

 mathematics-07-00789

mathematics-07-00789

Mathematics 2019, 7(9), 789; doi:10.3390/math7090789

Article

A New Hybrid CQ Algorithm for the Split Feasibility Problem in Hilbert Spaces and Its Applications to Compressed Sensing

Suthep Suantai 1, Suparat Kesornprom 2,* and Prasit Cholamjiak 2,*

1

Research Center in Mathematics and Applied Mathematics, Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

2

School of Science, University of Phayao, Phayao 56000, Thailand

*

Correspondence: suparat.ke@gmail.com (S.K.); prasit.ch@up.ac.th (P.C.)

Received: 24 June 2019 / Accepted: 23 August 2019 / Published: 27 August 2019

Abstract

:

In this paper, we focus on studying the split feasibility problem (SFP), which has many applications in signal processing and image reconstruction. A popular technique is to employ the iterative method which is so called the relaxed CQ algorithm. However, the speed of convergence usually depends on the way of selecting the step size of such algorithms. We aim to suggest a new hybrid CQ algorithm for the SFP by using the self adaptive and the line-search techniques. There is no computation on the inverse and the spectral radius of a matrix. We then prove the weak convergence theorem under mild conditions. Numerical experiments are included to illustrate its performance in compressed sensing. Some comparisons are also given to show the efficiency with other CQ methods in the literature.

Keywords:

split feasibility problem; CQ algorithm; gradient method; line-search

1. Introduction

In the present work, we aim to study the split feasibility problem (SFP), which is to find a point

 x * ∈ C such that A x * ∈ Q

(1)

where C and Q are nonempty closed and convex subsets of real Hilbert spaces H 1 and H 2 , respectively, and A : H 1 → H 2 a bounded linear operator. In 1994, the SFP was first investigated by Censor and Elfving [1] in finite dimensional Hilbert spaces. There have been applications in real world such as image processing and signal recovery (see [2,3]). Byrne [4,5] introduced the following recursive procedure for solving SFP:

 x n + 1 = P C (x n − α n A * (I − P Q) A x n)

(2)

where { α n } ⊂ (0 , 2 / ∥ A ∥ 2) , P C and P Q are the projections onto C and Q, respectively, and A * is the adjoint of A. This projection algorithm is usually called the CQ algorithm. Subsequently, Yang [6] introduced the relaxed CQ algorithm. In this case, the projections P C and P Q are, respectively, replaced by P C n and P Q n , where

 C n = { x ∈ H 1 : c (x n) + 〈 ξ n , x − x n 〉 ≤ 0 } ,

(3)

where c : H 1 → R is convex and lower semicontinuous, and ξ n ∈ ∂ c (x n) , and

 Q n = { y ∈ H 2 : q (A x n) + 〈 η n , y − A x n 〉 ≤ 0 } ,

(4)

where q : H 2 → R is convex and lower semicontinuous, and η n ∈ ∂ q (A x n) . In what follows, we define

 f n (x) = 1 2 ∥ (I − P Q n) A x ∥ 2 , n ≥ 1

(5)

and

 ∇ f n (x) = A * (I − P Q n) A x .

(6)

Precisely, Yang [6] proposed the relaxed CQ algorithm in a finite-dimensional Hilbert space as follows:

Algorithm 1.

Let x 1 ∈ H 1 . For n ≥ 1 , define

 x n + 1 = P C n (x n − α n ∇ f n (x n)) .

(7)

where { α n } ⊂ (0 , 2 / ∥ A ∥ 2) .

It is seen that, since the sets C n and Q n are half spaces, the projections are easily to be computed. However, the step size { α n } still depends on the norm of A.

To eliminate this difficulty, in 2012, López et al. [7] suggested a new way to select the step size α n as follows:

 α n = β n f n (x n) ∥ ∇ f n (x n) ∥ 2

(8)

where { β n } is a sequence in (0 , 4) such that 0 < a ≤ lim inf n → ∞ β n ≤ lim sup n → ∞ β n ≤ b < 4 for some a , b ∈ (0 , 4) . They established the weak convergence of the CQ algorithm (Equation (2)) and the relaxed CQ algorithm (Equation (7)) with the step size defined by Equation (8) in real Hilbert spaces.

Qu and Xiu [8] adopted the line-search technique to construct the step size in Euclidean spaces as follows:

Algorithm 2.

Choose σ > 0 , ρ ∈ (0 , 1) , μ ∈ (0 , 1) . Let x 1 be a point in H 1 . For n ≥ 1 , let

 y n = P C n (x n − α n ∇ f n (x n)) ,

(9)

where α n = σ ρ m n and m n is the smallest nonnegative integer such that

 α n ∥ ∇ f n (x n) − ∇ f n (y n) ∥ ≤ μ ∥ x n − y n ∥ .

(10)

Set

 x n + 1 = P C n (x n − α n ∇ f n (y n)) .

(11)

In 2012, Bnouhachem et al. [9] proposed the following projection method for solving the SFP.

Algorithm 3.

For a given x 1 ∈ R n , let

 y n = P C n (x n − α n ∇ f n (x n))

(12)

where α n > 0 satisfies

 α n ∥ ∇ f n (x n) − ∇ f n (y n) ∥ ≤ μ ∥ x n − y n ∥ , 0 < μ < 1 .

(13)

Define

 x n + 1 = P C n (x n − φ n d (x n , α n))

(14)

where

 d (x n , α n) = x n − y n + α n ∇ f n (y n) ε n = α n (∇ f n (y n) − ∇ f n (x n)) D (x n , α n) = x n − y n − ε n ϕ (x n , α n) = 〈 x n − y n , D (x n , α n) 〉

(15)

and

 φ n = ϕ (x n , α n) ∥ d (x n , α n) ∥ 2 .

(16)

Recently, many authors establish weak and strong convergence theorems for the SFP (see also [10,11]).

In this work, combining the work of Bnouhachem et al. [9] and López et al. [7], we suggest a new hybrid CQ algorithm for solving the split feasibility problem and establish weak convergence theorem in Hilbert spaces. Finally, numerical results are given for supporting our main results. The comparison is also given to algorithms of Qu and Xiu [8] and Bnouhachem et al. [9]. It is shown that our method has a better convergence behavior than these CQ algorithms through numerical examples.

2. Preliminaries

We next recall some useful basic concepts that will be used in our proof. Let H be a real Hilbert space equipped with the inner product 〈 · , · 〉 and the norm ∥ · ∥ . Let T : H → H be a nonlinear mapping. Then, T is called firmly nonexpansive if, for all x , y ∈ H ,

 〈 x − y , T x − T y 〉 ≥ ∥ T x − T y ∥ 2 .

(17)

In a real Hilbert space H, we have the following equality:

 〈 x , y 〉 = 1 2 ∥ x ∥ 2 + 1 2 ∥ y ∥ 2 − 1 2 ∥ x − y ∥ 2 .

(18)

A function f : H → R is convex if and only if

 f (z) ≥ f (x) + 〈 ∇ f (x) , z − x 〉

(19)

for all z ∈ H .

A function f : H → R is said to be weakly lower semi-continuous (w-lsc) at x if x n ⇀ x implies

 f (x) ≤ lim inf n → ∞ f (x n) .

(20)

The projection of a nonempty, closed and convex set C onto H is defined by

 P C x : = arg min y ∈ C ∥ x − y ∥ 2 , x ∈ H .

(21)

We note that P C and I − P C are firmly nonexpansive. From [5], we know that, if

 f (x) = 1 2 ∥ (I − P Q) A x ∥ 2 ,

then ∇ f is ∥ A ∥ 2 -Lipschitz continuous. Moreover, in real Hilbert spaces, we know that [12]

	(i)

	
 〈 x − P C x , z − P C x 〉 ≤ 0 for all z ∈ C ;

	(ii)

	
 ∥ P C x − P C y ∥ 2 ≤ 〈 P C x − P C y , x − y 〉 for all x , y ∈ H ; and

	(iii)

	
 ∥ P C x − z ∥ 2 ≤ ∥ x − z ∥ 2 − ∥ P C x − x ∥ 2 for all z ∈ C .

Lemma 1.

[12] Let S be a nonempty, closed and convex subset of a real Hilbert space H and { x n } be a sequence in H that satisfies the following assumptions:

	(i)

	
 lim n → ∞ ∥ x n − x ∥ exists for each x ∈ S ; and

	(ii)

	
 ω w (x n) ⊂ S .

Then, { x n } converges weakly to a point in S.

3. Main Results

Throughout this paper, let S be the set of solution of SFP and suppose that S is nonempty. Let C and Q be nonempty that satisfy the following assumptions:

(A1) The set C is defined by

 C = { x ∈ H 1 : c (x) ≤ 0 } ,

(22)

where c : H 1 → R is convex, subdifferentiable on C and bounded on bounded sets, and the set Q is defined by

 Q = { y ∈ H 2 : q (y) ≤ 0 } ,

(23)

where q : H 2 → R is convex, subdifferentiable on Q and bounded on bounded sets.

(A2) For each x ∈ H 1 , at least one subgradient ξ ∈ ∂ c (x) can be computed, where

 ∂ c (x) = { z ∈ H 1 : c (u) ≥ c (x) + 〈 u − x , z 〉 , ∀ u ∈ H 1 } .

(24)

(A3) For each y ∈ H 2 , at least one subgradient η ∈ ∂ q (y) can be computed, where

 ∂ q (x) = { w ∈ H 2 : q (u) ≥ q (y) + 〈 v − y , w 〉 , ∀ v ∈ H 2 } .

(25)

Next, we propose our new relaxed CQ algorithm in real Hilbert spaces.

Algorithm 4.

Let x 1 ∈ H 1 , for any σ > 0 , ρ ∈ (0 , 1) , μ ∈ (0 , 1 2) . Assume { x n } and { y n } have been constructed. Compute x n + 1 via the formula

 y n = P C n (x n − α n ∇ f n (x n)) ,

(26)

where α n = σ ρ m n and m n is the smallest nonnegative integer such that

 α n ∥ ∇ f n (x n) − ∇ f n (y n) ∥ ≤ μ ∥ x n − y n ∥ .

(27)

Define

 x n + 1 = y n − τ n ∇ f n (y n)

(28)

where

 τ n = β n f n (y n) ∥ ∇ f n (y n) ∥ 2 + θ n , 0 < β n < 4 , 0 < θ n < 1 .

(29)

Lemma 2.

[8] The line-search in Equation (27) terminates after a finite number of steps. In addition, we have the following:

 μ ρ L < α n ≤ σ

(30)

for all n ≥ 1 , where L = ∥ A ∥ 2 .

Next, we state our main theorem in this paper.

Theorem 1.

Assume that { θ n } and { β n } satisfy the assumptions:

	(a1)

	
 lim n → ∞ θ n = 0 ; and

	(a2)

	
 lim inf n → ∞ β n (4 − β n) > 0 .

Then, { x n } defined by Algorithm 4 converges weakly to a solution of the SFP.

Proof.

Let z ∈ S . Then, we have z = P C n (z) and A z = P Q n (A z) . It follows that ∇ f n (z) = 0 . We see that

 ∥ x n + 1 − z ∥ 2 = ∥ y n − τ n ∇ f n (y n) − z ∥ 2 = ∥ y n − z ∥ 2 + τ n 2 ∥ ∇ f n (y n) ∥ 2 − 2 τ n 〈 y n − z , ∇ f n (y n) 〉 .

(31)

Since I − P Q n is firmly nonexpansive and ∇ f n (z) = 0 , we get

 〈 y n − z , ∇ f n (y n) 〉 = 〈 y n − z , ∇ f n (y n) − ∇ f n (z) 〉 = 〈 y n − z , A * (I − P Q n) A y n − A * (I − P Q n) A z 〉 = 〈 A y n − A z , (I − P Q n) A y n − (I − P Q n) A z 〉 ≥ ∥ (I − P Q n) A y n ∥ 2 = 2 f n (y n) .

(32)

It also follows that

 〈 x n − z , ∇ f n (x n) 〉 ≥ 2 f n (x n) .

(33)

From Equation (19), we see that

 2 α n 〈 y n − x n , ∇ f n (x n) 〉 = 2 α n 〈 y n − x n , ∇ f n (x n) − ∇ f n (y n) 〉 + 2 α n 〈 y n − x n , ∇ f n (y n) 〉 ≥ − 2 α n ∥ y n − x n ∥ ∥ ∇ f n (x n) − ∇ f n (y n) ∥ + 2 α n 1 2 (∥ (I − P Q n) A y n ∥ 2 − ∥ (I − P Q n) A x n ∥ 2) ≥ − 2 α n ∥ y n − x n ∥ ∥ ∇ f n (x n) − ∇ f n (y n) ∥ − 2 α n f n (x n) .

(34)

From Equations (33) and (34), we obtain

 ∥ y n − z ∥ 2 = ∥ P C n (x n − α n ∇ f n (x n)) − z ∥ 2 ≤ ∥ x n − α n ∇ f n (x n) − z ∥ 2 − ∥ y n − x n + α n ∇ f n (x n) ∥ 2 = ∥ x n − z ∥ 2 + ∥ α n ∇ f n (x n) ∥ 2 − 2 α n 〈 x n − z , ∇ f n (x n) 〉 − ∥ y n − x n ∥ 2 − ∥ α n ∇ f n (x n) ∥ 2 − 2 α n 〈 y n − x n , ∇ f n (x n) 〉 = ∥ x n − z ∥ 2 − 2 α n 〈 x n − z , ∇ f n (x n) 〉 − ∥ y n − x n ∥ 2 − 2 α n 〈 y n − x n , ∇ f n (x n) 〉 ≤ ∥ x n − z ∥ 2 − 4 α n f n (x n) − ∥ y n − x n ∥ 2 + 2 α n ∥ y n − x n ∥ ∥ ∇ f n (x n) − ∇ f n (y n) ∥ + 2 α n f n (x n) ≤ ∥ x n − z ∥ 2 − 2 α n f n (x n) − ∥ y n − x n ∥ 2 + 2 μ ∥ y n − x n ∥ 2 = ∥ x n − z ∥ 2 − 2 α n f n (x n) − (1 − 2 μ) ∥ y n − x n ∥ 2 .

(35)

Combining Equations (31), (32) and (35), we get

 ∥ x n + 1 − z ∥ 2 ≤ ∥ x n − z ∥ 2 − 2 α n f n (x n) − (1 − 2 μ) ∥ y n − x n ∥ 2 + τ n 2 ∥ ∇ f n (y n) ∥ 2 − 4 τ n f n (y n) = ∥ x n − z ∥ 2 − 2 α n f n (x n) − (1 − 2 μ) ∥ y n − x n ∥ 2 + β n 2 f n 2 (y n) (∥ ∇ f n (y n) ∥ 2 + θ n) 2 ∥ ∇ f n (y n) ∥ 2 − 4 β n f n 2 (y n) ∥ ∇ f n (y n) ∥ 2 + θ n ≤ ∥ x n − z ∥ 2 − 2 α n f n (x n) − (1 − 2 μ) ∥ y n − x n ∥ 2 + β n 2 f n 2 (y n) ∥ ∇ f n (y n) ∥ 2 + θ n − 4 β n f n 2 (y n) ∥ ∇ f n (y n) ∥ 2 + θ n = ∥ x n − z ∥ 2 − 2 α n f n (x n) − (1 − 2 μ) ∥ y n − x n ∥ 2 − β n (4 − β n) f n 2 (y n) ∥ ∇ f n (y n) ∥ 2 + θ n ≤ ∥ x n − z ∥ 2 − 2 μ ℓ L f n (x n) − (1 − 2 μ) ∥ y n − x n ∥ 2 − β n (4 − β n) f n 2 (y n) ∥ ∇ f n (y n) ∥ 2 + θ n ,

(36)

where the last inequality follows from Lemma 2. Since 0 < β n < 4 and 0 < μ < 1 2 , it follows that

 ∥ x n + 1 − z ∥ ≤ ∥ x n − z ∥ .

(37)

Thus, lim n → ∞ ∥ x n − z ∥ exists and hence { x n } is bounded.

From Equation (36) and Assumption (A2), it also follows that

 lim n → ∞ f n 2 (y n) ∥ ∇ f n (y n) ∥ 2 + θ n = 0 .

(38)

By Assumption (A1), we have

 lim n → ∞ f n 2 (y n) ∥ ∇ f n (y n) ∥ 2 = 0 .

(39)

It follows that

 lim n → ∞ f n (y n) = lim n → ∞ ∥ (I − P Q n) A y n ∥ = 0 ,

(40)

and

 lim n → ∞ f n (x n) = lim n → ∞ ∥ (I − P Q n) A x n ∥ = 0 .

(41)

From Equation (36), we have

 lim n → ∞ ∥ y n − x n ∥ = 0 .

(42)

Using Equations (40) and (42), we have

 ∥ A x n − P Q n A y n ∥ = ∥ A x n − A y n + A y n − P Q n A y n ∥ ≤ ∥ A x n − A y n ∥ + ∥ A y n − P Q n A y n ∥ = ∥ A ∥ ∥ x n − y n ∥ + ∥ A y n − P Q n A y n ∥ → 0 as n → ∞ .

(43)

Let x * be a cluster point of { x n } with { x n k } converging to x * . From Equation (42), we see that { y n k } also converges to x * . We next show that x * is in S. Since y n k ∈ C n k , by the definition of C n k , we have

 c (x n k) + 〈 ξ n k , y n k − x n k 〉 ≤ 0

(44)

where ξ n k ∈ ∂ c (x n k) . By the assumption that { ξ n k } is bounded and Equation (42), we get

 c (x n k) ≤ 〈 ξ n k , x n k − y n k 〉 ≤ ∥ ξ n k ∥ ∥ x n k − y n k ∥ → 0 as k → ∞

(45)

which implies c (x *) ≤ 0 . Hence x * ∈ C . Since P Q n k (A y n k) ∈ Q n k , we obtain

 q (A x n k) + 〈 η n k , P Q n k A y n k − A x n k 〉 ≤ 0

(46)

where η n k ∈ ∂ q (A x n k) . By the boundedness of { η n k } and Equation (43), it follows that

 q (A x n k) ≤ 〈 η n k , A x n k − P Q n k A y n k 〉 ≤ ∥ η n k ∥ ∥ A x n k − P Q n k A y n k ∥ → 0 as k → ∞ .

(47)

We conclude that q (A x *) ≤ 0 . Thus, A x * ∈ Q . Thus, x * is a solution of the SFP.

Hence, by Lemma 1, we conclude that the sequence { x n } converges to a point in S. This completes the proof. □

4. Numerical Experiments

In this section, we provide numerical experiments in compressed sensing. We illustrate the performance of Algorithms 4 and 1 of Yang [6], Algorithm 2 of Qu and Xiu [8], and Algorithm 3 of Bnouhuchem et al. [9]. In signal processing, compressed sensing can be modeled as the following linear equation:

 y = A x + ε ,

(48)

where x ∈ R N is a recovered vector with m nonzero components, y ∈ R M is the observed data, ε is the noisy and A is an M × N matrix with M < N . The problem in Equation (48) can be seen as the LASSO problem:

 min x ∈ R N 1 2 ∥ y − A x ∥ 2 subject to ∥ x ∥ 1 ≤ t ,

(49)

where t > 0 is a given constant. In particular, if C = { x ∈ R N : ∥ x ∥ 1 ≤ t } and Q = { y } , then the LASSO problem can be considered as the SFP. From this connection, we can apply the CQ algorithm to solve Equation (49).

In this example, the sparse vector x ∈ R N is generated by the uniform distribution in [− 2 , 2] with m nonzero elements. The matrix A is generated by the normal distribution with mean zero and invariance one. The observation y is generated by the white Gaussian noise with SNR=40. The process is started with t = m and initial point x 1 = o n e s (N , 1) .

The stopping criterion is defined by the mean square error (MSE):

 E n = 1 N ∥ x n − x * ∥ 2 < κ ,

(50)

where x n is an estimated signal of x * and κ is a tolerance.

In what follows, let μ = 0.3 , σ = 0.2 , ρ = 0.4 , β n = 1.9 and θ n = 1 200 n + 1 . The numerical results are reported as follows.

In Table 1, we observe that the performance of Algorithm 4 is better than other algorithms in terms of CPU time and number of iterations as the spikes of sparse vector is varied from 10 to 30. In this example, it is shown that Algorithm 4 of Yang [6], for which the step size depends on the norm of A, converges more slowly than other algorithms in terms of CPU time.

Next, we provide Figure 1, Figure 2 and Figure 3 to illustrate the convergence behavior, MSE, number of iterations and objective function values when N = 1024 , M = 512 , m = 20 and κ = 10 − 5 .

In Figure 1, Figure 2 and Figure 3, we can summarize that our proposed algorithm is really more efficient and faster than algorithms of Yang [6], Qu and Xiu [8] and Bnouhachem et al. [9].

In Table 2, we observe that Algorithm 4 is effective and also converges more quickly than Algorithm 1 of Yang [6], Algorithm 2 of Qu and Xiu [8] and Algorithm 3 of Bnouhuchem et al. [9]. Moreover, it is seen that Algorithm 1 of Yang [6] has the highest CPU time in computation. In this case, Algorithm 1 takes more CPU time than it does in the first case (see Table 1). Therefore, we can conclude that our proposed method has the advantage in comparison to other methods, especially Algorithm 1, which requires the spectral computation.

We next provide Figure 4, Figure 5 and Figure 6 to illustrate the convergence behavior, MSE, number of iterations and objective function values when N = 4096 , M = 2048 , m = 60 and κ = 10 − 5 .

In Figure 4, Figure 5 and Figure 6, we observe that MSE and objective function values of Algorithm 4 decreases faster than Algorithms 1–3 do in each cases.

5. Comparative Analysis

In this section, we discuss the comparative analysis to show the effects of the step sizes α n and β n in Algorithm 4.

We begin this section by studying the effect of the step size β n in Algorithm 4 in terms of the number of iterations and the CPU time with the varied cases.

Choose μ = 0.3 , σ = 0.2 , ρ = 0.4 and θ n = 1 200 n + 1 . Let x 1 and A be as in the previous example. The stopping criterion is defined by Equation (50) with κ = 10 − 5 .

In Table 3, it is observed that the number of iterations and the CPU time have small reduction when the step size β n tends to 4. The numerical experiments for each cases of β n are shown in Figure 7 and Figure 8, respectively.

Next, we discuss the effect of the step size α n in Algorithm 4. We note that the step size α n depends on the parameters ρ and σ . Thus, we aim to vary these parameters and study its convergence behavior.

Choose μ = 0.3 , σ = 0.2 , β n = 3.9 and θ n = 1 200 n + 1 . Let x 1 and A be as in the previous example. The stopping criterion is defined by Equation (50) with κ = 10 − 5 . The numerical results are reported in Table 4.

In Table 4, we see that the CPU time decreases significantly when the parameter ρ is also decreased. However, the choice of ρ has no effect in terms of number of iterations.

Next, we discuss the effect of σ in Algorithm 4. In this experiment, choose μ = 0.3 , β n = 3.9 , ρ = 0.5 and θ n = 1 200 n + 1 . The error E n is defined by Equation (50) with κ = 10 − 5 . The numerical results are reported in Table 5.

In Table 5, we observe that the choices of σ have a small effect in both terms of the CPU time and the number of iterations.

Finally, we discuss the convergence of Algorithm 4 with different cases of M and N. In this case, we set σ = 1 , ρ = 0.5 , μ = 0.3 , β n = 3.9 and θ n = 1 200 n + 1 . The stopping criterion is defined by Equation (50).

In Table 6, it is shown that, if M and N have a high value, then the number of iteration decreases. However, in this case, the CPU time increases.

6. Conclusions

In this work, we introduce a new hybrid CQ algorithm by using the self adaptive and the line-search techniques for the split feasibility problem in Hilbert spaces. This method can be viewed as a refinement and improvement of other CQ algorithms. Convergence analysis of the proposed method is proved under some suitable conditions. The numerical results show that our algorithm has a better convergence behavior than the algorithms of Yang [6], Qu and Xiu [8] and Bnouhachem et al. [9]. A comparative analysis was also performed to show the effects of the step sizes in our algorithm.

Author Contributions

S.S.; supervision and investigation, S.K.; writing original draft and P.C.; formal analysis and methodology.

Funding

This research was funded by Chiang Mai University.

Conflicts of Interest

The authors declare no conflict of interest.

References

	

Censor, Y.; Elfving, T. A multiprojection algorithms using Bregman projection in a product space. Numer. Algor. 1994, 8, 221–239. [Google Scholar] [CrossRef]

	

Bauschke, H.H.; Borwein, J.M. On projection algorithms for solving convex feasibility problems. SIAM Rev. 1996, 38, 367–426. [Google Scholar] [CrossRef]

	

Stark, H. Image Recovery: Theory and Application; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]

	

Byrne, C. Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 2002, 18, 441–453. [Google Scholar] [CrossRef]

	

Byrne, C. A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 2004, 20, 103–120. [Google Scholar] [CrossRef]

	

Yang, Q. The relaxed CQ algorithm for solving the split feasibility problem. Inverse Prob. 2004, 20, 1261–1266. [Google Scholar] [CrossRef]

	

López, G.; Martín-Márquez, V.; Wang, F.; Xu, H.K. Solving the split feasibility problem without prior knowledge of matrix norms. Inverse Probl. 2012, 28, 085004. [Google Scholar] [CrossRef]

	

Qu, B.; Xiu, N. A note on the CQ algorithm for the split feasibility problem. Inverse Prob. 2005, 21, 1655–1665. [Google Scholar] [CrossRef]

	

Bnouhachem, A.; Noor, M.A.; Khalfaoui, M.; Zhaohan, S. On descent-projection method for solving the split feasibility problems. J. Glob. Optim. 2012, 54, 627–639. [Google Scholar] [CrossRef]

	

Dong, Q.L.; Tang, Y.C.; Cho, Y.J.; Rassias, T.M. “Optimal” choice of the step length of the projection and contraction methods for solving the split feasibility problem. J. Glob. Optim. 2018, 71, 341–360. [Google Scholar] [CrossRef]

	

Gibali, A.; Liu, L.W.; Tang, Y.C. Note on the modified relaxation CQ algorithm for the split feasibility problem. Optim. Lett. 2017, 12, 1–14. [Google Scholar] [CrossRef]

	

Bauschke, H.H.; Combettes, P.L. Convex Analysis and Monotone Operator Theory in Hilbert Spaces; Springer: London, UK, 2011. [Google Scholar]

[image: Mathematics 07 00789 g001 550]

Figure 1. From top to bottom: original signal, observation data and recovered signal by Algorithms 1–4, respectively.

Figure 1. From top to bottom: original signal, observation data and recovered signal by Algorithms 1–4, respectively.

[image: Mathematics 07 00789 g001]

[image: Mathematics 07 00789 g002 550]

Figure 2. MSE versus number of iterations when N = 1024 , M = 512 and κ = 10 − 5 .

Figure 2. MSE versus number of iterations when N = 1024 , M = 512 and κ = 10 − 5 .

[image: Mathematics 07 00789 g002]

[image: Mathematics 07 00789 g003 550]

Figure 3. The objective function value versus number of iterations when N = 1024 , M = 512 and κ = 10 − 5 .

Figure 3. The objective function value versus number of iterations when N = 1024 , M = 512 and κ = 10 − 5 .

[image: Mathematics 07 00789 g003]

[image: Mathematics 07 00789 g004 550]

Figure 4. From top to bottom: original signal, observation data and recovered signal by Algorithms 1–4, respectively.

Figure 4. From top to bottom: original signal, observation data and recovered signal by Algorithms 1–4, respectively.

[image: Mathematics 07 00789 g004]

[image: Mathematics 07 00789 g005 550]

Figure 5. MSE versus number of iterations when N = 4096 , M = 2048 and κ = 10 − 5 .

Figure 5. MSE versus number of iterations when N = 4096 , M = 2048 and κ = 10 − 5 .

[image: Mathematics 07 00789 g005]

[image: Mathematics 07 00789 g006 550]

Figure 6. The objective function value versus number of iterations when N = 4096 , M = 2048 and κ = 10 − 5 .

Figure 6. The objective function value versus number of iterations when N = 4096 , M = 2048 and κ = 10 − 5 .

[image: Mathematics 07 00789 g006]

[image: Mathematics 07 00789 g007 550]

Figure 7. Graph of number of iterations versus E n in case N = 1024 and M = 512 .

Figure 7. Graph of number of iterations versus E n in case N = 1024 and M = 512 .

[image: Mathematics 07 00789 g007]

[image: Mathematics 07 00789 g008 550]

Figure 8. Graph of number of iterations versus E n in case N = 4096 and M = 2048 .

Figure 8. Graph of number of iterations versus E n in case N = 4096 and M = 2048 .

[image: Mathematics 07 00789 g008]

[image: Table]

Table 1. Numerical results (M = 512 and N = 1024).

Table 1. Numerical results (M = 512 and N = 1024).

	
m-Sparse

	
Method

	
 κ = 10 − 4

	
 κ = 10 − 5

	

	

	
CPU

	
Iter

	
CPU

	
Iter

	
 m = 10

	
Algorithm 1

	
0.7801

	
93

	
0.5931

	
83

	

	
Algorithm 2

	
0.0962

	
187

	
0.1000

	
158

	

	
Algorithm 3

	
0.1416

	
257

	
0.0605

	
74

	

	
Algorithm 4

	
0.0271

	
33

	
0.0592

	
39

	
 m = 15

	
Algorithm 1

	
0.6345

	
93

	
0.6778

	
101

	

	
Algorithm 2

	
0.1020

	
196

	
0.1001

	
195

	

	
Algorithm 3

	
0.1087

	
170

	
0.0823

	
97

	

	
Algorithm 4

	
0.0251

	
35

	
0.0430

	
51

	
 m = 20

	
Algorithm 1

	
1.1535

	
161

	
1.1177

	
156

	

	
Algorithm 2

	
0.1661

	
308

	
0.1573

	
296

	

	
Algorithm 3

	
0.3557

	
500

	
0.1139

	
134

	

	
Algorithm 4

	
0.0516

	
55

	
0.0695

	
78

	
 m = 25

	
Algorithm 1

	
0.7380

	
103

	
2.9774

	
443

	

	
Algorithm 2

	
0.0990

	
196

	
0.4746

	
940

	

	
Algorithm 3

	
0.0623

	
115

	
0.7258

	
1308

	

	
Algorithm 4

	
0.0354

	
42

	
0.0922

	
165

	
 m = 30

	
Algorithm 1

	
1.1423

	
168

	
3.7280

	
92

	

	
Algorithm 2

	
0.1568

	
321

	
1.7980

	
666

	

	
Algorithm 3

	
0.1219

	
164

	
0.4119

	
111

	

	
Algorithm 4

	
0.0704

	
70

	
0.1335

	
38

[image: Table]

Table 2. Numerical results (M = 2048 and N = 4096).

Table 2. Numerical results (M = 2048 and N = 4096).

	
m-sparse

	
Method

	
 κ = 10 − 4

	
 κ = 10 − 5

	

	

	
CPU

	
Iter

	
CPU

	
Iter

	
 m = 20

	
Algorithm 1

	
53.4863

	
28

	
77.8192

	
40

	

	
Algorithm 2

	
3.1953

	
43

	
4.7627

	
62

	

	
Algorithm 3

	
1.5285

	
19

	
2.3102

	
28

	

	
Algorithm 4

	
1.0771

	
13

	
1.6199

	
20

	
 m = 40

	
Algorithm 1

	
74.6456

	
38

	
106.3420

	
54

	

	
Algorithm 2

	
4.5607

	
60

	
6.1862

	
83

	

	
Algorithm 3

	
2.0701

	
26

	
2.9406

	
37

	

	
Algorithm 4

	
1.4418

	
18

	
2.1713

	
27

	
 m = 60

	
Algorithm 1

	
86.1752

	
45

	
137.6885

	
70

	

	
Algorithm 2

	
5.2204

	
70

	
8.1821

	
110

	

	
Algorithm 3

	
2.3965

	
30

	
3.6434

	
46

	

	
Algorithm 4

	
1.7580

	
22

	
2.6908

	
34

	
 m = 80

	
Algorithm 1

	
133.5504

	
67

	
219.4587

	
112

	

	
Algorithm 2

	
7.8185

	
104

	
13.3599

	
178

	

	
Algorithm 3

	
3.4220

	
43

	
5.9392

	
75

	

	
Algorithm 4

	
2.4207

	
30

	
3.7902

	
47

	
 m = 100

	
Algorithm 1

	
148.3098

	
75

	
327.4775

	
163

	

	
Algorithm 2

	
8.7840

	
118

	
19.7221

	
258

	

	
Algorithm 3

	
3.8024

	
48

	
16.0518

	
202

	

	
Algorithm 4

	
2.6962

	
34

	
5.3538

	
66

[image: Table]

Table 3. The convergence behavior of Algorithm 4 with different cases of β n .

Table 3. The convergence behavior of Algorithm 4 with different cases of β n .

	
	 β n
	CPU
	Iter

	N = 1024
	0.1
	0.4585
	139

	M = 512
	0.5
	0.1976
	73

	m = 20
	1.0
	0.1632
	55

	
	1.5
	0.1272
	44

	
	2.0
	0.1187
	38

	
	2.5
	0.1048
	35

	
	3.0
	0.1065
	32

	
	3.5
	0.1298
	29

	
	3.9
	0.0954
	28

	N = 4096
	0.1
	4.4547
	58

	M = 2048
	0.5
	3.6075
	39

	m = 20
	1.0
	2.2021
	29

	
	1.5
	1.8119
	24

	
	2.0
	1.6024
	21

	
	2.5
	1.5748
	29

	
	3.0
	1.4055
	17

	
	3.5
	1.3297
	16

	
	3.9
	1.3172
	15

[image: Table]

Table 4. The convergence behavior of Algorithm 4 with different cases of ρ .

Table 4. The convergence behavior of Algorithm 4 with different cases of ρ .

	
	 ρ
	CPU
	Iter

	N = 1024
	0.1
	0.0634
	27

	M = 512
	0.3
	0.0981
	26

	m = 20
	0.5
	0.1065
	26

	
	0.7
	0.1773
	27

	
	0.9
	0.5421
	27

	N = 4096
	0.1
	0.7554
	17

	M = 2048
	0.3
	1.2094
	17

	m = 20
	0.5
	1.7697
	17

	
	0.7
	3.1876
	17

	
	0.9
	10.1536
	18

[image: Table]

Table 5. The convergence behavior Algorithm 4 with different cases of σ .

Table 5. The convergence behavior Algorithm 4 with different cases of σ .

	
	 σ
	CPU
	Iter

	N = 1024
	1
	0.2985
	53

	M = 512
	2
	0.2974
	53

	m = 20
	3
	0.2636
	56

	
	4
	0.2478
	53

	
	5
	0.2584
	52

	
	6
	0.2816
	56

	N = 4096
	1
	1.9105
	16

	M = 2048
	2
	1.9990
	16

	m = 20
	3
	2.0937
	16

	
	4
	2.1371
	16

	
	5
	2.2449
	17

	
	6
	2.3816
	16

[image: Table]

Table 6. The convergence behavior Algorithm 4 with different cases of M and N.

Table 6. The convergence behavior Algorithm 4 with different cases of M and N.

	

	
 κ = 10 − 4

	
 κ = 10 − 5

	

	
CPU

	
Iter

	
CPU

	
Iter

	
 M = 1024

	
0.9967

	
13

	
1.4998

	
21

	
 N = 2048

	

	

	

	

	
 M = 2048

	
3.8625

	
11

	
5.6119

	
16

	
 N = 4096

	

	

	

	

	
 M = 3072

	
5.0449

	
6

	
6.5788

	
8

	
 N = 6144

	

	

	

	

	
 M = 4096

	
7.3689

	
5

	
10.1838

	
7

	
 N = 8192

	

	

	

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

nav.xhtml

 mathematics-07-00789

 		
 mathematics-07-00789

media/file8.jpg
10!

02

uF 107

] 2 W [) 0 20
Number of terations.

media/file11.png
—
~n

—_
N

Objective function value
o
@ —_

<o
>

©
~n

0.2

Algorithm 4
—=&— Algorithm 3
= = = Algorithm 1
—*—— Algorithm 2

ol

0 10 20 30 40 50 60 70

Number of iterations

80 90

100

media/file6.jpg

media/file1.png
10

-10

Original signal (N=1024, M=512, m=20)
| |

50 100 150 200 250 300 350 400 450 500
Observation values with SNR=40
| | | | |
| | | | |
50 100 150 200 250
Recovered signal by Algorithm 1 (156 iterations, CPU = 1.1177)
| | | | | | | | |
| I
| | | | | | | | | | | | | | | | |
50 100 150 200 250 300 350 400 450 500
Recovered signal by Algorithm 2 (296 iterations, CPU = 0.1573)
| | | | | | | | |
| l
| | | | | | | | | | | | | | | | |
50 100 150 200 250 300 350 400 450 500
Recovered signal by Algorithm 3 (134 iterations, CPU = 0.1139)
| | | | | | | | |
| l
| | | | | | | | | | | | | | | | |
50 100 150 200 250 300 350 400 450 500
Recovered signal by Algorithm 4 (78 iterations, CPU = 0.0695)
| | | | | | | | | |
l
| | | | | | | | | | | | | | | | |
50 100 150 200 250 300 350 400 450 500

media/file13.png
107"

102

~ 103

10

— B =01
——— =05
—B=10
——— B =15

B =2.0

B =25
—— B =30
—— B =35
— B =39

20

40

60

80
Number of iterations

100

120

140

—h
[op}
[l

media/file10.jpg
Objective function value

18 o d]

|—e—Agorthma|
16 |- = =gortm 1
| Agorthm

0 2 w40 s s 7 s % w0
‘Number of iterations

media/file7.png
Original signal (N=4096, M=2048, m=60)
| | |

| | | | | |
-1
500 1000 1500 2000 2500 3000 3500 4000

Observation values with SNR=40
| | | | | | | | |

200 400 600 800 1000 1200 1400 1600 1800 2000

1 Recovered signal by Algorithm 1 (70 iterations, CPU = 137.6885)
| | | | | | |

0|‘ "ll |H|‘] |||| | | |
| | | | | | |
500 1000 1500 2000 2500 3000 3500 4000
Recovered signal by Algorithm 2 (110 iterations, CPU = 8.1821)
1 | |‘ ‘ ‘ | | | | |
0 | ‘ | | |I | | | | | || | |
1 | | | | | |
500 1000 1500 2000 2500 3000 3500 4000
1 Recovered signal by Algorithm 3 (46 iterations, CPU = 3.6434)
|‘ ‘ ‘ | | | ‘
0 | ‘ | | |I | | | | | || | “ | |
| | | | | | |
500 1000 1500 2000 2500 3000 3500 4000
Recovered signal by Algorithm 4 (34 iterations, CPU = 2.6908)
‘ | |‘ ‘ | | | | ‘ |
0 | ‘ | | | |

500 1000 1500 2000 2500 3000 3500 4000

media/file12.jpg
o £l W B 0 10) 0
Number of terations.

150

media/file9.png
102

=103

10

10°°

Algorithm 4
—=&— Algorithm 3
= = = Algorithm 1
—*— Algorithm 2

20

40

60
Number of iterations

80

100

—h
N
[}

media/file14.jpg
10?

109

—ry}
a0

15
20
.
8,30

-

E))
Number of iterations

E)

E)

media/file5.png
w
o
o

Objective function value
)] N
o [6)]
o o

-
)]
o

—
o
o

50

Algorithm 4
—=&— Algorithm 3
= == = Algorithm 1
—*—— Algorithm 2

80 100 120
Number of iterations

140

160 180

200

media/file15.png
1072

1073

—— B =10
B =15
B =2.0
B =25

10 20 30 40 50
Number of iterations

60

70

media/file3.png
~
’;

Algorithm 4
—=— Algorithm 3
= == = Algorithm 1
—*—— Algorithm 2

50

100

150
Number of iterations

w
o
o

media/file4.jpg
) 2w @ 8 w0 @ w0 0 i@ 20
Nosibes g8 Rurotons

media/file0.jpg
Orighna signl (41024, Mt 12, med0)

Pucoted st by Nt 1 o, 20117,

media/file2.jpg
E) 0 150 20 =0
Number of ferations.

