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Abstract: Brazil is an important player when it comes to biofuel and agricultural production.
The knowledge of the price relationship between these markets has increasing importance. This paper
adopts several tools, namely the Bai–Perron test of breakpoints, the Johansen cointegration test and
the vector error correction model exploited by the orthogonal impulse response and the forecast error
variance decomposition, for investigating the price transmission among the ethanol and the main
Brazil’s agricultural commodities (sugar, cotton, arabica coffee, robusta coffee, live cattle, corn and
soybean). The data series cover the period from January 2011 up to December 2018. The results
suggest a stronger price transmission from the ethanol commodity to the agricultural commodities,
rather than the opposite situation.

Keywords: ethanol; time series; multivariate analysis; cointegration; VECM

1. Introduction

Since the beginning of the 21st century Brazil is a reference in the biofuel production, with particular
emphasises in the ethanol commodity. The Brazilian ethanol production began growing in the 1970’s,
and continued increasing while the oil prices were significantly rising in the London and New York
stock exchanges in the mid of 2000’s. Following this trend, the USA advanced in the ethanol production
from corn that was subsequently approved by the Energy Policy of Act, or simply, the Energy Bill, in
mid 2005 [1].

Those efforts boosted the USA ethanol production to overcome that of Brazilian in 2006. However,
that same year was marked by an important discovery in the history of the Brazilian fuel market.
Indeed, the pre-salt layer located in the Santos basin, on the southeastern coast of Brazil, was detected
and became one of the most prolific petroleum systems in the world. In a short time after the findings,
considerable investments in the oil sector start occurred and, the gasoline production gained the
attention of government, companies and investors, resulting in a cutting off on the ethanol investment.
As a consequence, after an initial surge of 76 ethanol plants constructed in the period 2007–2010,
at least 26 ethanol plants were shut down during 2011–2014, on the state of Sao Paulo [2].

One of the strategies of Brazil’s sugarcane crop season for 2011–2012 was the commercial
compromise with the USA. The deal included the exportation of Brazil’s ethanol from sugarcane
to the USA since that guaranteed a premium for this biofuel [3]. On the other hand, Brazil imported
corn-based ethanol from the USA, due to a sugarcane crop shortfall that resulted in an increase of the
biofuel prices for consumers.

A strategy for recovering the ethanol production in 2011–2012 included the reduction of taxes for
the ethanol sector and the increased amount of ethanol in the blend with gasoline, going from 20%
to 25%. [4]. Simultaneously, the government offered to sugarcane producers interest-free subsidized
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loans in order to recover the earlier production state. This strategy brought results to the sector, since in
the crop season of 2014 the ethanol production reached a record of 28.6 billion liters [5]. However,
this also reflected by lowering the prices of sugar in the international market, which is usually the
alternative option when producing ethanol from plants. A third strategy was to control the fuel prices
in the internal market, which was later proved to be the reason for inadequate conditions in the
market competition [6]. Indeed, by avoiding (artificially) the gasoline prices to fluctuate relative to the
international market prices, lower costs for ethanol in the domestic market were forced, guaranteeing
competitivity vis a vis the values spent with gasoline [7].

The following years (2015–2017) brought instability to the sector, since Brazil faced an economic
recession and, besides, a presidential impeachment process took place leading not only to a lower
consumption of ethanol in the internal market, but also to a decrease of light vehicles sales and
unemployment [8,9].

In recent years, the Brazilian energy sector is recovering, and an optimistic scenario emerged,
where the internal prices are again linked to those of the international market. Furthermore, a new
investment cycle was recently announced for the sector until 2030, in the scope of the Renovabio
program [10]. Also, the current mandatory blending of ethanol in gasoline reached 27%, but with
a perspective of increasing to 30% by 2022 and 40% by 2030 [11].

Brazil is also an important player when it comes to agricultural commodities [12,13]. The country
is recognized as one of the major exporters of agricultural products, primarily as a result of its
strong performance in the sector. According to the Food and Agriculture Organization of the United
Nations (FAO), Brazilian agriculture products contributed to about 4% of the country’s gross domestic
product (GDP) [FAO Statistical Yearbook 2016, http://www.fao.org/faostat/en/, acessed June 17,
2019]. In fact, one can see exported products influencing this margin, such as the sugarcane and its
derivatives (ethanol and sugar), soybean, coffee, beef, orange juice, and corn. Most of these products
are negotiated in the Brazilian Stock Exchange, B3 S.A. It is important to highlight that the country’s
agricultural area is increasing each year, requiring, therefore, agricultural machinery and equipment
that lead to a significant impact on the energy expenditure.

The price volatility of the Brazilian ethanol is primarily influenced by the following market
factors [14]: (i) the amount of sugarcane production; (ii) the percentage of sugarcane available for the
production of ethanol; (iii) the consumer income; (iv) the number of the light commercial fleet vehicles;
and (v) the price of the gasoline, directly influencing the ethanol prices in result to the blend of the
two fuels.

Janda and Kristoufek [11] reviewed the literature in the scope of time series analysis of price
transmission from food to energy commodities and vice versa. They concluded that, due to
policy-induced trade barriers, there is not sufficient evidence of an integrated international biofuel
market, including major producers, such as the US, European and Brazilian markets. Fowowe [15],
Reboredo [16], Nazlioglu and Soytas [17] found some weak and almost neutral price transmission
between the agricultural commodities and the energy prices. On the other hand, for different
agricultural commodities, time periods and regions, several researchers [18–34] found significant
evidences that the crude oil prices influence those commodities, such as for the cases of the soybean,
corn, wheat, rice and sugar. Similarly, several of other studies [35–44] explored the ethanol relationship
with agricultural commodities. It was found that, in general, ethanol prices dynamics are affected
by sugar prices in Brazil. Besides, Capitani et al. [37] verified that there is weak linkage between the
ethanol and the international prices.

The standard approach in most of these studies requires analyzing a plethora of variables.
The need to understand the relationships between a large number of variables makes multivariate
analysis a laborious task due to the sheer bulk of data. Indeed, all variables are considered
simultaneously and their effects are not interpreted separately. In turn, bivariate analysis allows
the association, correlation and analysis of two variables and, if properly applied, provides solid and
useful information. One should note that is not sufficient to observe a set of variables and to apply
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multivariate techniques, because, if they are not linked together, one has to the bivariate analysis to
obtain more significative information.

Several researchers applied different tools and concepts such as, error correction models (ECM),
vector error correction models (VECM) and cointegration for studying the agricultural and energy
commodities [8,9,15,24,33,34,36,43–68]. Mattos et al. [9] discussed the price transmission for the future
markets of agricultural commodities using VECM. They evaluated the impact on the price transmission
in the futures prices of the Chicago Mercantile Exchange and the Brazilian Stock Exchange in the spot
prices of the corn in the Brazilian internal market. Mallory et al. [62] explored the topic and analyzed
long-term relations between the ethanol, corn and natural gas in the USA.

The main goal of this work is to investigate the bilateral price relationship between the Brazilian
ethanol (ETH) and each one of the major Brazilian agricultural commodities. For this purpose,
we adopt several mathematical tools, namely the Bai-Perron test of structural changes, the Johansen
cointegration test and the bivariate VECM exploited by the orthogonal impulse response (OIR) and
the forecast error variance decomposition (FEVD).

This paper is organized as follows. In Section 2, the time series (TS) are presented and the
adopted methods are introduced. In Section 3, the results are discussed. Finally, in Section 4, the main
conclusions are outlined.

2. Data and Methodology

We consider the spot prices of the ETH and seven important commodities in the Brazilian
agricultural GDP, such as the sugar (SUG), cotton (COT), live cattle (LCA), Arabica coffee (ARA),
Robusta coffee (ROB), corn (COR) and soybean (SOY). The work aims to measure the impact of ethanol
prices against agricultural commodities and vice versa. Such evaluation is possible using multivariate
models that are described in the follow-up of this paper.

The data were obtained from the Center for Advanced Studies on Applied Economics/University
of Sao Paulo (CEPEA/USP) and the CEPEA methodology for the daily pricing of these products can
be found in its website www.cepea.esalq.usp.br. We adopt daily spot prices TS for the ethanol and the
seven agricultural commodities for a time interval between January 2011 and December 2018.

Bearing in mind that during this period many changes occurred in the Brazilian energy sector,
we evaluate the presence of breakpoints in the prices of the ethanol TS by means of the Bai–Perron
algorithm [69]. The main idea consists in obtaining the optimal number b of breakpoints in the TS
using an information criterion, namely the Bayesian information criterion (BIC).

The Bai–Perron algorithm is a dynamic method that estimates multiple structural changes
(i.e., breakpoints) as global minimizers of the residual sum of squares in a given TS [69]. This technique
tests the deviations from stability in the linear regression model by assuming the existence of b
breakpoints, and that the coefficients vary from one regression to the other. Therefore, we have b + 1
time sub-intervals and each i-th regression model can be described as [69–71]

yi = x>i φj + ui (i = ij−1 + 1, ..., ij), (1)

where the index i represents the time interval index for j = 1, ..., b + 1 intervals, yi is the observed
independent variable, φj is the vector of coefficients, and ui stands for the disturbance. Therefore,
the algorithm estimates the breakpoints by minimizing the residual sum of squares of the equation.
The estimated breakpoint values yi of the ethanol TS are listed in Table 1 for five tested options (denoted
A to E).

As stated in [69], the Schwarz criterion, or simply the BIC, was applied for structural break
inference by Yao [72]. The BIC value is defined as BIC = −2LL + k log(m), where LL is the
log-likelihood of the model, k is the number of independent parameters and m is the number of
the TS values (e.g., the number of samples). Thus, the criterion represents the statistics that maximizes
the chance of identifying the best fitting model to the TS. Then, the model with the lowest BIC
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value is chosen as the best model [73]. This is commonly applied for selecting the model dimension
by estimating the number of breaks. Therefore, for the ethanol TS breakpoints, we obtained from
the algorithm five possible options A-E, where A and E are the minimum and maximum values
corresponding to one BP and five BP, respectively. The BIC values and the estimated b values yi are
listed in Table 1.

Table 1. The Bayesian information criterion (BIC) criterion, Bai–Perron test and the corresponding
breakpoints options (A–E) in the daily ethanol time series (TS) based on the Center for Advanced
Studies on Applied Economics/University of Sao Paulo (CEPEA) methodology.

Option BIC (CI = 97.5%) Estimated Breakpoint Value yi

A −2145.91 1177
B −2316.48 1176 1675
C −2396.85 322 1176 1675
D −2423.16 342 719 1177 1675
E −2349.23 295 590 885 1180 1675

From Table 1 we verify that b = 4 is the optimal number of breakpoints in the TS since the
BIC shows a slightly lower value. By other words, b = 4 leads to the best fitting and involves five
sub-periods denoted as P1 to P5 in the follow-up. Therefore, we have: (i) P1 from January/2011 to
May/2012, (ii) P2 from May/2012 to November/2013, (iii) P3 from November/2013 to September/2015,
(iv) P4 from September/2015 to October/2017, and (v) P5 from October/2017 to December/2018. The TS
of the eight commodities and the corresponding sub-periods are illustrated in Figure 1.

Costa and Burnquist [74] listed different factors that help to understand the four breakpoints
in option D. Concerning P1, we observe a peak price for the ethanol at the beginning of this period.
After, the price tends to reduce pointing the first breakpoint found. During P2 the price is maintaining
lower than at the beginning of P1 achieving the lowest price at the end of the P2. This was due to the
price control politics in the energy sector of Brazil influencing directly the ethanol prices. Besides,
the gradual decreasing of the so-called “Contribution of Intervention in the Economic Domain tax”
for gasoline, completely removed at the end of 2012, also affected the ethanol price that became less
competitive in the domestic market. Nonetheless, in the final of P2 the price increased again leading
to another breakpoint. The sub-period P3 ended in September of 2015 when the ethanol prices were
skyrocketing due to the corruption scandals in Brazil’s energy state firm Petrobras that affected the
whole sector and produced another breakpoint. The last breakpoint is due to the new pricing policy
adopted by Petrobras in the sector. For this reason, ethanol prices may again fluctuate more freely in
the internal market.

2.1. Cointegration of Time Series

The cointegration relation between two TS was firstly introduced by Granger [75]. Later,
Engle and Granger [76] explored an error correction model. A simple way for explaining a cointegration
relation was proposed by Murray [77] under the title “the metaphor of the drunk and her dog”. In order
to investigate the price transmission process among the ethanol and other agricultural commodities,
the cointegration hypothesis is considered. The process of adjustment was pointed by Murray [77] as
the error correction model.
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Figure 1. Spot prices time series (TS) of the eight commodities and the corresponding sub-periods P1

to P5.
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For non-stationary TS, the distance between two series can be stationary, since the adjustment
occurs for each step. In this case, the TS are said to be cointegrated of order zero. For a cointegration
process to be presented in two TS, both must have the same integration order n, where n is the number
of times that a non-stationary TS needs to be differentiate in order to become stationary [77]. Therefore,
considering the error correction terms c and d one can write

xt − xt−1 = ut + c(yt−1 − xt−1), (2)

yt − yt−1 = wt + d(xt−1 − yt−1), (3)

where t stands for the discrete-time sampling instants, xt and yt are the cointegrated variables, ut and
wt are the white noise stationary steps and xt−1 − yt−1 is the cointegration relation between the
variables x and y.

Aaron Smith and Robin Harrison [78] formulated an extension of the original metaphor by
exploring the multiple cointegration with 3 or more cointegrated variables, with the work entitled
“A drunk, her dog and a boyfriend: an illustration of multiple cointegration and error correction”.

Often, we observe some confusion between the terms “cointegration” and “correlation”.
Alexander [79] points that a cointegration process takes into account both the concepts of integration
and stationarity, while that is not considered in a correlation measure. Additionally, the correlation
calculates a linear association between two TS. The cointegration of two or more TS can be studied,
while a correlation is simply a coefficient in the range [−1, 1]. However, a cointegration process cannot
be quantified, since, instead, it is identified.

In this work, we evaluate the cointegration process among the 7 agricultural commodities prices,
namely the sugar, cotton, live cattle, corn, soybean, Arabica coffee and Robusta coffee, with respect
to the ethanol prices. The cointegration is calculated using the Johansen test, and the VECM model
is estimated when the cointegration between a particular commodity with respect to the ethanol
is verified.

The Johansen Test for Cointegration

Johansen [80] proposed a statistical test to determine the cointegration relation between two TS.
It is known that the cointegration process is directly linked to the VECM since the test is based on
the matrix coefficients β and α that compose the model. The β parameters are related to the long-run
equilibrium. The α parameters (so-called “speed adjustment parameters”) are related to how fast the
series tends to return the equilibrium after some perturbation. We can determine how many steps are
required for the series to come back to the equilibrium by using the relation steps = 1/α.

The Johansen test [81,82] is applied to verify if the rank (r) of the matrix αβ is equal to zero
(null hypothesis). If r = 0 this implicates a the non-existence of the error correction term (ECT).
Otherwise, if r 6= 0, then the null hypothesis is rejected and there is a cointegration relation between
the analyzed TS. Johansen proposed two possibles tests, namely, the Max-Eigen and the Trace tests,
that are based on the assumption of a pure unit root. In contrast to the method for cointegration
validation of Engle-Granger [76], the test purposed by Johansen allows the study of more than one
cointegration relation among the variables. For this reason, the Johansen test was applied in this work
in view of analyzing possible cointegration processes involving the prices of agricultural commodities
versus the ethanol.

2.2. The Vector Error Correction Model

The ECM was introduced by Sargan [83]. Later the idea was employed by Davidson [84], evolving
toward the VECM methodology. The VECM is based on the generalized vector autoregression (VAR),
that allows an adjustment of a regression model between multiple variables to evaluate its relationship.
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Let us consider p1 and p2 as two non-cointegrated and stationary TS. Then, the approach from
the VAR(j) model is possible as [85,86]

p1t = γ0 +
j

∑
i=1

[γ1(i)p1t−i] +
j

∑
i=1

[γ2(i)p2t−i] + ε1t, (4)

p2t = θ0 +
j

∑
i=1

[θ1(i)p1t−i] +
j

∑
i=1

[θ2(i)p2t−i] + ε2t, (5)

where γ and θ are the equation autoregressive terms of p1 and p2, respectively, and ε1t and ε2t denote
white-noise disturbances. On the other hand, if the TS were not initialy stationary, then we had the
VAR(j) in the differences ∆ given by [85,86]:

∆pt = log(p1t)− log(p1t−1) (6)

∆p1t = γ0 +
j

∑
i=1

[γ1(i)∆p1t−i] +
j

∑
i=1

[γ2(i)∆p2t−i] + ε1t, (7)

∆p2t = θ0 +
j

∑
i=1

[θ1(i)∆p1t−i] +
j

∑
i=1

[θ2(i)∆p2t−i] + ε2t. (8)

If a cointegration process was found among two or more TS, then the ECT can be implemented and
the VAR model becomes a VECM. Note that for implementing the VECM it was not needed that both TS
are stationary. Indeed, once the β values are calculated from the ECT modeling they are adjusted, so that
a stationary ECT is returned, and then applied in the regression equation. Thus, the ECT is expressed
in the VECM as αi(β0 + β1 p1t−1 + β2 p2t−1), for each price equation, where β0 + β1 p1t−1 + β2 p2t−1 = 0
represents the equilibrium equation between the prices. A VECM is expressed as [9,46,87,88]

∆p1t = γ0 + α1(β0 + β1 p1t−1 + β2 p2t−1) +
j

∑
i=1

[γ1(i)∆p1t−i] +
j

∑
i=1

[γ2(i)∆p2t−i] + ε1t, (9)

∆p2t = θ0 + α2(β0 + β1 p1t−1 + β2 p2t−1) +
j

∑
i=1

[θ1(i)∆p1t−i] +
j

∑
i=1

[θ2(i)∆p2t−i] + ε2t. (10)

3. Results and Discussion

In this section, the results for the cointegration test are presented and discussed. Moreover,
the VECM model is estimated for the cointegrated pairs by means of the VECM equation, OIR and
FEVD. Section 3.1 analyses the results of the Johansen test in the different sub-periods. Section 3.2
discusses the VECM results adjusted for the sub-periods where the cointegration process occurs, that is,
where a price transmission between the ethanol and the agricultural commodities, and vice versa,
was found.

3.1. Cointegration from Johansen Test

The Johansen test is applied based on the max-migen and trace tests as mentioned Section 2.1.
The cointegration process is evaluated for the full period (2011–2018) and for the five sub-periods
determined by means of the Bai–Perron test for breakpoints. In the follow-up, the results are divided
into those sub-periods and the cointegration relations are discussed based on the energy and agricutural
market historical record of the time.
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3.1.1. Full Period (2011–2018)

The test results for the full period are listed in Table A1 and Figure 2a. We observed the
cointegration process between the sugar, cotton and Robusta coffee with the ethanol, which is described
by the rejection of the null hypothesis of the Johansen test. This is different from the results obtained
by [62] for the US ethanol, not considering structural breaks, where long-run relationships were not
observed between agricultural and energy prices. In fact, such price transmission is expected from the
Brazilian ethanol and sugar [13,36,38,43], since the markets are directly related and the SUG becomes
an option against the ethanol production. For example, when the currency ratio between the Brazilian
reals (R$) and the American dollar (US$) is high, the ethanol plants tend to choose the sugar production
with the primary intention of exporting, and this increases the ethanol prices in the domestic market.

Likewise, for the expected price transmission between the ethanol and corn in the American
market, the Brazilian prices of ethanol and corn also show a cointegration for both tests. However,
this behavior was not expected, since the Brazilian ethanol is primarily produced from sugarcane,
while corn-based ethanol is in an initial state of production in the country. Agricultural production
demands a considerable amount of energy, and this is reflected in the fuel consumption. The results
suggest that ethanol prices and the markets of corn, cotton and Robusta coffee are linked, despite its
production processes not being explicitly related.

3.1.2. Sub-Period 1 (January of 2011–May of 2012)

Table A2 and Figure 2b summarize the cointegration relation between the pairs of ethanol and
each of the agricultural commodities during P1. It is possible to note that for the first sub-period,
the cointegrations of ethanol with the sugar, cotton and Robusta coffee are still considered, and possibly
influence the results in a macroscopic scale.

The Robusta coffee prices reached maximum values in the spot internal market, despite a good
crop season during 2011/2012. Indeed, the Robusta coffee had an increase of 150% in export
if compared with 2010. However, the same behavior was not observed for the Arabica coffee.
From Tables A1–A6, we verify that for both coffees (Arabica and Robusta), the cointegration process
with ethanol is only visible in the years of high production, since the coffee production alternates from
a high to a low crop every year.

During P1, Brazil imported a significant volume of ethanol from the USA, due to a crop shortfall
and an increase in the sugar international prices. This resulted in an increase in the prices for both
commodities during the period.

In terms of the cotton commodity, one can note that its spot prices had the same pattern as those
of the ethanol, with a higher peak at the beginning of the period, followed by an equilibrium during
the middle of the TS and, finally, a bull market at the last year (see Figure 1).

3.1.3. Sub-Period 2 (May of 2012–November of 2013)

The cointegration test results during P2 are summarized in Table A3 and Figure 2c. No cointegration
process is observed for the tested pairs. One of the factors that help to describe this behavior is the
currency exchange of the American dollar on this date. The prices of agricultural commodities usually
have a negative correlation with the price of the dollar. Therefore, when the dollar gains force,
the commodities become more expensive in other currencies, influencing negatively the demand.
Alternatively, when the dollar becomes weaker, the commodities prices decrease in other currencies
and then, as increasing demand occurs in the countries that import these commodities.

Brazil is an exporting country for the most part of these commodities. Thus, an increase in the R$
and US$ ratio increases the export, and the volume offered of the commodity in the internal market
reduce, increasing their spot price.
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Figure 2. The observed cointegration processes between the considered pairs, and its corresponding
significance levels (1%, 5%, 10% and null) for the studied periods. The double-headed arrows represent
the cointegration process between the commodity pairs.

3.1.4. Sub-Period 3 (November of 2013–September of 2015)

The sub-period P3 is related to one difficult Brazilian socio–political cycle since it covers the
presidential impeachment process. This process had important effects on several economy issues,
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namely in the energy sector. Figure 2d, shows the influence of corn and soybean commodities in the
cattle market since the feed provided to the animals is mainly based on these products. Therefore,
it is expected that the spot prices of the corn, soybean and live cattle may be cointegrated. From the
Table A4 results, it is possible to note a cointegration between corn and ethanol. This effect can be
transmitted to a cointegration process between the live cattle and the ethanol as well, since in the cattle
production is not expected such a strong influence of an energy commodity as occurs for the cultivable
commodities, namely the corn and soybean. The relation among the corn, live cattle and ethanol can be
explained by its winter crop season production, since these products have a smaller volume of exports
and, as a result, most of the production is directed for the internal market for animal consumption.

A cointegration between ethanol and soybean was not identified in any of the sub-periods.
This can be explained by the relation between the spot and futures prices of the soybean in Brazil that
are influenced by the international prices negotiated in the CME.

One can also observe a cointegration process involving the ETH-ARA pair during P3, that can be
explained by the Arabica coffee production dynamics pointed out previously.

3.1.5. Sub-Period 4 (September of 2015–October of 2017)

The sub-period P4 results for the cointegration test are listed in Table A5 and Figure 2e.
For example, for P2, the P4 demonstrates no cointegration processes among the pairs under analysis.
On the other hand, this sub-period is related to political instability that affected directly the energy
sector and may explain the no-cointegration relation among the pairs.

3.1.6. Sub-Period 5 (October of 2017–December of 2018)

The results obtained for P5 point toward a price transmission in the ETH-ROB pair as it is shown
in Table A6 and Figure 2f. Despite the dominance of the Arabica coffee production worldwide,
the entrance of new countries offering Robusta coffee induced some price instability for the price of
the two commodities. Additionaly, the same pattern of cointegration in the periods of large values for
coffee commodities is observed for the ETH-ROB pair.

3.2. VECM Results

In this section, the VECM results are analyzed for the five sub-periods and the commodity pairs
that revealed a cointegration process in the Johansen test (see Section 3.1), that is, P1, P3 and P5. A plot
scale adjustment to the FEVD model is applied to obtain a better visualization of the influence of the
residuals of one variable in the forecast of the other.

3.2.1. Sub-Period 1

Here we cover the VECM results of the ETH-SUGAR, ETH-COT and ETH-ROB pairs.

Ethanol vs. Sugar

Equations (12) and (13) describe the ethanol price equation in the returns and the sugar price
equation in the returns:

∆pETH
t = −0.01581(−0.85386 + 1.0pETH

t−1 − 0.00612pSUG
t−1 ) (11)

+0.75274∆pETH
t−1 + 0.00017∆pSUG

t−1

∆pSUG
t = −0.10777(−0.85385 + 1.0pETH

t−1 − 0.00612pSUG
t−1 ) (12)

+0.227705∆pETH
t−1 + 0.26472∆pSUG

t−1 .

Table 2 shows the coefficients of the VECM adjusted for these equations. From the results in Table 2
we note that the adjustment coefficient (αETH) is statistically distinguishable from zero, which implies
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larger adjustments of the ethanol prices in disequilibrium, as we can confirm in Figure 3. Besides,
the commodity tends to reach an equilibrium in 1/αETH ≈ 63 steps. Therefore, the equation that
allows the analysis of the long-run equilibrium relationship between the ETH-SUG prices can be
formulated as:

− 0.85386 + pETH
t−1 − 0.00612pSUG

t−1 = 0. (13)

Table 2. The VECM for the ETH-SUG pair in P1. Significance levels: 10% (*), 5% (**), 1% (***) and
0.1% (****).

Coefficients Ethanol Sugar

α −0.01581 **** −0.10777
β0 −0.85386 −0.85385
β 1.0 −0.00612

γ1 0.75274 **** 0.00017
θ1 0.227705 0.26472 ****

Then we applied the FEVD tool to measure the variance of the forecast error regarding the price
shocks of the variables in the ethanol and sugar equations. It is possible to see small residuals from
the ethanol prices in the sugar equation in Figure 5, with a decreasing influence along with the steps.
The sugar commodity residuals are also present in the ethanol, but they increase along with the steps.
It is reasonable to consider that similar to what was concluded in some studies [13,36,38,43] the sugar
prices affect those of the ethanol in long-run for P1, but this co-movement relation is not observed in
further periods considering structural breaks.

Ethanol vs. Cotton

Equations (14) and (15) represent the estimated the prices relations between the ethanol and cotton

∆pETH
t = −0.01871(−1.14052 + 1.0pETH

t−1 − 0.00043pCOT
t−1 )

+0.68348∆pETH
t−1 + 0.10203∆pETH

t−2

+0.00016∆pCOT
t−1 − 0.00027∆pCOT

t−2 (14)

∆pCOT
t = −2.60507(−1.14052 + 1.0pETH

t−1 − 0.00043pCOT
t−1 )

+25.84706∆pETH
t−1 − 0.28211∆pETH

t−2

+0.36427∆pCOT
t−1 + 0.20375∆pCOT

t−2 . (15)

Table 3 shows the VECM coefficients estimated for ETH-COT pair during P1, and one can note
that the adjustment coefficient of the ethanol (αETH) is significantly different from zero. This means that
the ethanol prices return back to equilibrium after a shock in the cotton prices within 1/|αETH | ≈ 53
steps. The equation that describes the long-run relation between the variables can be written as:

− 1.14052 + pETH
t−1 − 0.00043pCOT

t−1 = 0. (16)
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Table 3. The vector error correction models (VECM) for the ethanol (ETH)-cotton (COT) pair in P1.
Significance levels: 10% (*), 5% (**), 1% (***) and 0.1% (****).

Coefficients Ethanol Cotton

α −0.01871 **** −2.60507 *
β0 −1.14052 −1.14052
β 1.0 −0.00043

γ1 0.68348 **** 0.00016
γ2 0.10203 * −0.00027
θ1 25.84706 * 0.36427 ****
θ2 −0.28211 0.20375 ****

Figure 4 shows the stronger response of the cotton resulting from impulses (shocks) in the ethanol
commodity when compared to the inverse case. This is confirmed by the parameter θETH

1 = 25.84706
for the cotton equation, since it represents the autoregressive term of the ethanol on lag t − 1.
Likewise, the FEVD in Figure 3 confirms a significant influence of ethanol residuals in the cotton prices
forecast errors.

Ethanol vs. Robusta Coffee

The prices model of the ethanol and Robusta coffee are presented in Equations (17) and
(18), respectively:

∆pETH
t = −0.01745(−1.33013 + 1.0pETH

t−1 + 0.00036pROB
t−1 )

+0.70463∆pETH
t−1 − 0.00640∆pETH

t−2 + 0.10465∆pETH
t−3

−0.00038∆pROB
t−1 + 0.00038∆pROB

t−2 + 0.00012∆pROB
t−3 (17)

∆pROB
t = 0.84029(−1.33013 + 1.0pETH

t−1 + 0.00036pROB
t−1 )

−4.25981∆pETH
t−1 + 14.04848∆pETH

t−2 − 5.27780∆pETH
t−3

−0.06682∆pROB
t−1 + 0.20773∆pROB

t−2 + 0.21857∆pROB
t−3 . (18)

Table 4 presents the adjusted VECM for the ETH-ROB pair in P1. We can note that αETH is also
statistically different to zero for the ETH-ROB pair and the ethanol prices tend to return in equilibrium
after 1/|αETH | ≈ 57 steps. The term αROB would indicate a short-run relation for the Robusta coffee
(≈ 1 step). Nonetheless, the parameter is not significantly different from zero. Figures 3 and 4 show
that the impulse responses are different from those expected by the adjustment terms αETH and αROB,
since the ethanol shows a short-run equilibrium to the shocks in the Robusta coffee prices. It also can
be explained by the significant autoregressive terms γROB

1 and γROB
2 related to the Robusta coffee in

the ethanol equation for the steps t− 1 and t− 2, respectively. On the other hand, it was not possible
to observe a short-run equilibrium in the Robusta coffee equation expected from the adjustment term.
In fact, we merely verify that the Robusta coffee prices are influenced by shocks in the ethanol prices.
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Table 4. The VECM for the ETH-Robusta coffee (ROB) pair in P1. Significance levels: 10% (*), 5% (**),
1% (***) and 0.1% (****).

Coefficients Ethanol Robusta Coffee

α −0.01745 **** 0.84029
β0 −1.33013 −1.33013
β 1.0 0.00036

γ1 0.70463 **** −0.00038 *
γ2 −0.00640 0.00038 *
γ3 0.10465 * 0.00012
θ1 −4.25981 −0.06682
θ2 14.04848 0.20773 ****
θ3 −5.27780 0.21857 ****

Figures 5 and 6 depict the FEVD results validating this analysis, since we observe significant and
increasing residuals in the forecast erros variance of the Robusta coffee. The following equation shows
the long-run equilibrium between the pair:

− 1.33013 + pETH
t−1 + 0.00036pROB

t−1 = 0. (19)

3.2.2. Sub-Period 3

During P3 the ETH-ARA, ETH-LCA and ETH-COR pairs resulting from the cointegration test
are considered.

Ethanol vs. Arabica Coffee

Equations (20) and (21) present the VECM parameters adjusted for the ethanol and Arabica
equations, respectively, as follows:

∆pETH
t = −0.01382(−1.14018 + 1.0pETH

t−1 − 0.00011pARA
t−1 )

+0.29230∆pETH
t−1 + 0.29150∆pETH

t−2

−0.000002∆pARA
t−1 − 0.00001∆pARA

t−2 (20)

∆pARA
t = 11.41183(−1.14018 + 1.0pETH

t−1 − 0.00011pARA
t−1 )

+92.97∆pETH
t−1 − 9.4650∆pETH

t−2

+0.05437∆pARA
t−1 − 0.01576∆pARA

t−2 . (21)

− 1.14018 + pETH
t−1 − 0.00011pARA

t−1 = 0. (22)

The VECM coefficients for the ethanol and Arabica coffee equations are listed in Table 5.
The adjusted VECM reveal the high significance both for the adjustment coefficients αETH and αARA.
Neverthless, αARA is a positive large value, which is not usual for the VECM and can lead to a biased
result, since may be interpreted as a strong significant influence of the ethanol prices (1st lag) in
the Arabica coffee prices. Besides, in the Arabica coffee equation, θETH

1 is also a large value and its
statistical significance could mean that the past values of the ethanol prices (t− 1) result in significant
weights in the Arabica coffee price at time t. The long-run relation between the prices is described by
the Equation (22). Additionally, Figures 3–6, representing the OIR and FEVD, demonstrate that shocks
and residuals from the ethanol prices are transmitted to those of the Arabica coffee.
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Table 5. The VECM for the ETH-ARA pair in P3. Significance levels: 10% (*), 5% (**), 1% (***) and
0.1% (****).

Coefficients Ethanol Arabica Coffee

α −0.01382 ** 11.41183 *
β0 −1.14018 −1.14018
β 1.0 −0.00011

γ1 0.29230 **** −0.000002
γ2 0.29150 **** −0.00001
θ1 92.97000 ** 0.05437
θ2 9.4650 −0.01576

Ethanol vs. Live Cattle

Equations (23) and (24) describe the ethanol and the live cattle price equations in the returns,
respectively, as follows:

∆pETH
t = −0.00261(−0.18383 + 1.0pETH

t−1 − 0.00660pLCA
t−1 )

+0.28607∆pETH
t−1 + 0.28191∆pETH

t−2

+0.00107∆pLCA
t−1 − 0.00018∆pLCA

t−2 (23)

∆pLCA
t = 0.58732(−0.18383 + 1.0pETH

t−1 − 0.00660pLCA
t−1 )

+2.39926∆pETH
t−1 − 2.62912∆pETH

t−2

−0.18481∆pLCA
t−1 + 0.05553∆pLCA

t−2 . (24)

Table 6 shows the VECM adjusted parameters for the ETH-LCA pair equation. The VECM
adjusted to the ETH-LCA pair shows an adjustment coefficient for live cattle commodity (αLCA)
statistically distinguishable from zero, instead of the αETH significance that was common in the other
pairs. Then, the live cattle prices tends to equilibrium after 1/|αLCA| ≈ 1.7 steps. The long-run
equation is:

− 0.18383 + pETH
t−1 − 0.00660pLCA

t−1 = 0. (25)

Table 6. The VECM for the ETH-LCA pair in P3. Significance levels: 10% (*), 5% (**), 1% (***) and
0.1% (****).

Coefficients Ethanol Live Cattle

α 0.00261 0.58732 ****
β0 −0.18383 −0.18383
β 1.0 −0.00660

γ1 0.28607 **** 0.00107
γ2 0.28191 **** −0.00018
θ1 2.39926 −0.18481 ****
θ2 −2.62912 0.05553

On the contrary, the OIR and FEVD results evidenced from Figures 3–6 point out a significant
imbalance between the two prices. The OIR is similar to a step response (constant) for the ethanol
resulting from an imbalance in live cattle price. On the other hand, we note a linear behavior for
the live cattle after an impulse in the ethanol price. Differently from the dynamics observed for the
US ethanol, cattle and field crops [41], the FEVD suggests a higher influence from the ethanol in the
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forecast error variances of the live cattle prices. By other words, in the Brazilian scenario, the ethanol
prices are likely to describe live cattle prices forecasts than the opposite.

Ethanol vs. Corn

Equations (26) and (27) relate the prices of the ETH-COR pair

∆pETH
t = −0.02512(−0.66335 + 1.0pETH

t−1 − 0.01953pCOR
t−1 )

+0.28729∆pETH
t−1 + 0.30347∆pETH

t−2 + 0.00678∆pETH
t−3

−0.00174∆pCOR
t−1 + 0.00126∆pCOR

t−2 + 0.00479∆pCOR
t−3 (26)

∆pCOR
t = 0.35541(−0.66335 + 1.0pETH

t−1 − 0.01953pCOR
t−1 )

+2.72427∆pETH
t−1 − 1.07728∆pETH

t−2 + 0.19542∆pETH
t−3

+0.12564∆pCOR
t−1 + 0.22177∆pCOR

t−2 + 0.22966∆pCOR
t−3 . (27)

The adjusted VECM parameters are reported in Table 7. The cointegration of the ethanol and corn
reflect the live cattle commodity. It is possible to note a mutual relation between the pair prices, so that
the ethanol influences the corn prices and vice versa. Firstly, this is revealed by the significance of
αETH and αCOR and, therefore, we can assume that imbalances in the prices of the two commodities
influence each one. The plots of the OIR in Figures 3 and 4 suggest a similar imbalance pattern between
the commodities. The intensity level of the corn prices imbalance is higher than the inverse situation.
From the autoregressive terms of the prices equations, it is shown a significance for θETH

1 (ethanol
term for lag t− 1) and γCOR

3 (corn term for lag t− 3). This means that ethanol prices of one day in the
past influence the corn prices in the present and the corn prices of three days in the past influence the
ethanol prices in the present. The FEVD suggests mutual residual impact pattern in intensity level
over the steps. Besides, this result differs from those observed in the US ethanol and corn relation
(1994–2010) described in [40], concluding that the shocks in the US ethanol prices do not spill over
those of the corn. The long-run relation between the pair follows the equation:

− 0.66335 + pETH
t−1 − 0.01953pCOR

t−1 = 0. (28)

Table 7. The VECM for the ETH-COR pair in P3. Significance levels: 10% (*), 5% (**), 1% (***) and
0.1% (****).

Coefficients Ethanol Corn

α −0.02512 **** 0.35541 **
β0 −0.66335 −0.66335
β 1.0 −0.01953

γ1 0.28729 **** −0.00174
γ2 0.30347 **** 0.00126
γ3 0.00678 0.00479 **
θ1 2.72427 ** 0.12564 ***
θ2 −1.07728 0.22177 ****
θ3 0.19542 0.22966 ****

3.2.3. Sub-Period 5

The sub-period P5 covers the ethanol vs. Robusta coffee VECM estimation, since it is the only pair
that showed a cointegration process in the interval. It is worth highlighting that the ETH-ROB pair is
the only one that showed cointegrated relation for differents sub-periods namely, P1 and P5.
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Ethanol vs. Robusta Coffee

The Equations (29) and (30) represent the ethanol and Robusta coffee equations, respectively, and
Equation (31) denote the long-run equilibrium relation of the two TS as follows:

∆pETH
t = 0.00061(−13.65774 + 1.0pETH

t−1 + 0.03662pROB
t−1 )

+0.3580∆pETH
t−1 + 0.3376∆pETH

t−2

+0.00002∆pROB
t−1 + 0.00003∆pROB

t−2 (29)

∆pROB
t = −0.5386(−13.65774 + 1.0pETH

t−1 + 0.03662pROB
t−1 )

−20.40∆pETH
t−1 + 26.49∆pETH

t−2

+0.01685∆pROB
t−1 + 0.1658∆pROB

t−2 . (30)

− 13.65774 + pETH
t−1 + 0.03662pROB

t−1 = 0. (31)

Table 8 lists the values of the VECM coefficients. Comparing these results with those obtained
previously for the cointegration relation in P1 for the same pair, we note that they reveal divergence in
the price dynamics. Similarly to the ETH-LCA relation in P3 and to the ETH-ROB previous results
in Table 4, the ETH-ROB pair in P5 demonstrates a non statistically significance for αETH . Instead,
we observe a significant αROB, as well as statistically distinguishable from zero autoregressive terms
related to ethanol prices in the past, in the Robusta coffee price equation (θETH

1 and θETH
2 ). In addition,

the OIR and FEVD applied to the pair suggest a lower imbalance for both commodities if compared to
the adjusted model in P1. Besides, the FEVD shows a smaller influence of the residuals of the ethanol
prices in the coffee prices, in terms of forecasting.
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Figure 3. The responses of the ethanol prices from an orthogonal impulse (OIR) in the agricultural
commodities prices.
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Figure 4. The responses of the agricultural commodities prices from an orthogonal impulse (OIR) in
the ethanol prices.
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Table 8. The VECM for the ETH-ROB pair in P5. Significance levels: 10% (*), 5% (**), 1% (***) and
0.1% (****).

Coefficients Ethanol Robusta Coffee

α 0.00061 −0.53860 ****
β0 −13.65774 −13.65774
β 1.0 0.03662

γ1 0.35800 **** 0.00002
γ2 0.33760 **** 0.00003
θ1 −20.40 * 0.01685
θ2 26.49000 ** 0.16580 ***

4. Conclusions

This paper employed the bivariate analysis to investigate the ethanol prices transmission to the
main Brazilian’s agricultural commodities by means of cointegration tests. The VECM estimation
is evaluated whenever a cointegration process between the ethanol and a particular commodity
is verified.

The results suggest a higher price transmission from the ethanol commodity to the agricultural
commodities, than the opposite. The achieved results can be explained by the fact that agricultural
commodities consume energy during their production stages. Therefore, important deviations or
shocks in the prices of the ethanol can be transmitted significantly to the agricultural commodities.
On the other hand, the ETH-SUG pair in the sub-period 1 and the ETH-COR pair in the sub-period
3 revealed mutual relations in their prices, where imbalances are mutually transmitted. Also,
the soybean is the only agricultural commodity not showing cointegration with the ethanol in any of
the sub-periods.
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SOY Soybean
BP Breakpoints
BIC Bayesian information criterion
P1 Sub-period 1
P2 Sub-period 2
P3 Sub-period 3
P4 Sub-period 4
P5 Sub-period 5
R$ Brazilian reals
US$ American dollar

Appendix A

The following tables list the results of the Johansen cointegration test, orthogonal impulse response
and forecast error variance decomposion.

Table A1. The Johansen test for the full period. Significance levels: 10% (*), 5% (**) and 1% (***).

Pair H0
January of 2011–December of 2018

Max-Eigen Trace

ETH-SUG r = 0 13.90 * 17.67
r <= 1 3.76 3.76

ETH-COT r = 0 21.1 *** 26.6 ***
r <= 1 5.5 5.5

ETH-LCA r = 0 11.43 14.23
r <= 1 2.81 2.81

ETH-COR r = 0 14.05 * 18.05 *
r <= 1 4.0 4.0

ETH-SOY r = 0 10.63 15.43
r <= 1 4.8 4.8

ETH-ARA r = 0 9.88 13.56
r <= 1 3.67 3.67

ETH-ROB r = 0 14.30 * 17.47
r <= 1 3.17 3.17

Table A2. The Johansen test for P1. Significance levels: 10% (*), 5% (**) and 1% (***).

Pair H0
January of 2011–May of 2012

Max-Eigen Trace

ETH-SUG r = 0 11.52 18.61 *
r <= 1 7.09 7.09

ETH-COT r = 0 14.87 * 19.24 *
r <= 1 4.37 4.37

ETH-LCA r = 0 12.65 14.51
r <= 1 1.86 1.86

ETH-COR r = 0 12.02 16.99
r <= 1 4.97 4.97

ETH-SOY r = 0 11.57 13.08
r <= 1 1.51 1.51

ETH-ARA r = 0 10.34 11.34
r <= 1 1.00 1.00

ETH-ROB r = 0 15.18 * 18.94 *
r <= 1 3.75 3.75
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Table A3. The Johansen test for P2.

Pair H0
May of 2012–November of 2013

Max-Eigen Trace

ETH-SUG r = 0 6.80 10.37
r <= 1 3.57 3.57

ETH-COT r = 0 5.57 7.95
r <= 1 2.39 2.39

ETH-LCA r = 0 8.40 10.47
r <= 1 2.08 2.08

ETH-COR r = 0 7.31 10.77
r <= 1 3.46 3.46

ETH-SOY r = 0 7.54 11.38
r <= 1 3.85 3.85

ETH-ARA r = 0 4.27 7.56
r <= 1 3.29 3.29

ETH-ROB r = 0 3.81 5.25
r <= 1 1.44 1.44

Table A4. The Johansen test for P3. Significance levels: 10% (*), 5% (**) and 1% (***).

Pair H0
November of 2013–September of 2015

Max-Eigen Trace

ETH-SUG r = 0 13.34 15.51
r <= 1 2.17 2.17

ETH-COT r = 0 8.63 9.35
r <= 1 0.72 0.72

ETH-LCA r = 0 13.72 20.75 ***
r <= 1 7.03 7.03

ETH-COR r = 0 15.02 * 17.92 *
r <= 1 2.89 2.89

ETH-SOY r = 0 8.70 9.57
r <= 1 0.87 0.87

ETH-ARA r = 0 9.61 18.75 *
r <= 1 9.14 9.14

ETH-ROB r = 0 8.33 12.82
r <= 1 4.49 4.49
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Table A5. The Johansen test for P4.

Pair H0
September of 2015–October of 2017

Max-Eigen Trace

ETH-SUG r = 0 7.72 8.60
r <= 1 0.88 0.88

ETH-COT r = 0 7.61 10.85
r <= 1 3.23 3.23

ETH-LCA r = 0 5.58 6.64
r <= 1 1.06 1.06

ETH-COR r = 0 4.88 6.51
r <= 1 1.63 1.63

ETH-SOY r = 0 8.94 13.14
r <= 1 4.20 4.20

ETH-ARA r = 0 11.66 14.55
r <= 1 2.89 2.89

ETH-ROB r = 0 6.88 10.24
r <= 1 3.35 3.35

Table A6. The Johansen test for P5. Significance levels: 10% (*), 5% (**) and 1% (***).

Pair H0
October of 2017–December of 2018

Max-Eigen Trace

ETH-SUG r = 0 8.55 11.13
r <= 1 2.58 2.58

ETH-COT r = 0 10.51 14.95
r <= 1 4.43 4.43

ETH-LCA r = 0 7.33 10.39
r <= 1 3.06 3.06

ETH-COR r = 0 11.03 14.45
r <= 1 3.42 3.42

ETH-SOY r = 0 7.41 9.47
r <= 1 2.06 2.06

ETH-ARA r = 0 9.87 14.56
r <= 1 4.70 4.70

ETH-ROB r = 0 13.15 19.16 *
r <= 1 6.01 6.01
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