab [12]. The monograph by Kotz et al. [13] provided an
excellent review of the development of the stress–strength up to the year of 2003. Moreover, Saracoglu,
and Kaya [14] obtained the maximum likelihood equations and made interval inferences for δ from
two Gompertz distributions. Saracoglu et al. [15] studied the comparison of the estimators of δ for
Gompertz cases.

Under incomplete samples, Jiang and Wong [16] studied the inferences of δ based on truncated
exponentially distributed samples. Statistical inference for δ based on progressively censored samples
was discussed by Saracoglu and Ku̧s [17]. Saracoglu et al. [18] studied the estimation of δ based on
progressively type II censored samples from two independent exponential distributions. Lio and
Tsai [3] studied the inference of δ for Burr type XII distributions based on progressively type II
first failure-censored samples. All aforementioned studies focused on using maximum likelihood
estimation methods.

The Burr type XII distribution is a popular lifetime model in reliability applications. For example,
the Burr type XII distribution can be the lifetime model to infer the breaking strength of structure
components. Burr [19] first introduced the two-parameter Burr type XII distribution in the literature
in 1942. The Burr type XII distribution includes another popular lifetime distribution in reliability
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analyses, the loglogistic distribution, as a special case. The Burr type XII distribution contains two
shape parameters. Hence, the Burr type XII distribution has flexible distribution shapes for model
fitting. Based on our best knowledge, this is the first work that focuses on using Bayesian methods
for inferring δ. The rest of this paper is organized as follows. The Burr type XII distribution and
Bayesian framework are described in Section 2. In Section 3, the Metropolis–Hastings (M–H) algorithm
(Metropolis et al. [20] and Hastings [21]) via Gibbs sampling (Geman and Geman [22]) is developed by
using the joint distribution of progressively first failure-censored sample and the joint prior distribution
of Burr type XII parameters to collect the random sample of δ that is generated from the posterior
distribution of δ, and the Bayes estimates under the square error (SE), absolute error (AE), and linear
exponential error (Linex) loss functions are developed using the empirical distribution of the collected
random sample of δ. In Section 4, an intensive simulation procedure is conducted under different
censoring schemes to compare the performances among the three Bayes point estimators mentioned in
Section 2 as well as to investigate the credible intervals of δ. Moreover, simulations are also conducted to
compare the performances of the proposed Bayesian estimation method with the maximum likelihood
estimation in Section 4. The Internet of Things (IoT) applications and the reliability evaluation about
the miles-to-failure of vehicle components are presented in Section 5 for illustration. Finally, some
concluding remarks are provided in Section 6.

2. Statistical Approaches

Let X and Y follow independent Burr type XII distributions, which have the following pdfs,

f1(x|α1, β1) = β1α1xα1−1 (1 + xα1)−β1−1 , x > 0, α1, β1 > 0, (3)

and
f2(y|α2, β2) = β2α2yα2−1 (1 + yα2)−β2−1 , y > 0, α2, β2 > 0, (4)

respectively, and the cdfs of X and Y are respectively denoted as

F1(x|α1, β1) = 1− (1 + xα1)−β1 , x > 0, α1, β1 > 0, (5)

and
F2(y|α2, β2) = 1− (1 + yα2)−β2 , y > 0, α2, β2 > 0. (6)

The stress–strength parameter can be obtained by

δ = P(X < Y) =
∫ ∞

0
(1− F2(x|α2, β2)) f1(x|α2, β2))dx. (7)

When α1 = α2, δ can be shown to be

δ =
β1

β1 + β2
. (8)

2.1. Likelihood Function

Let the progressively type II first-censored sample for X and Y be D =

{Xj:r1:m1:k1 , Rx,j, Yi:r2:m2:k2 , Ry,i; j = 1, 2, . . . , r1, i = 1, 2, . . . , r2}, and let Rx = (Rs,1, Rs,2, . . . , Rs,r1)

and Ry = (Ry,1, Ry,2, . . . , Ry,r2) denote the r1 and r2 removals for X and Y, respectively, where
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X1:r1:m1:k1 < X2:r1:m1:k1 < · · · < Xr1:r1:m1:k1 and Y1:r2:m2:k2 < Y2:r2:m2:k2 < · · · < Yr2:r2:m2:k2 . Then, the
likelihood function for the data when α1 = α2 = α is

L(β1, β2, α) ≡ L(β1, β2, α|D) = c1kr1
1 βr1

1 αr1
r1

∏
j=1

Xα−1
j:r1 :m1 :k1

(1 + Xα
j:r1 :m1 :k1

)−(β1k1(Rx,j+1)+1)

×c2kr2
2 βr2

2 αr2
r2

∏
i=1

Yα−1
i:r2 :m2 :k2

(1 + Yα
i:r2 :m2 :k2

)−(β2k2(Ry,i+1)+1) (9)

where c1 = m1(m1 − Rx,1 − 1)(m1 − Rx,1 − Rx,2 − 2) · · · (m1 − Rx,1 − Rx,2 − · · · − Rx,r1 − r1 + 1), c2 =

m2(m2 − Ry,1 − 1)(m2 − Ry,1 − Ry,2 − 2) · · · (m2 − Ry,1 − Ry,2 − · · · − Ry,r2 − r2 + 1), m1 = r1 + Rx,1 +

Rx,2 + · · ·+ Rx,r1 , and m2 = r2 + Ry,1 + Ry,2 + · · ·+ Ry,r2 .

2.2. Bayesian Framework

Because of the conditions of β1 > 0, β2 > 0 and α > 0, the prior distributions of β1, β2, and α are
reasonably assumed as the following Gamma distributions:

π1(β1) =
ba1

1 βa1−1
1 e−(b1β1)

Γ(a1)
, β1 > 0, (10)

π2(β2) =
ba2

2 βa2−1
2 e−(b2β2)

Γ(a2)
, β2 > 0, (11)

π3(α) =
ba3

3 αa3−1e−(b3α)

Γ(a3)
, α > 0, (12)

where a1, b1, a2, b2, a3, and b3 are positive hyper-parameters. The Gamma distributions have been
suggested to be the prior distributions of Burr type XII distribution parameters in the literature,
for example, Panahi and Sayyareh [23]. In practice, we can select the values of aj and bj for
j = 1, 2, 3 such that the prior distribution has large variance and turns to be a non-informative prior.
Given Equations (9)–(12), the joint posterior distribution can be represented as

π(β1, β2, α|D) =
L(β1, β2, α|D)π1(β1)π2(β2)π3(α)∫ ∫ ∫

L(β1, β2, α|D)π1(β1)π2(β2)π3(α) dβ1 dβ2 dα
. (13)

Hence, the marginal posterior of β1, β2, and α are, respectively,

π∗1 (β1|D) =
∫ ∫

π(β1, β2, α|D) dβ2 dα, (14)

π∗2 (β2|D) =
∫ ∫

π(β1, β2, α|D) dβ1 dα, (15)

and

π∗3 (α|D) =
∫ ∫

π(β1, β2, α|D) dβ2 dβ1. (16)

The conditional posterior of β1 given β2 and α is

Π1(β1|β2, α, D) =
π(β1, β2, α|D)∫

π(β1, β2, α|D) dβ1

∝ L(β1, β2, α|D)π1(β1); (17)
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the conditional posterior of β2 given β1 and α is

Π2(β2|β1, α, D) =
π(β1, β2, α|D)∫

π(β1, β2, α|D) dβ2

∝ L(β1, β2, α|D)π2(β2); (18)

and the conditional posterior of α given β1 and β2 is

Π3(α|β1, β2, D) =
π(β1, β2, α|D)∫
π(β1, β2, α|D) dα

∝ L(β1, β2, α|D)π3(α). (19)

Unfortunately, the conditional posterior distributions Π1(β1|β2, α, D), Π2(β2|β1, α, D), and
Π3(α|β1, β2, D) do not have closed forms. Additionally, numerical integration cannot be easily applied
to obtain the analytical expressions of these three conditional posterior distributions due to the
commonly shared parameter α in two Burr type XII distributions. Section 3 will address the Markov
Chain Monte Carlo (MCMC) method that uses the M–H algorithm via Gibbs sampling to draw the
samples of β1, β2, α, and δ. Moreover, we also provide a function “mtemp” by using OpenBugs R codes
to overcome the difficulties caused by the commonly shared parameter α in numerical computation.
On the basis of the MCMC random samples, the Bayes estimates of β1, β2, α, and δ can be obtained
with the SE, AE, and Linex loss functions through using the established formulas in Section 3.

3. Markov Chain Monte Carlo

The MCMC procedure escapes the integration problem from the complicated marginal posterior
distributions in Bayesian estimation by combining Markov chains and Monte Carlo sampling.
In general, Markov chains are formed by taking a collection of random variables or states with
the property that, given the present, the future is conditionally independent of the past. Probabilities
from each state in a Markov chain are then called transition probabilities. In this study, there is
a Markov chain for different states for each parameter in Θ, where Θ = (θ1, θ2, θ3) = (β1, β2, α).
Monte Carlo methods are a broad class of computational algorithms that rely on repeated random
sampling to obtain numerical results. One such algorithm is M–H. In the M–H algorithm, the samples
will mostly move towards higher density regions, which will hopefully contain the true analytic
value for each parameter. Gibbs sampling is a particular case of the M–H algorithm that is common
with Bayesian estimation. It generates samples from the marginal posteriors for each parameter by
iteratively sampling from its conditional distribution with the remaining variables fixed to their current
values until the convergence is achieved. We mentioned in Section 2 that the conditional posterior
distributions do not have closed forms and that the difficulties in numerical computation are caused
by the commonly shared parameter α. In order to generate observations from the marginal posterior
distributions, we adapt the arguments proposed by Lin et al. [24] to develop the MCMC procedure.
In this study, the M–H algorithm in the proposed MCMC procedure is implemented via using Gibbs
samplings by the following steps:

Let t = 0 and θ
(0)
j be the initial state θj, j = 1, 2, 3.

Step 1: Propose transition probabilities qj(θ
(∗)
j |θ

(t)
j ) from θ

(t)
j to θ

(∗)
j , where qj(θ

(∗)
j |θ

(t)
j ) is usually

selected as a symmetry function of θ
(∗)
j at θ

(t)
j for j = 1, 2, 3.

Step 2: Implement Step 3 and Step 4 for t = 1, 2, . . . , N, where N is a huge number.
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Step 3: For iteration t ≥ 1, Generate θ
(∗)
j from qj(θ

(∗)
j |θ

(t−1)
j ) and generate u from the uniform

distribution over the interval (0, 1). Update θ
(t)
j according to the condition

θ
(t)
j =


θ
(∗)
j if u ≤ min

{
1,

Πj(θ
(∗)
j |Θ

(t−1)
−j ,D)qj(θ

(∗)
j |θ

(t−1)
j )

Πj(θ
(t−1)
j |Θ(t−1)

−j ,D)qj(θ
(t−1)
j |θ(∗)j )

}
θ
(t)
j otherwise.

where Θ(t−1)
−1 = (θ

(t−1)
2 , θ

(t−1)
3 ), Θ(t−1)

−2 = (θ
(t−1)
1 , θ

(t−1)
2 ), Θ(t−1)

−3 = (θ
(t−1)
1 , θ

(t−1)
3 ), and

Πj(θ
(∗)
j |Θ

(t−1)
−j ,D)qj(θ

(∗)
j |θ

(t−1)
j )

Πj(θ
(t−1)
j |Θ(t−1)

−j ,D)qj(θ
(t−1)
j |θ(∗)j )

=
L(θ(∗)j ,Θ(t−1)

−j |D)πj(θ
∗
j )qj(θ

(∗)
j |θ

(t−1)
j )

L(θ(t−1)
1 θ

(t−1)
2 ,θ(t−1)

3 |D)πj(θ
t−1
j )qj(θ

(t−1)
j |θ(∗)j )

. (20)

Step 4: Let t = t + 1.

It is noticed that the convergence can be reached when N ≥ 40,000 for the implementation of the
proposed MCMC algorithm. To ensure convergence is achieved, the OpenBugs program in R can be
applied to implement the MCMC procedure stated above and to decide qj(·|·) optimally through the
utilization of the following procedure called mtemp, which contains likelihood function L(β1, β2, α|D)

and priors πj(θj) for j = 1, 2, 3.

mtemp<-function(){
for (j in 1:r1)
{
for(i in 1:r2){
dummyy[j,i] <- 0
dummyy[j,i] ~ dloglik(logLikexy[j,i])
logLikexy[j,i] <- (log($\beta_1$)+log($\alpha$)+($\alpha$ -1.0)*log(x[j])
-($\beta_1$*k1*(R.x[j]+1.0)+1.0)*log(1.0 + pow(x[j],$\alpha$)))/r2
+(log($\beta_2$)+log($\alpha$)+($\alpha$ - 1.0)*log(y[i])
-($\beta_2$*k2*(R.y[i]+1.0)+1.0)*log(1.0 + pow(y[i],$\alpha$)))/r1
}}
$\beta_1$ ~ dgamma(0.000008, 0.0001)
$\beta_2$ ~ dgamma(0.000008, 0.0001)
$\alpha$ ~ dgamma(0.0005, 0.0001)
}

Please note that the function mtemp using a zeros trick (see Lunn et al. [25]) to define a custom
distribution for the likelihood function due to the Burr type XII distribution was not a built-in
distribution in OpenBugs.

Bayesian Estimates

In order to obtain reliable samples of the parameters, θ1 = β1, θ2 = β2 and
θ3 = α from posteriors, N Markov chains for each parameter are generated through the
proposed MCMC procedure for each given pair of progressively first failure-censored samples,
{Xj:r1 :m1 :k1 , Rx,j, Yi:r2 :m2 :k2 , Ry,i; j = 1, 2, . . . , r1, i = 1, 2, . . . , r2} and the first Nb(< N) are removed

for burn-in. Let the resulting Markov chains of θj after a burn-in process be θ
(Nb+1)
j , θ

(Nb+2)
j , ..., θ

(N)
j

for j = 1, 2, 3. Then, the corresponding chain of δ can be expressed by δ(Nb+1), δ(Nb+2), ..., δ(N),

where δ(t) =
θ
(t)
1

θ
(t)
1 +θ

(t)
2

for t = Nb + 1, Nb + 2, ..., N. According to Lin et al. [24], θ
(Nb+1)
j , θ

(Nb+2)
j , ..., θ

(N)
j

for j = 1, 2, 3 and δ(Nb+1), δ(Nb+2), ..., δ(N) can be used to construct the respective empirical distributions
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to estimate the corresponding posteriors. Therefore, the Bayes point estimates of θj for j = 1, 2, 3 and δ

can be obtained based on the SE, AE, and Linex loss functions as follows:

Bayes Estimates under the SE Loss Function: Let the loss functions of θ̂j be
L(θ̂j, θj) = (θ̂j − θj)

2, j = 1, 2, 3 and the loss function for δ̂ be L(δ̂, δ) = (δ̂ − δ)2. Then,
the Bayes estimators of θj under the SE loss function can be obtained as the posterior mean and
calculated by

θ̂j,SE =
1

N − Nb

N

∑
t=Nb+1

θ
(t)
j , j = 1, 2, 3; (21)

Similarly, the Bayes estimator of δ can be obtained by

δ̂SE =
1

N − Nb

N

∑
t=Nb+1

δ(t). (22)

Bayes Estimates under the AE Loss Function: Let the loss functions of θ̂j be L(θ̂j, θj) = |θ̂j − θj|, j =
1, 2, 3 and the loss function of δ̂ be L(δ̂, δ) = |δ̂− δ|. Then, the Bayes estimators of θj under the AE loss
function is the posterior medians and can be calculated by

θ̂j,AE = median
{

θ
(t)
j |t = Nb + 1, Nb + 2, · · · , N

}
, j = 1, 2, 3; (23)

Similarly, the Bayes estimator of δ can be obtained by

δ̂AE = median
{

δ(t)|t = Nb + 1, Nb + 2, · · · , N
}

. (24)

Bayes Estimates under the Linex Loss Function: Let the loss functions of θ̂j be L(θ̂j, θj) = exp{a(θ̂j −
θj)} − (θ̂j − θj)− 1 for j = 1, 2, 3 and the loss function of δ̂ be L(δ̂, δ) = exp{a(δ̂− δ)} − (δ̂− δ)− 1,
where a 6= 0. The Bayes estimators of θj under the Linex loss function can be obtained by

θ̂j,Linex =
−1
a

ln

(
1

N − Nb

N

∑
t=Nb+1

exp(−aθ
(t)
j )

)
, j = 1, 2, 3; (25)

Similarly, the Bayes estimator of δ can be obtained by

δ̂Linex =
−1
a

ln

(
1

N − Nb

N

∑
t=Nb+1

exp(−aδ(t))

)
. (26)

For a > 0, the Linex loss function is quite asymmetric about 0 with overestimation being more
costly than underestimation. The vice versa is true with a < 0. When a is close to zero, the estimation
results under the Linex loss function are close to that obtained under the SE loss function. In this study,
we select a = 0.5 to implement the MCMC algorithm.

For interval estimate, given 0 < a < 1, an 1− a credible interval of a parameter in the Bayesian
framework is an interval estimator, based on a given data, that covers the parameter with 1− a levels
of confidence. Symmetric 1− a credible intervals for θj, j = 1, 2, 3 and δ can be estimated by the 1− a
credible intervals obtained through taking two symmetric tail cuts from each respective empirical
distribution as the lower and upper bounds.

4. Simulation Study Results

Monte Carlo simulations are conducted based on the different progressive first failure-censoring
schemes proposed by Wu and Kus [4] and used by Lio and Tsai [3]. The first simulation scenario uses
a pair of Burr Type XII distributions with the parameters (α, β1, β2) = (5.0, 0.08, 0.16) and δ = 0.333,
and the second simulation scenario uses a pair of Burr type XII distributions with the parameters
(α, β1, β2) = (5.0, 0.08, 0.08) and δ = 0.5. The other simulation parameter inputs that are varied in
each simulation scenario include the number of groups, m1 = m2 = m = 20, 30, 50; the size of each
group, k1 = k2 = k = 1, 3, 5; and the number of observed lifetimes, r1 = r2 = r = 5, 15, 20, 30.
The same progressive censoring schemes, Rx = Ry = R, are considered for the simulation study.
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Therefore, the simulation study has 36 combination settings that are labeled from 1 to 36 and displayed
in Tables 1–5.

The Bayes estimates for the parameters θ1 = β1, θ2 = β2, and θ3 = α and δ can be obtained based
on the respective empirical distributions of the samples that are generated by the proposed MCMC
procedure with the SE, AE, and Linex loss functions. The size of the Markov chain for implementing
the MCMC procedure is N = 50,000 with Nb = 40,000 chains for burn-in. The last 10, 000 Markov chains
are used to establish the empirical distribution to estimate the posterior distribution of the parameter.
Then, the Bayes estimate under a specific loss function can be obtained based on the empirical posterior
distribution of δ and the 1− a credible interval of δ can be estimated by using the two symmetric
cuts from the same empirical posterior distribution of δ. The Bayes estimates of δ using the SE,
AE, and Linex loss functions are denoted by δ̂SE, δ̂AE, and δ̂Linex, respectively. Repeat the MCMC
procedures 500 times to generate 500 respective Bayes estimates of δ, which are labeled by δ̂

(i)
SE, δ̂

(i)
AE,

and δ̂
(i)
Linex, i = 1, 2, 3, · · · , 500, and 500 1− a credit interval estimates of δ.

Because of the difference between the expected value of estimator and the parameter (bias),
the expected SE (ESE) and expected AE (EAE) are the most common measurements to evaluate
the accuracy of an estimator to the true parameter. Therefore, in order to evaluate and compare
the performance among the aforementioned three Bayes estimators based on the progressively first
failure-censored sample, the bias, the ESE, and EAE are used to evaluate the accuracies of these three
Bayes estimators of δ. Let δ̂ be an Bayes estimator of δ. The bias measures how far the Bayes estimator
δ̂ over- or underestimates the true δ, and ESE and EAE measure how well the Bayes estimator, δ̂, fit
its true values under the SE and AE criterions, respectively. Additionally the coverage probability of
the 95% credible interval estimator for δ can be estimated from the relative frequency of all 500 95%
credible intervals that cover the true δ based on the empirical distributions. The average length from
all simulated 500 credible intervals and the average lengths from all simulated credible intervals that
cover the true parameter δ are also obtained for comparison.

Section 4.2 discusses the evaluation of the bias of δ̂, Sections 4.2–4.4 investigate the ESE and
EAE for the three Bayes estimators of δ. Section 4.5 discusses the procedure related to the credible
intervals of δ along with their coverage probabilities and average lengths. The estimation performance
of the Bayesian estimation method via use of the proposed MCMC procedure is compared with the
maximum likelihood estimation method in Section 4.6.

4.1. Bias

In the simulation study, the bias of estimator can be defined by

Bias =
1

500

500

∑
i=1

(δ̂
(i)
SE − δ), (27)

where δ̂
(i)
SE is the ith Bayes estimate obtained from the ith MCMC procedure under the SE loss function.

Table 1 contains the bias of δ̂SE under each progressive first failure scheme for the case of β1 = β2 and
β1 6= β2. From Table 1, it can be seen that when β1 6= β2, δ̂SE is more often to overestimate the true δ.
The bias of δ̂SE in Table 1 for the case of β1 = β2 is small. This means that the estimate δ̂SE is more
reliable for the case of β1 = β2 than that for the case of β1 6= β2. Figure 1 also supports our findings
from the simulation results of Table 1. The bias of δ̂SE for the case of β1 = β2 is closer to 0 with less
fluctuation than the bias of δ̂SE for the case of β1 6= β2.

The bias behaviors based on the estimates from δ̂AE and δ̂Linex for estimating δ are similar to that
based on the estimator δ̂SE. We only report the bias of δ̂SE to save space. In summary, the bias of these
three Bayes estimators are small and the bias for the case of β1 = β2 is smaller than the bias for the
case of β1 6= β2.
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Table 1. The bias of δ̂SE under different Burr type XII distributions.

Parameter Combinations Simulation Scenarios

k m r Scheme (α, β1, β2) = (5.0, 0.08, 0.16) (α, β1, β2) = (5.0, 0.08, 0.08)

1 1 20 5 (0, 0, 0, 0, 15) −0.3326 −0.0032
2 (15, 0, 0, 0, 0) 0.0196 0.0112
3 (3, 3, 3, 3, 3) 0.0155 −0.0062
4 30 15 (0, ..., 0, 15) 0.0025 0.0020
5 (15, 0, ..., 0) 0.0113 0.0037
6 (3, 0, 0, ..., 3, 0, 0) 0.0102 0.0015
7 50 20 (0, ..., 0, 30) 0.0089 0.0018
8 (30, 0, ..., 0) 0.0122 0.0062
9 (3, 0, 3, 0, ..., 3, 0) 0.0103 0.0038

10 30 (0, ..., 0, 20) 0.0066 0.0017
11 (20, 0, ..., 0) 0.0018 −0.0028
12 (2, 0, 0, ..., 2, 0, 0) −0.0013 −0.0065
13 3 20 5 (0, 0, 0, 0, 15) <0.0001 0.0009
14 (15, 0, 0, 0, 0) 0.0201 0.0012
15 (3, 3, 3, 3, 3) 0.0192 0.0062
16 30 15 (0, ..., 0, 15) −0.0244 −0.0033
17 (15, 0, ..., 0) 0.0093 0.0015
18 (3, 0, 0, ..., 3, 0, 0) 0.0096 0.0037
19 50 20 (0, ..., 0, 30) 0.0024 −0.0026
20 (30, 0, ..., 0) 0.0040 −0.0020
21 (3, 0, 3, 0, ..., 3, 0) −0.0013 −0.0054
22 30 (0, ..., 0, 20) 0.0020 −0.0027
23 (20, 0, ..., 0) 0.0076 0.0035
24 (2, 0, 0, ..., 2, 0, 0) 0.0039 0.0007
25 5 20 5 (0, 0, 0, 0, 15) −0.0021 0.0052
26 (15, 0, 0, 0, 0) 0.0153 0.0028
27 (3, 3, 3, 3, 3) 0.0092 0.0071
28 30 15 (0, ..., 0, 15) −0.0003 −0.0037
29 (15, 0, ..., 0) 0.0058 −0.0019
30 (3, 0, 0, ..., 3, 0, 0) −0.0003 −0.0060
31 50 20 (0, ..., 0, 30) −0.0055 −0.0053
32 (30, 0, ..., 0) 0.0022 −0.0034
33 (3, 0, 3, 0, ..., 3, 0) 0.0006 −0.0031
34 30 (0, ..., 0, 20) −0.0054 −0.0071
35 (20, 0, ..., 0) −0.0024 −0.0019
36 (2, 0, 0, ..., 2, 0, 0) −0.0002 −0.0038
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Figure 1. The bias of δ̂SE for the cases of β1 = β2 and β1 6= β2.

4.2. Expected Squared Error for δ̂SE and δ̂AE

To investigate the performance of using the estimator δ̂SE and using δ̂AE to estimate the true δ,
the ESE of the mean estimator, δ̂SE and the ESE of the median estimator, δ̂AE, are evaluated. In this
simulation study, the ESE of δ̂SE and ESE of δ̂AE can be defined, respectively, by

EAE (δ̂SE) =
1

500

500

∑
i=1

(δ̂
(i)
SE − δ)2, (28)

and

EAE (δ̂AE) =
1

500

500

∑
i=1

(δ̂
(i)
AE − δ)2. (29)

Table 2 contains the ESEs for using δ̂SE and δ̂AE to estimate δ under each progressive first-failure
censoring scheme. From Table 2, we observe that most of the values of EAE (δ̂SE) are smaller than the
values of EAE (δ̂AE) for two scenarios. Figures 2 and 3 provide visual support.

Figure 2. The expected square errors (ESEs) of δ̂SE and δ̂AE for the case of β1 6= β2.

Figure 3. The ESEs of δ̂SE and δ̂AE for the case of β1 = β2.
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Table 2. The ESEs for δ̂SE and δ̂AE under two different Burr type XII distributions.

Parameter Combinations Simulation Scenarios
(α, β1, β2) = (5.0, 0.08, 0.16) (α, β1, β2) = (5.0, 0.08, 0.08)

k m r Scheme EAE (δ̂SE) EAE (δ̂AE) EAE (δ̂SE) EAE (δ̂AE)
1 1 20 5 (0, 0, 0, 0, 15) 0.1109 0.1109 0.0213 0.1205
2 (15, 0, 0, 0, 0) 0.0321 0.0216 0.0213 0.1176
3 (3, 3, 3, 3, 3) 0.0181 0.0203 0.0205 0.1137
4 30 15 (0, ..., 0, 15) 0.0058 0.0061 0.0072 0.0696
5 (15, 0, ..., 0) 0.0062 0.0063 0.0072 0.0672
6 (3, 0, 0, ..., 3, 0, 0) 0.0066 0.0068 0.0079 0.0719
7 50 20 (0, ..., 0, 30) 0.0049 0.0051 0.0061 0.0626
8 (30, 0, ..., 0) 0.0050 0.0051 0.0059 0.0616
9 (3, 0, 3, 0, ..., 3, 0) 0.0053 0.0054 0.0063 0.0640

10 30 (0, ..., 0, 20) 0.0035 0.0036 0.0043 0.0523
11 (20, 0, ..., 0) 0.0032 0.0032 0.0039 0.0491
12 (2, 0, 0, ..., 2, 0, 0) 0.0030 0.0031 0.0038 0.0492
13 3 20 5 (0, 0, 0, 0, 15) 0.0259 0.0298 0.0281 0.1322
14 (15, 0, 0, 0, 0) 0.0173 0.0193 0.0191 0.1121
15 (3, 3, 3, 3, 3) 0.0255 0.0288 0.0269 0.1348
16 30 15 (0, ..., 0, 15) 0.0098 0.0105 0.0076 0.0709
17 (15, 0, ..., 0) 0.0067 0.0070 0.0079 0.0718
18 (3, 0, 0, ..., 3, 0, 0) 0.0062 0.0065 0.0071 0.0689
19 50 20 (0, ..., 0, 30) 0.0053 0.0055 0.0061 0.0619
20 (30, 0, ..., 0) 0.0046 0.0048 0.0057 0.0608
21 (3, 0, 3, 0, ..., 3, 0) 0.0047 0.0049 0.0056 0.0597
22 30 (0, ..., 0, 20) 0.0033 0.0035 0.0041 0.0512
23 (20, 0, ..., 0) 0.0033 0.0034 0.0040 0.0496
24 (2, 0, 0, ..., 2, 0, 0) 0.0035 0.0036 0.0042 0.0519
25 5 20 5 (0, 0, 0, 0, 15) 0.0235 0.0272 0.0296 0.1382
26 (15, 0, 0, 0, 0) 0.0194 0.0218 0.0215 0.1157
27 (3, 3, 3, 3, 3) 0.0225 0.0258 0.0254 0.1274
28 30 15 (0, ..., 0, 15) 0.0068 0.0072 0.0078 0.0705
29 (15, 0, ..., 0) 0.0065 0.0068 0.0079 0.0706
30 (3, 0, 0, ..., 3, 0, 0) 0.0064 0.0067 0.0078 0.0709
31 50 20 (0, ..., 0, 30) 0.0054 0.0057 0.0062 0.0620
32 (30, 0, ..., 0) 0.0045 0.0047 0.0056 0.0587
33 (3, 0, 3, 0, ..., 3, 0) 0.0052 0.0054 0.0064 0.0638
34 30 (0, ..., 0, 20) 0.0033 0.0034 0.0038 0.0492
35 (20, 0, ..., 0) 0.0033 0.0034 0.0042 0.0521
36 (2, 0, 0, ..., 2, 0, 0) 0.0034 0.0035 0.0041 0.0518

For the case of β1 6= β2, the values of EAE (δ̂SE) could be slightly larger than the values of
EAE (δ̂AE) when the sample size is small. For the case of β1 = β2, δ̂SE performs better than δ̂AE with a
smaller ESE.

We also compare the values of EAE (δ̂SE) between the cases of β1 = β2 and β1 6= β2. Figure 4 displays
the respective values of EAE (δ̂SE) at 36 parameter combinations for the cases of β1 = β2 and β1 6= β2.

From Figure 4, we can find that the proposed MCMC method could generate a mild– large ESE
when the sample size is small. The parameter combinations 1, 2, 3, 13, 14, 15, 25, 26, and 27 in Figure 4
generate a mild–large ESE compared to that for the other parameter combinations. The simulation
results in Table 2 show that the progressive first failure-censoring scheme to remove survival units at
the early stage can be a compromised design to generate a small ESE when using the proposed MCMC
method with the SE loss function.
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Figure 4. The value of expected absolute error (EAE; δ̂SE) for the cases of β1 = β2 and β1 6= β2.

4.3. Expected Absolute Error for δ̂SE and δ̂AE

To investigate the performance of using the estimator δ̂SE and of using the estimator δ̂AE to
estimate the true δ, the EAE of the mean estimator, δ̂SE, and the EAE of the median estimators, δ̂AE,
are evaluated. For the simulation study, the EAE (δ̂SE) and EAE (δ̂AE) are, respectively, defined by

EAE (δ̂SE) =
1

500

500

∑
i=1
|δ̂(i)SE − δ| (30)

and

EAE (δ̂AE) =
1

500

500

∑
i=1
|δ̂(i)AE − δ|, (31)

Table 3 contains the EAEs of using δ̂SE and δ̂AE to estimate δ for all progressive first failure schemes.
Figures 5 and 6 display the performance comparison, in terms of EAE, between using δ̂SE and δ̂AE to
estimate δ for the cases of β1 6= β2 and β1 = β2, respectively. Table 3 shows that the value of EAE(δ̂SE)

is smaller than the value of EAE(δ̂AE) for almost all 36 parameter combinations. When the sample size
is small in the parameter combinations 1, 2, 3, 13, 14, 15, 25, 26, and 27, the proposed MCMC method
with the AE loss function could generate large EAEs for both cases of β1 6= β2 and β1 = β2.

Figure 5. The EAEs of δ̂SE and δ̂AE for the case of β1 6= β2.



Mathematics 2019, 7, 794 13 of 24

Figure 6. The EAEs of δ̂SE and δ̂AE for the case of β1 = β2.

Table 3. The EAEs for δ̂SE and δ̂AE under two different Burr type XII distributions.

Parameter Combinations Simulation Scenarios
(α, β1, β2) = (5.0, 0.08, 0.16) (α, β1, β2) = (5.0, 0.08, 0.08)

k m r Scheme EAE (δ̂SE) EAE (δ̂AE) EAE (δ̂SE) EAE (δ̂AE)

1 1 20 5 (0, 0, 0, 0, 15) 0.3328 0.3327 0.1205 0.1309
2 (15, 0, 0, 0, 0) 0.1096 0.1157 0.1176 0.1275
3 (3, 3, 3, 3, 3) 0.1066 0.1133 0.1137 0.1235
4 30 15 (0, ..., 0, 15) 0.0592 0.0607 0.0696 0.0717
5 (15, 0, ..., 0) 0.0611 0.0622 0.0672 0.0692
6 (3, 0, 0, ..., 3, 0, 0) 0.0657 0.0668 0.0719 0.0741
7 50 20 (0, ..., 0, 30) 0.0565 0.0574 0.0626 0.0640
8 (30, 0, ..., 0) 0.0562 0.0568 0.0616 0.0628
9 (3, 0, 3, 0, ..., 3, 0) 0.0583 0.0591 0.0640 0.0655
10 30 (0, ..., 0, 20) 0.0471 0.0475 0.0523 0.0531
11 (20, 0, ..., 0) 0.0442 0.0448 0.0491 0.0498
12 (2, 0, 0, ..., 2, 0, 0) 0.0436 0.0442 0.0492 0.0501
13 3 20 5 (0, 0, 0, 0, 15) 0.1275 0.1382 0.1322 0.1437
14 (15, 0, 0, 0, 0) 0.1044 0.1114 0.1121 0.1219
15 (3, 3, 3, 3, 3) 0.1280 0.1370 0.1348 0.1465
16 30 15 (0, ..., 0, 15) 0.0793 0.0822 0.0709 0.0731
17 (15, 0, ..., 0) 0.0657 0.0672 0.0718 0.0741
18 (3, 0, 0, ..., 3, 0, 0) 0.0640 0.0654 0.0689 0.0710
19 50 20 (0, ..., 0, 30) 0.0574 0.0585 0.0619 0.0633
20 (30, 0, ..., 0) 0.0546 0.0556 0.0608 0.0623
21 (3, 0, 3, 0, ..., 3, 0) 0.0544 0.0555 0.0597 0.0612
22 30 (0, ..., 0, 20) 0.0463 0.0469 0.0512 0.0520
23 (20, 0, ..., 0) 0.0448 0.0452 0.0496 0.0504
24 (2, 0, 0, ..., 2, 0, 0) 0.0468 0.0474 0.0519 0.0527
25 5 20 5 (0, 0, 0, 0, 15) 0.1234 0.1337 0.1382 0.1506
26 (15, 0, 0, 0, 0) 0.1103 0.1177 0.1157 0.1257
27 (3, 3, 3, 3, 3) 0.1191 0.1287 0.1274 0.1386
28 30 15 (0, ..., 0, 15) 0.0656 0.0676 0.0705 0.0728
29 (15, 0, ..., 0) 0.0645 0.0659 0.0706 0.0728
30 (3, 0, 0, ..., 3, 0, 0) 0.0639 0.0659 0.0709 0.0732
31 50 20 (0, ..., 0, 30) 0.0584 0.0600 0.0620 0.0634
32 (30, 0, ..., 0) 0.0530 0.0539 0.0587 0.0600
33 (3, 0, 3, 0, ..., 3, 0) 0.0571 0.0583 0.0638 0.0653
34 30 (0, ..., 0, 20) 0.0458 0.0465 0.0492 0.0499
35 (20, 0, ..., 0) 0.0466 0.0472 0.0521 0.0528
36 (2, 0, 0, ..., 2, 0, 0) 0.0466 0.0473 0.0518 0.0525
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No dominant progressive first failure-censoring scheme can be found in Table 3 in terms of small
EAE values. We also compare the performance of δ̂AE in terms of EAE under different cases of β1 6= β2

and β1 = β2. Figure 7 displays the EAE values of using δ̂AE to estimate δ. From Figure 7, we find that
δ̂AE for the case of β1 6= β2 performs closely to that for the case of β1 = β2 except the first progressive
first failure-censoring scheme.

Figure 7. The values of EAE (δ̂AE) for the cases of β1 = β2 and β1 6= β2.

4.4. Expected Squared and Expected Absolute Errors for δ̂Linex

In this subsection, the ESE and EAE of the Linex estimator δ̂Linex are evaluated to investigate
the performance of using the estimator δ̂Linex to estimate the true δ. For each simulation combination
under the two scenarios, the EAE (δ̂Linex) and EAE (δ̂Linex) are, respectively, defined as

EAE (δ̂Linex) =
1

500

500

∑
i=1

(δ̂
(i)
Linex − δ)2 (32)

and

EAE (δ̂Linex) =
1

500

500

∑
i=1
|δ̂(i)Linex − δ|, (33)

in which a = 0.5 is selected to obtain δ̂
(i)
Linex. Table 4 reports the ESE and EAE values based on using

the Linex estimates for each progressive first failure-censoring scheme. The patterns of the ESE and
EAE are displayed in Figure 8 for the case of β1 6= β2 and in Figure 9 for the case of β1 = β2.

In Table 4, no dominant progressive first failure-censoring schemes with small ESE and EAE
can be found. The EAE (δ̂Linex) and EAE (δ̂Linex) have similar patterns for both cases of β1 6= β2 and
β1 = β2. The δ̂Linex cannot work well when the sample size is small. Figures 8 and 9 show that the
values of ESE and EAE for the parameter combinations 1, 2, 3, 13, 14, 15, 25, 26, and 27 are significantly
larger than those for the other parameter combinations.

Figure 8. The values of EAE (δ̂Linex) and EAE (δ̂Linex) for the case of β1 6= β2.
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Figure 9. The values of EAE (δ̂Linex) and EAE (δ̂Linex) for the case of β1 = β2.

Table 4. The ESE and EAE for δ̂Linex under different Burr type XII distributions.

Parameter Combinations Simulation Scenarios
(α, β1, β2) = (5.0, 0.08, 0.16) (α, β1, β2) = (5.0, 0.08, 0.08)

k m r Scheme EAE (δ̂Linex) EAE (δ̂Linex) EAE (δ̂Linex) EAE (δ̂Linex)

1 1 20 5 (0, 0, 0, 0, 15) 0.1111 0.3333 0.0213 0.1205
2 (15, 0, 0, 0, 0) 0.0191 0.1082 0.0212 0.1174
3 (3, 3, 3, 3, 3) 0.0177 0.1054 0.0205 0.1139
4 30 15 (0, ..., 0, 15) 0.0058 0.0590 0.0072 0.0696
5 (15, 0, ..., 0) 0.0061 0.0608 0.0072 0.0672
6 (3, 0, 0, ..., 3, 0, 0) 0.0066 0.0653 0.0079 0.0718
7 50 20 (0, ..., 0, 30) 0.0049 0.0563 0.0061 0.0626
8 (30, 0, ..., 0) 0.0049 0.0559 0.0059 0.0615
9 (3, 0, 3, 0, ..., 3, 0) 0.0052 0.0580 0.0063 0.0639

10 30 (0, ..., 0, 20) 0.0035 0.0469 0.0043 0.0523
11 (20, 0, ..., 0) 0.0031 0.0441 0.0039 0.0491
12 (2, 0, 0, ..., 2, 0, 0) 0.0030 0.0435 0.0038 0.0493
13 3 20 5 (0, 0, 0, 0, 15) 0.0256 0.1270 0.0281 0.1323
14 (15, 0, 0, 0, 0) 0.0169 0.1033 0.0191 0.1122
15 (3, 3, 3, 3, 3) 0.0251 0.1269 0.0268 0.1348
16 30 15 (0, ..., 0, 15) 0.0098 0.0794 0.0076 0.0709
17 (15, 0, ..., 0) 0.0067 0.0654 0.0079 0.0719
18 (3, 0, 0, ..., 3, 0, 0) 0.0062 0.0640 0.0071 0.0689
19 50 20 (0, ..., 0, 30) 0.0053 0.0572 0.0061 0.0618
20 (30, 0, ..., 0) 0.0046 0.0544 0.0057 0.0609
21 (3, 0, 3, 0, ..., 3, 0) 0.0047 0.0543 0.0056 0.0598
22 30 (0, ..., 0, 20) 0.0034 0.0462 0.0041 0.0513
23 (20, 0, ..., 0) 0.0033 0.0447 0.0040 0.0496
24 (2, 0, 0, ..., 2, 0, 0) 0.0035 0.0467 0.0042 0.0519
25 5 20 5 (0, 0, 0, 0, 15) 0.0232 0.1227 0.0295 0.1382
26 (15, 0, 0, 0, 0) 0.0190 0.1092 0.0214 0.1157
27 (3, 3, 3, 3, 3) 0.0222 0.1183 0.0254 0.1273
28 30 15 (0, ..., 0, 15) 0.0067 0.0654 0.0078 0.0705
29 (15, 0, ..., 0) 0.0064 0.0641 0.0079 0.0706
30 (3, 0, 0, ..., 3, 0, 0) 0.0063 0.0638 0.0078 0.0710
31 50 20 (0, ..., 0, 30) 0.0054 0.0584 0.0062 0.0621
32 (30, 0, ..., 0) 0.0045 0.0528 0.0056 0.0587
33 (3, 0, 3, 0, ..., 3, 0) 0.0052 0.0570 0.0064 0.0638
34 30 (0, ..., 0, 20) 0.0033 0.0458 0.0038 0.0493
35 (20, 0, ..., 0) 0.0033 0.0465 0.0042 0.0521
36 (2, 0, 0, ..., 2, 0, 0) 0.0034 0.0465 0.0041 0.0519
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Figure 10 displays the values of EAE (δ̂Linex) for the cases of β1 6= β2 and β1 = β2. From Figure 10,
we can find that the values of EAE (δ̂Linex) are close for both cases of β1 6= β2 and β1 = β2 for almost
all 36 parameter combinations except for the first simulation parameter combination. This means that
δ̂Linex has close performances under both cases.

Figure 10. The values of EAE (δ̂Linex) for the cases of β1 = β2 and β1 6= β2.

4.5. Comparison between Expected Square Error on δ̂SE and δ̂Linex and Expected Absolute Error on δ̂AE

Because the Bayes estimator based on the Linex loss function approaches the Bayes estimator based
on the SE loss function as a→ 0, in this subsection, we want to understand the ESE behavior of δ̂SE,
the ESE behavior of δ̂Linex, and the EAE behavior of δ̂AE. The values of the EAE (δ̂SE), EAE (δ̂Linex), and
EAE (δ̂AE) are displayed in Figures 11 and 12 for all 36 parameter combinations for the cases of β1 = β2

and β1 6= β2, respectively. Similar patterns are found in Figures 11 and 12. From Figures 11 and 12,
it was noticed that the pattern of EAE (δ̂AE) is oscillated more than the patterns of EAE (δ̂SE) and
EAE (δ̂Linex). All three Bayes estimators have larger evaluations for the ESE or EAE when the number
of observed lifetimes is small. Moreover, the values of EAE (δ̂SE) and EAE (δ̂Linex) are very close
because a = 0.5 is used for the Linex loss function. It should be mentioned that ESE converges to the
theoretical MSE, and EAE converges to the theoretical MAE when the number of MCMC iteration
approaches infinity. Overall, the SE loss function can be a good option to find Bayes estimator. When
the SE loss function is used to find Bayes estimator, the progressive first failure-censoring scheme
with removing survival units at the early stage can be a compromised design to generate a small MSE.
This property is helpful for practitioners to set up the progressive first failure-censoring scheme in
practical applications.

Figure 11. Overall error under β1 = β2.
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Figure 12. Overall error under β1 6= β2.

4.6. Evaluation of Credible Intervals

On the basis of the empirical distribution of δ̂, a credible interval with the confidence level of
1− a = 0.95 can be obtained from each MCMC procedure by taking two symmetric tail cuts as the
lower and upper bounds, where 0 < a < 1. These credible intervals provide a range of values, in which
true δ lies with a 95% level of confidence. Table 5 reports the coverage probabilities of δ to verify the
performance of interval inference. All the coverage probabilities in Table 5 are obtained via use of the
relative frequency of the 500 simulated 95% credible intervals that cover the true δ. Figure 13 displays
the pattern of the coverage probabilities in Table 5. It can be noticed that most dots are plotted below
the dash line of the nominal confidence level 95%. That is, most coverage probabilities underestimate
the nominal confidence level. The credible interval inference method works more stably for the case of
β1 = β2 than that for the case of β1 6= β2.

Figure 13. Comparison of coverage probabilities

The average length of the credible interval can be determined from the simulated 500 credible
intervals for each scenario. These results are displayed in Table 5 and Figure 14. From Table 5, we find
that the average length of the credible interval decreases as the sample size increases. It can also be
observed from Table 5 that different censoring schemes under both simulation scenarios have little
impact on the average length of credible interval. However, the average length of credible intervals
highly depends on the sample size.
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Table 5. The coverage probabilities of 95% credible intervals and their average lengths for δ under
different Burr type XII distributions.

Parameter Combinations Simulation Scenarios
(α, β1, β2) = (5.0, 0.08, 0.16) (α, β1, β2) = (5.0, 0.08, 0.08)

k m r Scheme CP Avg. Length CP Avg. Length

1 1 20 5 (0, 0, 0, 0, 15) 0.934 0.4996 0.950 0.5366
2 (15, 0, 0, 0, 0) 0.930 0.5049 0.934 0.5354
3 (3, 3, 3, 3, 3) 0.940 0.4994 0.940 0.5368
4 30 15 (0, ..., 0, 15) 0.940 0.3047 0.962 0.3386
5 (15, 0, ..., 0) 0.954 0.3072 0.950 0.3387
6 (3, 0, 0, ..., 3, 0, 0) 0.942 0.3068 0.940 0.3373
7 50 20 (0, ..., 0, 30) 0.956 0.2688 0.938 0.2952
8 (30, 0, ..., 0) 0.954 0.2691 0.954 0.2952
9 (3, 0, 3, 0, ..., 3, 0) 0.934 0.2688 0.938 0.2948

10 30 (0, ..., 0, 20) 0.938 0.2192 0.932 0.2436
11 (20, 0, ..., 0) 0.948 0.2183 0.952 0.2438
12 (2, 0, 0, ..., 2, 0, 0) 0.948 0.2176 0.948 0.2442
13 3 20 5 (0, 0, 0, 0, 15) 0.898 0.4978 0.904 0.5346
14 (15, 0, 0, 0, 0) 0.956 0.5051 0.964 0.5414
15 (3, 3, 3, 3, 3) 0.906 0.4986 0.926 0.5306
16 30 15 (0, ..., 0, 15) 0.862 0.2974 0.946 0.3392
17 (15, 0, ..., 0) 0.942 0.3088 0.944 0.3377
18 (3, 0, 0, ..., 3, 0, 0) 0.960 0.3117 0.966 0.3396
19 50 20 (0, ..., 0, 30) 0.930 0.2724 0.948 0.2975
20 (30, 0, ..., 0) 0.956 0.2682 0.956 0.2973
21 (3, 0, 3, 0, ..., 3, 0) 0.946 0.2684 0.960 0.2984
22 30 (0, ..., 0, 20) 0.938 0.2190 0.940 0.2436
23 (20, 0, ..., 0) 0.944 0.2195 0.944 0.2439
24 (2, 0, 0, ..., 2, 0, 0) 0.938 0.2186 0.942 0.2435
25 5 20 5 (0, 0, 0, 0, 15) 0.908 0.5053 0.912 0.5367
26 (15, 0, 0, 0, 0) 0.936 0.5016 0.934 0.5383
27 (3, 3, 3, 3, 3) 0.934 0.5050 0.928 0.5366
28 30 15 (0, ..., 0, 15) 0.948 0.3142 0.946 0.3407
29 (15, 0, ..., 0) 0.944 0.3095 0.946 0.3394
30 (3, 0, 0, ..., 3, 0, 0) 0.958 0.3098 0.954 0.3406
31 50 20 (0, ..., 0, 30) 0.944 0.2752 0.948 0.2982
32 (30, 0, ..., 0) 0.950 0.2687 0.952 0.2982
33 (3, 0, 3, 0, ..., 3, 0) 0.942 0.2713 0.948 0.2983
34 30 (0, ..., 0, 20) 0.942 0.2206 0.952 0.2436
35 (20, 0, ..., 0) 0.942 0.2164 0.934 0.2425
36 (2, 0, 0, ..., 2, 0, 0) 0.940 0.2199 0.944 0.2430

Figure 14 shows the largest average length group occurring at the simulation parameter
combinations with small sample sizes for m = 20; see the simulation parameter combinations 1,
2, 3, 13, 14, 15, 25, 26, and 27. Figure 14 also shows that the average lengths of credible intervals for the
case of β1 6= β2 are shorted than that for the case of β1 = β2.
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Figure 14. Average length of covering confidence intervals

4.7. Performance Comparison between Bayesian Estimation and Maximum Likelihood Estimation Methods

The maximum likelihood estimation (MLE) method is another popular method for parameter
estimation to search the maximizer of the likelihood function given a sample. In this subsection,
the performance of the maximum likelihood estimation method and the Bayesian estimation method
through bias and ESE will be investigated. Let m = 30 and r = 15; the progressive first failure-censoring
schemes (0, 0, ..., 15), (15, 0, ..., 0), and (3, 0, 0, ..., 3, 0, 0) are selected to implement the simulation study
for comparing the performance of the maximum likelihood estimation method and the Bayesian
estimation method. The bias and MSE are evaluated based on 10,000 MLEs and Bayes estimates
of δ, respectively, for the Burr type XII distribution with parameters (α, β1, β2) = (5, 0.08, 0.16) and
(α, β1, β2) = (5, 0.08, 0.08). All simulation results are reported in Tables 6 and 7.

Table 6. The bias and ESEs of the MLEs and Bayes estimates of δ for (α, β1, β2) = (5, 0.08, 0.16).

Parameter Combinations MLE MCMC

m r k Scheme Bias ESE Bias ESE

30 15 1 (0, ..., 0, 15) 0.0428 0.0036 0.0303 0.0030
(15, 0, ..., 0) −0.1199 0.0198 −0.1348 0.0230
(3, 0, 0, ...3, 0, 0) −0.0359 0.0044 −0.0489 0.0056

3 (0, ..., 0, 15) 0.0467 0.0039 0.0307 0.0029
(15, 0, ..., 0) −0.1190 0.0198 −0.1379 0.0243
(3, 0, 0, ...3, 0, 0) −0.0428 0.0054 −0.0500 0.0059

5 (0, ..., 0, 15) 0.0455 0.0038 0.0342 0.0029
(15, 0, ..., 0) −0.1226 0.0204 −0.1407 0.0251
(3, 0, 0, ...3, 0, 0) −0.0432 0.0056 −0.0498 0.0058

Table 7. The bias and ESEs of the MLEs and Bayes estimates of δ for (α, β1, β2) = (5, 0.08, 0.08).

Parameter Combinations MLE MCMC

m r k Scheme Bias ESE Bias ESE

30 15 1 (0, ..., 0, 15) 0.1041 0.0186 0.0892 0.0147
(15, 0, ..., 0) −0.1563 0.0305 −0.1389 0.0253
(3, 0, 0, ...3, 0, 0) −0.0377 0.0098 −0.0380 0.0088

3 (0, ..., 0, 15) 0.1058 0.0183 0.1040 0.0180
(15, 0, ..., 0) −0.1540 0.0301 −0.1473 0.0274
(3, 0, 0, ...3, 0, 0) −0.0403 0.0100 −0.0322 0.0074

5 (0, ..., 0, 15) 0.1070 0.0199 0.0971 0.0176
(15, 0, ..., 0) −0.1456 0.0284 −0.1409 0.0260
(3, 0, 0, ...3, 0, 0) −0.0330 0.0083 −0.0372 0.0081
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From Tables 6 and 7, it can be noticed that the maximum likelihood estimation method and the
proposed Bayesian estimation method are competitive. Both estimation methods can generate reliable
estimates, which have small values of bias and ESE, for estimating δ. On the basis of our simulation
experience, we find that the convergence of the maximum likelihood estimation method could be a
problem during maximizing the log-likelihood function to search the MLEs of the model parameters.
The performance of the maximum likelihood estimation method highly depends on the initial solutions
of the model parameters. It could be difficult for users to select good initial solutions in some situations.
The proposed MCMC procedure using non-informative prior distributions can be applied to replace
the maximum likelihood estimation method to generate Bayes estimates. When non-informative prior
distributions are used, the resulting Bayes estimates are close to the MLEs, and then, the users can
escape the convergence problem in numerical computation during maximization of the log-likelihood
function. On the basis of this merit, the proposed MCMC procedure is recommended and can be an
alternative of the maximum likelihood estimation method proposed by Lio and Tsai [3].

5. Applications

The stress–strength parameter inference has earned widely discussions in reliability
analysis applications. In this section, we firstly mention potential IoT applications in which δ can be
used as an indicator to monitor the quality of IoT devices. Then, an example regarding the reliability
of a component used in vehicles is used to illustrate the applications of methodologies proposed in
this work.

5.1. IoT Applications

IoT devices have been widely applied in different areas, for example, smart cities. A smart city
uses sensors to collect data for efficiently managing assets and resources. All the collected data are
processed to monitor and manage important aspects such as the traffic and transportation systems,
power projects, water supply networks, information systems, and different community services.
The main strength of the IoT idea is the high impact it has on several aspects of everyday life and
behavior of potential users. From the point of view of a private user, the most obvious effects of IoT
introduction will be visible in both working and domestic fields. Comprehensive discussions about IoT
applications for smart cities environments can be found in Atzori et al. [26] and Tsiropoulou et al. [27].

Dogmatics, assisted living, e-health, and enhanced learning are examples of possible application
scenarios in which the new paradigm will play a leading role in the near future. The most
apparent consequences will be equally visible in areas of logistics, process management, automation
manufacturing, and intelligent transportation. On the basis of the aforementioned considerations,
the US National Intelligence Council (NIC) includes the IoT in the list of six Disruptive Civil
Technologies with potential impacts on US national power; see [28]. NIC foresees that Internet nodes
may reside in everyday things by 2025. Future opportunities will arise; for example, popular demands
that combined with technology advances could drive widespread diffusion of the IoT. The possible
threats deriving from a widespread adoption of IoT devices are also stressed. It is obvious that the
threat deriving from a adoption of a technology is a stress indicator and the strength of the IoT devices
is another important indicator. In such applications, δ can be used to monitor the quality of each
important IoT application and the proposed Bayes estimate can be used to estimate the stress–strength,
providing that both stress and strength samples are available.

5.2. Reliability Evaluation for Vehicle Components

The next example is about the reliability evaluation for one type of component that is used
in vehicles. The example can be found from Life Data Analysis Reference http://reliawiki.org/
index.php/Life_Data_Analysis_Reference_Book or from the link http://reliawiki.org/index.php/
Stress-Strength_Analysis. This example presents two data sets; the first data set is a random sample
of size 20 from the usage mileage distribution per year as the stress, and the second data set is a

http://reliawiki.org/index.php/Life_Data_Analysis_Reference_Book
http://reliawiki.org/index.php/Life_Data_Analysis_Reference_Book
http://reliawiki.org/index.php/Stress-Strength_Analysis
http://reliawiki.org/index.php/Stress-Strength_Analysis
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random sample of size 50 from the miles-to-failure distribution as the strength for the component of
which warranty is 1 year or 15,000 miles. Assuming that these two random samples have lognormal
distributions, the given example used a different definition of stress–strength to calculate the point
estimate of the stress–strength of the component by using these two random samples that withdrew
vehicles with mileages larger than 15,000. Because the given random samples are not progressively
first-failure censored samples, progressively first-failure censored samples from the same environment
are generated to illustrate the application of the proposed methods.

First, we keep 20 observations from the first stress data set and randomly select 20 observations
from the strength data set for Burr type XII modeling purposes. These two data sets in terms of
15,000 miles are displayed in Table 8 for the Burr type XII modelings. Two Burr type XII distributions
sharing the same inner shape parameter α are used to fit these two data sets shown in Table 8 by using
the likelihood function presented by Equation (9) with k1 = k2 = 1 and both Rx and Ry equal to zero
vectors for both stress and strength as random samples. The MLEs of α, β1 and β2 are obtained by
α̂ = 14.2983, β̂1 = 9.3639, and β̂2 = 0.6213. Followed by the Kolmogorov–Smirnov (KS) good-of-fit
test for both Burr type XII distributions using MLEs as Burr type XII distribution parameters, the KS
statistics based on the two data sets shown in Table 8 are obtained as 0.2033 with the p-value of 0.334
for the stress Burr type XII distribution model and as 0.2436 with the p-value of 0.1573 for the strength
Burr type XII distribution. The testing results from KS test indicate that the stress distribution can
be well fitted by the Burr type XII distribution with (α, β1) = (14.2983, 9.3639) and that the strength
distribution can be well fitted by the Burr type XII distribution with (α, β2) = (14.2983, 0.6213).
The true stress strength parameter is δ = 0.9378.

Table 8. The stress of usage mileage and the strength of failure mileage random samples.

Stress: The Usage Mileage Sample (in 15,000 miles)

0.6731 0.6979 0.7303 0.7455 0.7594 0.7657 0.7689 0.7946 0.8070 0.8094
0.8270 0.8351 0.8357 0.8397 0.8438 0.9185 0.9241 0.9314 0.9355 0.9425

Strength: The Failure Mileage Sample (in 15,000 miles)

0.9005 0.9195 0.9345 1.0069 1.0320 1.0348 1.0650 1.0679 1.0899 1.0937
1.1083 1.1113 1.1166 1.1195 1.1349 1.1361 1.1923 1.2383 1.2542 1.2629

A pair of progressively first failure-censored samples under k = 5, m = 50, and r = 20 and
censored scheme (30, 0, 0, ..., 0) are generated from both stress Burr type XII (α, β1) = (14.2983, 9.3639)
and the Burr type XII distribution with (α, β2) = (14.2983, 0.6213) three times, and the resulting three
pairs are displayed in Table 9. The prior distribution for β1 is the Gamma distribution with parameters
a1 = 0.000093639 and b1 = 0.00001, the prior distribution for β2 is the Gamma distribution with
parameters a2 = 0.000006213 and b2 = b1, and the prior distribution for α is the Gamma distribution
with parameters a3 = 14.3 and b3 = 1.0. Each pair of progressively first failure-censored samples in
Table 9 will be used as the inputs to obtain a MCMC sample for δ. Figure 15 shows three time series
plots, respectively, for the three δ MCMC samples of δ after burn-in. On the basis of the three MCMC
samples after burn-in, by using the SE loss function, three Bayes estimates of δ are obtained to be
0.8113, 0.8626, and 0.8475, respectively; by using the AE loss function, three Bayes estimates of δ are
obtained to be 0.8177, 0.8681, and 0.8551, respectively; and by using the Linex loss function, three
Bayes estimates of δ are obtained to be 0.8104, 0.8619, and 0.8467, respectively. Moreover, three 95%
credible intervals of δ based on the three δ MCMC samples after burn-in are given as (0.6802, 0.9050),
(0.7464, 0.9436), and (0.7185, 0.9341), respectively. It seems that these three Bayes estimates are not
as accurate as expected. It could be the true stress–strength parameter δ close to one of theoretical
boundaries that is 1.0 in this application. This is commonly known as the boundary effect which is
worth further investigating.
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Table 9. Three progressively first-failure censored samples from two Burr type XII distributions.

Stress: The Usage Mileage Sample (in 15,000 miles) I (in 15,000 miles)

0.5898 0.6042 0.6443 0.6690 0.6848 0.7036 0.7140 0.7494 0.7596 0.7639
0.7691 0.7751 0.7827 0.7918 0.7933 0.7983 0.8175 0.8183 0.8214 0.8368

Strength: The Failure Mileage Sample I (in 15,000 miles)

0.7611 0.7680 0.7954 0.8087 0.8127 0.8341 0.8434 0.8454 0.8513 0.8550
0.8661 0.8925 0.8982 0.9101 0.9108 0.9356 0.9390 0.9839 0.9907 1.0027

Stress: The Usage Mileage Sample II (in 15,000 miles)

0.5235 0.5578 0.6141 0.6375 0.6408 0.6552 0.6760 0.6952 0.7061 0.7271
0.7449 0.7527 0.7573 0.7603 0.7701 0.7703 0.7778 0.7874 0.8036 0.8090

Strength: The Failure Mileage Sample II (in 15,000 miles)

0.6616 0.7191 0.7537 0.8484 0.8518 0.8723 0.8725 0.8829 0.8880 0.9155
0.9174 0.9180 0.9191 0.9385 0.9436 0.9464 0.9488 0.9491 0.9844 1.0779

Stress: The Usage Mileage Sample III (in 15,000 miles)

0.5850 0.6222 0.7212 0.7259 0.7281 0.7292 0.7376 0.7377 0.7403 0.7408
0.7484 0.7518 0.7687 0.7704 0.7853 0.7917 0.8056 0.8140 0.8260 0.8581

Strength: The Failure Mileage Sample III (in 15,000 miles)

0.6110 0.8402 0.8426 0.8433 0.8474 0.8704 0.8883 0.8934 0.9009 0.9073
0.9075 0.9164 0.9325 0.9326 0.9466 0.9567 0.9776 0.9827 0.9893 1.0412
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Figure 15. Comparison of coverage probabilities.

6. Conclusions

Bayesian inferences of the stress–strength parameter in a system of two components are
investigated based on a pair of progressively first failure-censored samples from two independent Burr
type XII distributions, which share a common inner shape parameter. Because of the lack of closed
forms for the conditional posterior distributions and the difficulties of computation complexities,
a MCMC procedure to implement the M–H algorithm via Gibbs sampling is established to collect
samples from the posterior distribution of δ.
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The SE, AE, and Linex loss functions are used to search the Bayes estimates of the model
parameters. An intensive simulation study has been conducted to show that the SE loss function can be
a good option to implement the proposed estimation method with a progressive first failure-censoring
scheme, in which survival units were removed in the early stage. These findings provide a good
suggestion for users to select a progressive first failure-censoring scheme for the practical application.
The proposed estimation method needs a sample size of at least 30 to obtain a reliable Bayes estimate
for the stress–strength parameter. The coverage probability and its average length of the credible
interval for the stress–strength parameter were also investigated. Simulation results show that our
proposed estimation methods work well when true stress–strength not near the boundary (0 or 1.0).
The Bayes estimate of the stress–strength parameter based on progressively first failure-censored
samples would be a good future investigation when the true stress–strength parameter δ is very close
to 0 or 1.

The effectiveness of some progressive first failure-censoring schemes to the Bayes estimators is
investigated through Monte Carol simulations. Moreover, the estimation performance of the proposed
estimation method is compared with the maximum likelihood estimation method using simulations.
We find that the proposed estimation method and maximum likelihood estimation method are
competitive in generating reliable estimates of the model parameters with small bias and MSE. We also
found that the convergence of the maximum likelihood estimation method could be a problem during
maximizing the log-likelihood function to search the MLEs of model parameters. It could be difficult
for users to set up good initial solutions in some situations to search MLEs. The proposed MCMC
procedure using non-informative prior distributions can be applied to replace the maximum likelihood
estimation method to generate Bayes estimates, which are close to the MLEs. The proposed MCMC
procedure is hence recommended to be an alternative of the maximum likelihood estimation method.
More and more IoT devices are used to establish smart city environments. Nowadays, the inference of
the stress–strength parameter with complete big data becomes an important topic for monitoring the
quality of IoT devices over time. This topic is interesting and will be studied in the near future.
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