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Abstract: The aims of this study are to propose the linguistic picture fuzzy Dombi (LPFD) aggregation
operators and decision-making approach to deal with uncertainties in the form of linguistic picture
fuzzy sets. LPFD operators have more flexibility due to the general fuzzy set. Utilizing the Dombi
operational rule, the series of Dombi aggregation operators were proposed, namely linguistic
picture fuzzy Dombi arithmetic/geometric, ordered arithmetic/ordered geometric and Hybrid
arithmetic/Hybrid geometric aggregation operators. The distinguished feature of these proposed
operators is studied. At that point, we have used these Dombi operators to design a model to deal
with multiple attribute decision-making (MADM) issues under linguistic picture fuzzy information.
Finally, an illustrative example to evaluate the emerging technology enterprises is provided to
demonstrate the effectiveness of the proposed approach, together with a sensitivity analysis and
comparison analysis, proving that its results are feasible and credible.

Keywords: linguistic picture fuzzy set; Dombi operations; Linguistic picture fuzzy Dombi
arithmetic aggregation operators; Linguistic picture fuzzy Dombi geometric aggregation operators;
decision making problems

1. Introduction

The intuitionistic fuzzy set (IFS) [1] has discussed only two categories of responses “yes” and
“no”, but many real life problems have more then two types of responses, such that, in case of
selection, we face three types of responses “yes”, “no” and “refusal”. Thus, to overcome this issue,
Cuong [2,3] introduced a novel concept of picture fuzzy set (PFS), which is dignified in three different
functions presenting the positive, neutral and negative membership degrees. Cuong [4] studied
some characteristic of PFSs and also approved their distance measures. Cuong and Hai [5] defined
firstly the fuzzy logic operators and implications functions for PFS. Cuong et al. [6] examined the
characteristic of picture fuzzy t-norm and t-conorm. Phong et al. [7] examined certain configurations
of PF relations. Wei et al. [8–10] defined many procedures to compute the closeness between PFSs.
Presently, many researchers have developed more models in the PFS condition: a correlation coefficient
of PFS is proposed by Sing [11] and applies it to clustering analysis. Son et al. [12,13] provided time
arrangement calculation and temperature estimation on the basis of PFS domain. Son [14,15] defined
picture fuzzy separation measures, generalized picture fuzzy distance measures and picture fuzzy
association measures, and combined it to tackle grouping examination under PFS condition. A novel
fuzzy derivation structure on PFS is defined by Son et al. [16] to improve the performance of the
classical fuzzy inference system. To handle decision making problems, Ashraf et al. [17] introduced
two decision techniques; firstly, they proposed a series of geometric aggregation operators and,

Mathematics 2019, 7, 764; doi:10.3390/math7080764 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-5519-6130
https://orcid.org/0000-0002-7474-5115
https://orcid.org/0000-0002-8616-8829
https://orcid.org/0000-0002-6646-4751
http://dx.doi.org/10.3390/math7080764
http://www.mdpi.com/journal/mathematics


Mathematics 2019, 7, 764 2 of 22

secondly, introduced the TOPSIS method to deal with uncertainty in the form of PF sets. In addition,
Ashraf et al. [18] proposed the PF linguistic set to deal with linguistic information in (decision-making)
DM problems. Zeng et al. [19] proposed the exponential jensen PF divergence measure to deal with
DM problems using PF information. Khan et al. [20] examined the application of a generalized PF soft
set in DM problems. Khan et al. [21] introduced the Einstein aggregation operators for PF information.
Thong et al. [22,23] proposed the DM approach using PF clustering to deal with uncertainty in the
form of PF sets. Khan et al. [24] described the application of logarithmic aggregation operators of
PF numbers in DM problems. Wei [25] proposed the series of aggregation operator to handle the
decision problem using PF information. Peng et al. [26] proposed an PFS algorithm and tested it in
decision-making. Bo and Zhang [27] studied some new operations of picture fuzzy relations such as
type-2 inclusion relation, type-2 union, type-2 intersection and type-2 complement operations and
also defined the anti-reflexive kernel, symmetric kernel, reflexive closure and symmetric closure of a
picture fuzzy relation. For more detailed study, we refer to [28–30].

Dombi introduced [31] a new type of operations called the Dombi triangular norm and Dombi
triangular conorm, demonstrating the preference of variability with the operation of parameters.
For the first time in [32], Dombi operations were used for IFS to handle decision-making problems by
introducing a Dombi Bonferroni mean operator. Dombi aggregation operation was further extended
to a single neutrosophic set [33]. Travel decision-making problems were solved by using Dombi
operations [34] by inspecting neutrosophic cubic sets. Dombi aggregation operations were further
extended to linguistic cubic variables [35], Dombi hesitant fuzzy information [36] by utilizing the multi
attribute decision-making methods to solve different real-life problems. Furthermore, Dombi picture
fuzzy sets and aggregation operation are proposed in [37] for evaluating different significances of
selections among others in the decision-making process. Bipolar fuzzy Dombi aggregation operators
are introduced [38] based on arithmetic and geometric Dombi operations. Pythagorean fuzzy Dombi
aggregation operators are proposed [39] for evaluating the uncertainty in decision-making problems.
Application of spherical fuzzy Dombi aggregation operators is introduced [40] for evaluating the best
alternative using spherical fuzzy information.

Motivated by the above discussion, we proposed the naval aggregation operators for linguistic
picture fuzzy numbers using Dombi t-norm and Dombi t-conorm. The proposed operators play a vital
role of aggregating the linguistic picture fuzzy information. For revelation and numerical application
of the proposed operators, a numerical example is constructed. The rest of this study is designed as
follows. Section 2 provides a brief overview of the basic knowledge of the extension of a linguistic
fuzzy set. The novel Dombi aggregation operators are introduced in Section 3. Section 4 consists of
some discussion on the application of a defined approach. In Section 5, we discussed the comparison
and advantages of the proposed work and, finally, conclusions are drawn in Section 6.

2. Preliminaries

Definition 1. ([2]) LetĤ be a fixed set; then, a PFS p in ĥ is defined as

p = {(ĥ,
ˆ
αp(ĥ),

ˆ
βp(ĥ),

ˆ
γp(ĥ))|ĥ ∈ Ĥ}, (1)

where
ˆ
αp(ĥ) : Ĥ −→ [0, 1], ĥ ∈ Ĥ −→ ˆ

αp(ĥ) ∈ [0, 1];
ˆ
βp(ĥ) : Ĥ −→ [0, 1], ĥ ∈ Ĥ −→

ˆ
βp(ĥ) ∈ [0, 1];

ˆ
γp(ĥ) : Ĥ −→ [0, 1],

ĥ ∈ Ĥ −→ ˆ
αp(ĥ) ∈ [0, 1] satisfies the condition: 0 ≤ ˆ

αp(ĥ),
ˆ
βp(ĥ),

ˆ
γp(ĥ) ≤ 1. Furthermore,

ˆ
αp(ĥ),

ˆ
βp(ĥ) and

ˆ
γp(ĥ) indicate the positive, neutral and negative grads of the element ĥ ∈ Ĥ to the set p, respectively.

For each PFS, p ⊆ Ĥ, πp(ĥ) = 1− ˆ
αp(ĥ)−

ˆ
βp(ĥ)−

ˆ
γp(ĥ) is said to be the refusal degree of Ĥ to p.
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Definition 2. ([2,25]) Let p = (
ˆ
αp(ĥ),

ˆ
βp(ĥ),

ˆ
γp(ĥ)) and Q = (

ˆ
αQ(ĥ),

ˆ
βQ(ĥ),

ˆ
γQ(ĥ)) be two PFNs on the

universe ĥ. Then, the operation laws between p and Q are stated as:

(1) p ⊆ Q, if
ˆ
αp(ĥ) ≤

ˆ
αQ(ĥ),

ˆ
βp(ĥ) ≤

ˆ
βQ(ĥ) and

ˆ
γp(ĥ) ≥

ˆ
γQ(ĥ)∀ĥ ∈ Ĥ;

(2) p = Q iff p ⊆ Q and p ⊇ Q;

(3) p ∪Q =


〈
(ĥ, max{ ˆ

αp(ĥ),
ˆ
αQ(ĥ)}, min{

ˆ
βp(ĥ),

ˆ
βQ(ĥ)}, min{ ˆ

γp(ĥ),
ˆ
γQ(ĥ))

〉
|ĥ ∈ Ĥ

 ;

(4) p ∩Q =

 (ĥ, min{ ˆ
αp(ĥ),

ˆ
αQ(ĥ)}, max{

ˆ
βp(ĥ),

ˆ
βQ(ĥ)}, max{ ˆ

γp(ĥ),
ˆ
γQ(ĥ))

|ĥ ∈ Ĥ

 ;

(5) p/ =

(
ˆ
γp(ĥ),

ˆ
βp(ĥ),

ˆ
αp(ĥ)

)
;

(6) p⊕Q =

(
ˆ
αp(ĥ) +

ˆ
αQ(ĥ)−

ˆ
αp(ĥ).

ˆ
αQ(ĥ),

ˆ
βp(ĥ).

ˆ
βQ(ĥ),

ˆ
γp(ĥ),

ˆ
γQ(ĥ)

)
;

(7) p⊗Q =

 ˆ
αp(ĥ).

ˆ
αQ(ĥ),

ˆ
βp(ĥ) +

ˆ
βQ(ĥ)−

ˆ
βp(ĥ).

ˆ
βQ(ĥ),

ˆ
γp(ĥ)

+
ˆ
γQ(ĥ)−

ˆ
γp(ĥ),

ˆ
γQ(ĥ)

 ;

(8) λp =

(
1− (1− ˆ

αp(ĥ))λ,
ˆ
β

λ

p(ĥ),
ˆ
γ

λ

Q(ĥ)

)
;

(9) pλ =

(
ˆ
α

λ

p(ĥ), 1− (1−
ˆ
βp(ĥ))

λ, 1− (1− ˆ
γp(ĥ))

λ

)
.

Definition 3. ([41,42]) Let Ś = (ś1, ś2, ..., śt) be the finite and absolutely order distinct term set. Then,
Ś is the linguistic term set, where t is the odd value, e.g., 3, 5, ..., when t = 5, then Ś can be written as
Ś = (ś1, ś2, ś3, ś4, ś5) = ( poor, slightly poor, fair, slightly good, good)

The following characteristics of the linguistic set Ś must be satisfied:
(1) Ordered : śk ≺ śl ,⇔ k ≺ l;
(2) Negation : neg (śk) = śt−1−k;
(3) Max: (śk, śl) = śk, iff k ≥ l;
(4) Min: (śk, śl) = śk,iff k ≤ l.
The extended form of the discrete term set Ś is called a continuous linguistic term set and defined as

Ś∗ = {śψ|ś0 ≤ śψ ≤ śg, ψ ∈ [0, t], and, if śψ ∈ Ś∗, then śψ is called the original term otherwise, virtual term.

Definition 4. ([18]) Let Ĥ 6= 0 and Ś∗ = {śψ|ś0 ≤ śψ ≤ śg, ψ ∈ [0, t] be a continuous linguistic set.
Then, an LPFS is defined as

p = {
〈

ĥ, śθ(ĥ), śτ(ĥ), śσ(ĥ)
〉
|ĥ ∈ Ĥ}, (2)

where
〈

śθ(ĥ), śτ(ĥ), śσ(ĥ)
〉
∈ ś∗ stands for the linguistic positive, linguistic neutral and linguistic negative

degrees of the element Ĥ to p. We shall denote the triple of
〈

śθ(ĥ), śτ(ĥ), śσ(ĥ)
〉

as p = 〈śθ , śτ , śσ〉 and referred
to as linguistic picture fuzzy value (LPFV).

For any ĥ ∈ ĥ, the condition θ + τ + σ ≤ t is always satisfied, and π(ĥ) = śt−θ−τ−σ is the linguistic
refusal degree of ĥ to p. Obviously, if θ − τ − σ = t, then LPFS has the minimum linguistic indeterminacy
degree, that is,π(ĥ) = ś0, which means the membership degree of ĥ to p can be precisely expressed with a single
linguistic term and LPFS p is reduced to a linguistic variable. On the contrary, if θ = τ = σ = 0, then LPFS
A(ĥ) has the maximum linguistic indeterminacy degree; that is, π(ĥ) = ś0.
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Definition 5. ([43]) If
ˆ
p = (śθ , śτ , śσ) is an LPFN, then the score index and accuracy index is defined as

Ē(
ˆ
p) =

θ + τ − σ

t
, Ē(

ˆ
p) ∈ [−1, 1], (3)

ˆ
L(

ˆ
p) =

θ + τ + σ

t
,

ˆ
L(

ˆ
p) ∈ [0, 1]. (4)

Definition 6. ([17]) Let
ˆ
p and

ˆ
Q be the picture fuzzy numbers. Then,

ˆ
p >

ˆ
Q iff;

(1) If Ē(
ˆ
p) > Ē(

ˆ
Q), then

ˆ
p is superior to

ˆ
Q, denoted by

ˆ
p >

ˆ
Q;

(2) Ē(
ˆ
p) = Ē(

ˆ
Q), then

(a)
ˆ
L(

ˆ
p) >

ˆ
L(

ˆ
Q), implies that

ˆ
p is superior to

ˆ
Q, denoted by

ˆ
p >

ˆ
Q;

(b)
ˆ
L(

ˆ
p) =

ˆ
L(

ˆ
Q), implies that

ˆ
p is equivalent to

ˆ
Q, denoted by

ˆ
p ∼

ˆ
Q;

Definition 7. ([31]) Let A and B be any two real numbers. If (A, B) ∈ [0, 1]× [0, 1], then Dombi traingular-norm
and triangular-conorm are defined as

Do(A, B) =
1

1 +
{(

1−A
A

)<
+
(

1−B
B

)<} 1
<

, (5)

Doc(A, B) = 1− 1

1 +
{(

A
1−A

)<
+
(

B
1−B

)<} 1
<

, (6)

where < > 0, Do(A, B) ∈ [0, 1] and Doc(A, B) ∈ [0, 1].

3. Linguistic Picture Fuzzy Arithmetic Aggregation Operators

Definition 8. Let
ˆ
p1 = (śθ1 , śτ1 , śσ1) and

ˆ
p1 = (śθ2 , śτ2 , śσ2) be two LPFNs, < > 1 and λ > 0.

Then, Dombi triangular-conorm and Dombi triangular-conorm operation of LPFNs are expressed as

(1)
ˆ
p1 ⊕

ˆ
p2 =



śt− t

1+

{(
θ1

t−θ1

)<
+

(
θ2

t−θ2

)<} 1
<

 ,

ś t

1+

{(
t−τ1

τ1

)<
+

(
t−τ2

τ2

)<} 1
<

 ,

ś t

1+

{(
t−σ1

σ1

)<
+

(
t−σ2

σ2

)<} 1
<





(2)
ˆ
p1 ⊗

ˆ
p2 =



ś t

1+

{(
t−θ1

θ1

)<
+

(
t−θ2

θ2

)<} 1
<

 ,

śt− t

1+

{(
τ1

t−τ1

)<
+

(
τ2

t−τ2

)<} 1
<

 ,

ś
t− t

1+

{(
σ1

t−σ1

)<
+

(
σ2

t−σ2

)<} 1
<
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(3) λ
ˆ

.p1 =



śt− t

1+

{
λ

(
θ1

t−θ1

)<} 1
<

 ,

ś t

1+

{
λ

(
t−τ1

τ1

)<} 1
<

 ,

ś t

1+

{
λ

(
t−σ1

σ1

)<} 1
<





(4)
ˆ
p

λ

1 =



ś t

1+

{
λ

(
t−θ1

θ1

)<} 1
<

 ,

śt− t

1+

{
λ

(
τ1

t−τ1

)<} 1
<
)

 ,

śt− t

1+

{
λ

(
σ1

t−σ1

)<} 1
<




.

Example 1. Let
ˆ
p1 = (ś3, ś2, ś5) and

ˆ
p2 = (ś6, ś3, ś3) ∈ Λ[0,9], be two LPFNs, then utilizing the Dombi

operation defined in Definition 8 for < = 1, and λ = 0.5, we get

(1)
ˆ
p1 ⊕

ˆ
p2 =


ś9− 9

1+
{
( 3

9−3 )
1
+( 6

9−6 )
1
} 1

1

, ś 9

1+
{
( 9−2

2 )
1
+( 9−3

3 )
1
} 1

1

,

ś 9

1+
{
( 9−5

5 )
1
+( 9−3

3 )
1
} 1

1


= 〈ś6.43, ś7.62, ś6.64〉

(2)
ˆ
p1 ⊕

ˆ
p2 =


ś 9

1+
{
( 9−3

3 )
1
+( 9−6

6 )
1
} 1

1

, ś9− 9

1+
{
( 2

9−2 )
1
+( 3

9−3 )
1
} 1

1

,

ś9− 9

1+
{
( 5

9−5 )
1
+( 3

9−3 )
1
} 1

1


= 〈ś2.57, ś3.94, ś5.72〉

(3) 0.5.
ˆ
p1 =


ś9− 9

1+
{

0.5( 3
9−3 )

1
} 1

1

, ś 9

1+
{

0.5( 9−2
2 )

1
} 1

1

,

ś 9

1+
{

0.5( 9−5
5 )

1
} 1

1


= 〈ś1.80, ś3.27, ś6.42〉

(4)
ˆ
p

0.5

1 =


ś 9

1+
{

0.5( 9−3
3 )

1
} 1

1

, ś9− 9

1+
{

0.5( 2
9−2 )

1
} 1

1

,

ś9− 9

1+
{

0.5( 5
9−5 )

1
} 1

1

 .

= 〈ś4.50, ś1.12, ś3.47〉

Theorem 1. Let
ˆ
p = (śθ , śτ , śσ),

ˆ
p1 = (śθ1 , śτ1 , śσ1) and

ˆ
p1 = (śθ2 , śτ2 , śσ2) be two LPFNs, then we have

(1)
ˆ
p1 ⊕

ˆ
p2 =

ˆ
p2 ⊕

ˆ
p1;

(2)
ˆ
p1 ⊗

ˆ
p2 =

ˆ
p2 ⊗

ˆ
p1;

(3) λ(
ˆ
p1 ⊕

ˆ
p2) = λ

ˆ
p2 ⊕

ˆ
λp1, λ > 0;
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(4) (λ1 ⊕ λ2)
ˆ
p = λ1

ˆ
p⊕ λ2

ˆ
p, λ1, λ2 > 0;

(5) (
ˆ
p1 ⊗

ˆ
p2)

λ =
ˆ
p

λ

1 ⊗
ˆ
p

λ

2 , λ > 0;

(6)
ˆ
p

λ1
⊗ ˆ

p
λ2

=
ˆ
p
(λ1+λ2)

, λ1, λ2 > 0.

Proof. (1) By Definition 8, we can write

ˆ
p1 ⊕

ˆ
p2 =



śt− t

1+

{(
θ1

t−θ1

)<
+

(
θ2

t−θ2

)<} 1
<

 ,

ś t

1+

{(
t−τ1

τ1

)<
+

(
t−τ2

τ2

)<} 1
<

 ,

ś t

1+

{(
t−σ1

σ1

)<
+

(
t−σ2

σ2

)<} 1
<





=



śt− t

1+

{(
θ2

t−θ2

)<
+

(
θ1

t−θ1

)<} 1
<

 ,

ś t

1+

{(
t−τ2

τ2

)<
+

(
t−τ1

τ1

)<} 1
<

 ,

ś t

1+

{(
t−σ2

σ2

)<
+

(
t−σ1

σ1

)<} 1
<




=

ˆ
p2 ⊕

ˆ
p1

(2) It is obvious.

(3) Let λ(
ˆ
p1 ⊕

ˆ
p2) = λ



śt− t

1+

{(
θ1

t−θ1

)<
+

(
θ2

t−θ2

)<} 1
<

 ,

ś t

1+

{(
t−τ1

τ1

)<
+

(
t−τ2

τ2

)<} 1
<

 ,

ś t

1+

{(
t−σ1

σ1

)<
+

(
t−σ2

σ2

)<} 1
<





=



śt− t

1+

{
λ

(
θ1

t−θ1

)<
+λ

(
θ2

t−θ2

)<} 1
<

 ,

ś t

1+

{
λ

(
t−τ1

τ1

)<
+λ

(
t−τ2

τ2

)<} 1
<

 ,

ś t

1+

{
λ

(
t−σ1

σ1

)<
+λ

(
t−σ2

σ2

)<} 1
<





Now, λ
ˆ
p1 ⊕

ˆ
λp2 =



śt− t

1+

{
λ

(
θ1

t−θ1

)<} 1
<

 ,

ś t

1+

{
λ

(
t−τ1

τ1

)<} 1
<

 ,

ś t

1+

{
λ

(
t−σ1

σ1

)<} 1
<
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⊕



śt− t

1+

{
λ

(
θ2

t−θ2

)<} 1
<

 ,

ś t

1+

{
λ

(
t−τ2

τ2

)<} 1
<

 ,

ś t

1+

{
λ

(
t−σ2

σ2

)<} 1
<





=



śt− t

1+

{
λ

(
θ1

t−θ1

)<
+λ

(
θ2

t−θ2

)<} 1
<

 ,

ś t

1+

{
λ

(
t−τ1

τ1

)<
+λ

(
t−τ2

τ2

)<} 1
<

 ,

ś t

1+

{
λ

(
t−σ1

σ1

)<
+λ

(
t−σ2

σ2

)<} 1
<




= λ(

ˆ
p1 ⊕

ˆ
p2)

(4) λ1
ˆ
p⊕ λ2

ˆ
p

=


śt− t

1+

{
λ1

(
θ1

t−θ1

)<} 1
<

 ,

ś t

1+

{
λ1

(
t−τ1

τ1

)<} 1
<

 ,

ś t

1+

{
λ1

(
t−σ1

σ1

)<} 1
<




⊕


śt− t

1+

{
λ2

(
θ1

t−θ1

)<} 1
<

 ,

ś t

1+

{
λ2

(
t−τ1

τ1

)<} 1
<

 ,

ś t

1+

{
λ2

(
t−σ1

σ1

)<} 1
<




=



śt− t

1+

{
(λ1+λ2)

(
θ1

t−θ1

)<} 1
<

 ,

ś t

1+

{
(λ1+λ2)

(
t−τ1

τ1

)<} 1
<

 ,

ś t

1+

{
(λ1+λ2)

(
t−σ1

σ1

)<} 1
<




= (λ1 ⊕ λ2)

ˆ
p

(5) (
ˆ
p1 ⊗

ˆ
p2)

λ =

ś t

1+

{(
θ1

t−θ1

)<
+

(
t−θ2

θ2

)<} 1
<

 ,

śt− t

1+

{(
τ1

t−τ1

)<
+

(
τ2

t−τ2

)<} 1
<

 ,

śt− t

1+

{(
σ1

t−σ1

)<
+

(
σ2

t−σ2

)<} 1
<





λ
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ś t

1+

{
λ

(
t−θ1

θ1

)<
+λ

(
t−θ2

θ2

)<} 1
<

 ,

śt− t

1+

{
λ

(
τ1

1−τ1

)<
+λ

(
τ2

t−τ2

)<} 1
<

 ,

śt− t

1+

{
λ

(
σ1

t−σ1

)<
+λ

(
σ2

t−σ2

)<} 1
<






ś t

1+

{
λ

(
θ1

t−θ1

)<} 1
<

 ,

śt− t

1+

{
λ

(
τ1

t−τ1

)<} 1
<

 ,

śt− t

1+

{
λ

(
σ1

t−σ1

)<} 1
<




⊗



ś t

1+

{
λ

(
t−θ2

θ2

)<} 1
<

 ,

śt− t

1+

{
λ

(
τ2

t−τ2

)<} 1
<

 ,

śt− t

1+

{
λ

(
σ2

t−σ2

)<} 1
<




=

ˆ
p

λ

1 ⊗
ˆ
p

λ

2

(6)
ˆ
p

λ1

1 ⊗
ˆ
p

λ2

1 =



ś t

1+

{
λ1

(
t−θ1

θ1

)<} 1
<

 ,

śt− t

1+

{
λ1

(
τ1

t−τ1

)<} 1
<

 ,

śt− t

1+

{
λ2

(
σ1

t−σ1

)<} 1
<





⊗



ś t

1+

{
λ2

(
t−θ1

θ1

)<} 1
<

 ,

śt− t

1+

{
λ2

(
τ1

t−τ1

)<} 1
<

 ,

śt− t

1+

{
λ2

(
σ1

t−σ1

)<} 1
<





=



ś t

1+

{
(λ1+λ2)

(
t−θ1

θ1

)<} 1
<

 ,

śt− t

1+

{
(λ1+λ2)

(
τ1

t−τ1

)<} 1
<

 ,

śt− t

1+

{
(λ1+λ2)

(
σ1

t−σ1

)<} 1
<




=

ˆ
p
(λ1+λ2)

1 .
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Definition 9. Let
ˆ
pk = (śθk , śτk , śσk )(k = 1, 2, ..., n) be a collection of LPFNs. Then, the linguistic picture

fuzzy Dombi weighted averaging (LPFDWA) operator can be defined as

LPFDWAf(
ˆ
p1,

ˆ
p2, ...,

ˆ
pn) =

n

∑
k=1

(fk
ˆ
pk), (7)

where the weighting vector of
ˆ
pk(k = 1, 2, ..., n) is f = (f1,f2, ...,fn)T , with fk > 0 and

n
∑

k=1
fk = 1.

Theorem 2. Let
ˆ
pk = (śθk , śτk , śσk )(k = 1, 2, ..., n) be a collection of LPFNs. Then, structure of linguistic

picture fuzzy Dombi weighted averaging (LPFDWA) operator is defined using Dombi operation with < > 0;

LPFDWAf(
ˆ
p1,

ˆ
p2, ...,

ˆ
pn) =

n

∑
k=1

(fk
ˆ
pk)

=



śt− t

1+

{
n
∑

k=1
fk

(
θk

t−θk

)<} 1
<

 ,

ś t

1+

{
n
∑

k=1
fk

(
t−τk

τk

)<} 1
<

 ,

ś t

1+

{
n
∑

k=1
fk

(
t−σk

σk

)<} 1
<




, (8)

where f = (f1,f2, ...,fn)T is the weighting vector of
ˆ
pk(k = 1, 2, ..., n), with fk > 0 and

n
∑

k=1
fk = 1.

Proof. (i) If n = 2, then using Dombi operations of LPFNs, we write

LPFDWAf(
ˆ
p1,

ˆ
p2) = (

ˆ
p1 ⊕

ˆ
p2)

=



śt− t

1+

{(
θ1

t−θ1

)<
+

(
θ2

t−θ2

)<} 1
<

 ,

ś t

1+

{(
t−τ1

τ1

)<
+

(
t−τ2

τ2

)<} 1
<

 ,

ś t

1+

{(
t−σ1

σ1

)<
+

(
t−σ2

σ2

)<} 1
<





=



śt− t

1+

{
2
∑

k=1

(
θk

t−θk

)<} 1
<

 ,

ś t

1+

{
2
∑

k=1

(
t−τk

τk

)<} 1
<

 ,

ś t

1+

{
2
∑

k=1

(
t−σk

σk

)<} 1
<




.

Hence, Equation (8) is valid for n = 2.
(ii) Assume that Equation (8) is valid for n = w, then, by Equation (3), we get

LPFDWAf(
ˆ
p1,

ˆ
p2, ...,

ˆ
pĥ) =

w
∑

k=1
(fk

ˆ
pk)
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=



śt− t

1+

{
w
∑

k=1

(
θk

t−θk

)<} 1
<

 ,

ś t

1+

{
w
∑

k=1

(
t−τk

τk

)<} 1
<

 ,

ś t

1+

{
w
∑

k=1

(
t−σk

σk

)<} 1
<




.

Now, for n = w + 1, then

LPFDWAf(
ˆ
p1,

ˆ
p2, ...,

ˆ
pw) =

w
∑

k=1
(fk

ˆ
pk)⊕fw+1

ˆ
pw+1

=



śt− t

1+

{
w
∑

k=1

(
θk

t−θk

)<} 1
<
)

 ,

ś t

1+

{
w
∑

k=1

(
t−τk

τk

)<} 1
<

 ,

ś t

1+

{
w
∑

k=1

(
t−σk

σk

)<} 1
<





⊕



śt− t

1+

{
fĥ+1

(
θw+1

t−θw+1

)<} 1
<

 ,

ś t

1+

{
fw+1

(
t−τw+1

τw+1

)<} 1
<

 ,

ś t

1+

{
fĥ+1

(
t−σw+1

σw+1

)<} 1
<
)





=



śt− t

1+

{
w+1

∑
k=1

fk

(
θk

t−θk

)<} 1
<

 ,

ś t

1+

{
w+1

∑
k=1

fk

(
t−τk

τk

)<} 1
<

 ,

ś t

1+

{
w+1

∑
k=1

fk

(
t−σk

σk

)<} 1
<




.

Thus, Equation (8) holds for n = w + 1, which is required.

Theorem 3. (Idempotency). If
ˆ
pk = (śθk , śτk , śσk )(k = 1, 2, ..., n) is a collection of LPFNs, then,

ˆ
pk =

ˆ
p∀k,

then LPFDWAf(
ˆ
p1,

ˆ
p2, ...,

ˆ
pn) =

ˆ
p.

Proof. Since
ˆ
pk = (śθk , śτk , śσk )(k = 1, 2, ..., n), then, by Equation (8), we have

LPFDWAf(
ˆ
p1,

ˆ
p2, ...,

ˆ
pn) =

n
∑

k=1
(fk

ˆ
pk)
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=



śt− t

1+

{
n
∑

k=1
fk

(
θk

t−θk

)<} 1
<

 ,

ś t

1+

{
n
∑

k=1
fk

(
t−τk

τk

)<} 1
<

 ,

ś t

1+

{
n
∑

k=1
fk

(
t−σk

σk

)<} 1
<





=

〈śt− t

1+

{(
θk

t−θk

)<} 1
<

 ,

ś t

1+

{(
t−τk

τk

)<} 1
<
)

 ,

ś t

1+

{(
t−σk

σk

)<} 1
<


〉

= (śθ , śτ , śσ) =
ˆ
p.

Thus,

LPFDWAf(
ˆ
p1,

ˆ
p2, ...,

ˆ
pn) =

ˆ
p.

Theorem 4. (Boundedness). Let
ˆ
pk = (śθk , śτk , śσk )(k = 1, 2, ..., n) be a collection of LPFNs. Assume that

ˆ
pk = min(śθk , śτk , śσk ) = (śθ−k

, śτ−k
, śσ−k

) and
ˆ
pk = max(śθk , śτk , śσk ) = (śθ+k

, śτ+k
, śσ+

k
), where śθ− =

mink(śθk ), śτ− = maxk(śτk ), śσ− = maxk(śσk ), śθ+ = maxk(śθk ), śτ+ = mink(śτk ), śσ+ = mink(śσk ).
Then, we haveśt− t

1+

{
n
∑

k=1
fk

(
θ−
t−θ

)<} 1
<

 ≤
śt− t

1+

{
n
∑

k=1
fk( θ

t−θ )
<
} 1
<

 ≤
śt− t

1+

{
n
∑

k=1
fk

(
θ+

t−θ+

)<} 1
<

 ,

śt− t

1+

{
n
∑

k=1
fk

(
τ−

t−τ−

)<} 1
<

 ≤
śt− t

1+

{
n
∑

k=1
fk( τ

t−τ )
<
} 1
<

 ≤
śt− t

1+

{
n
∑

k=1
fk

(
τ+

t−τ+

)<} 1
<

 ,

śt− t

1+

{
n
∑

k=1
fk

(
σ−
t−σ

)<} 1
<
)

 ≤
śt− t

1+

{
n
∑

k=1
fk( σ

t−σ )
<
} 1
<
)

 ≤
śt− t

1+

{
n
∑

k=1
fk

(
σ+

t−σ+

)<} 1
<

 .

Therefore,
ˆ

p− ≤ LPFDWAf(
ˆ
p1,

ˆ
p2, ...,

ˆ
pn) ≤

ˆ
p+.

Theorem 5. (Monotonicity). Let
ˆ
pk and

ˆ
p/

k(k = 1, 2, ..., n) be the two sets of LPFNs, if
ˆ
pk ≤

ˆ
p/

k∀k, then

LPFDWAf(
ˆ
p1,

ˆ
p2, ...,

ˆ
pn) = LPFDWAf(

ˆ

p/
1,

ˆ

p/
2, ...,

ˆ

p/
n),

where
ˆ

p/
k(k = 1, 2, ..., n) is the permutation of

ˆ
pk(k = 1, 2, ..., n).
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Definition 10. Let
ˆ
pk = (śθk , śτk , śσk )(k = 1, 2, ..., n) be a collection of LPFNs. Then, the linguistic picture

fuzzy Dombi order weighted averaging (LPFDOWA) operator can be defined as

LPFDOWAf(
ˆ
p1,

ˆ
p2, ...,

ˆ
pn) =

n

∑
k=1

(fk
ˆ
pk(δ)), (9)

where (δ(1), δ(2), ..., δ(n)) is the permutation of
ˆ
pk(k = 1, 2, ..., n), for which

ˆ
pk(δ−1) ≥

ˆ
pδ(k), and the

weighting vector of
ˆ
pk(k = 1, 2, ..., n) are f = (f1,f2, ...,fn)T , with fk > 0 and

n
∑

k=1
fk = 1.

Theorem 6. Let
ˆ
pk = (śθk , śτk , śσk )(k = 1, 2, ..., n) be a collection of LPFNs. Then, the structure of a linguistic

picture fuzzy Dombi weighted averaging (LPFDWA) operator is defined using Dombi operation with < > 0;

LPFDOWAf(
ˆ
p1,

ˆ
p2, ...,

ˆ
pn) =

n

∑
k=1

(fk
ˆ
pk(δ))

=



śt− t

1+

 n
∑

k=1
fk

(
θδ(k)

t−θδ(k)

)<
1
<

 ,

ś t

1+

 n
∑

k=1
fk

(
t−τδ(k)

τδ(k)

)<
1
<

 ,

ś t

1+

 n
∑

k=1
fk

(
t−σδ(k)

σδ(k)

)<
1
<




, (10)

where (δ(1), δ(2), ..., δ(n)) are the permutation of (k = 1, 2, ..., n), for which
ˆ
pk(δ−1) ≥

ˆ
pδ(k), with the

corresponding weighting vector of
ˆ
pk(k = 1, 2, ..., n) are f = (f1,f2, ...,fn)T , such that fk > 0 and

n
∑

k=1
fk = 1.

Theorem 7. (Idempotency). If
ˆ
pk = (śθk , śτk , śσk )(k = 1, 2, ..., n) is a collection of LPFNs that are all identical,

i.e.,
ˆ
pk =

ˆ
p∀k, then LPFDOWAf(

ˆ
p1,

ˆ
p2, ...,

ˆ
pn) =

ˆ
p.

Theorem 8. (Boundedness). Let
ˆ
pk = (śθk , śτk , śσk )(k = 1, 2, ..., n) be a collection of LPFNs. Assume that

ˆ
p− = mink

ˆ
pk, and

ˆ
p+ = maxk

ˆ
pk. Then,

ˆ
p− ≤ LPFDOWAf(

ˆ
p1,

ˆ
p2, ...,

ˆ
pn) ≤

ˆ
p+.

Theorem 9. (Monotonicity). Let
ˆ
pk and

ˆ
p/

k(k = 1, 2, ..., n) be the two sets of LPFNs, then

LPFDOWAf(
ˆ
p1,

ˆ
p2, ...,

ˆ
pn) = LPFDOWAf(

ˆ

p/
1,

ˆ

p/
2, ...,

ˆ

p/
n),

where
ˆ

p/
k(k = 1, 2, ..., n) is any permutation of

ˆ
pk(k = 1, 2, ..., n).
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Definition 11. A linguistic picture fuzzy Dombi hybrid weighted averaging (LPFDHWA) operator of dimension

n is a function LPFDHWA :
ˆ

pn → ˆ
p, with corresponding weight f = (f1,f2, ...,fn)T , such that fk > 0

and
n
∑

k=1
fk = 1. Therefore, LPFDHWA operator as defined as

LPFDHWAf(
ˆ
p1,

ˆ
p2, ...,

ˆ
pn) =

n

∑
k=1

(fk(δ)

ˆ
p∗δ(k))

=



śt− t

1+

 n
∑

k=1
fk

 θ∗
δ(k)

t−θ∗
δ(k)

<


1
<

 ,

ś t

1+

 n
∑

k=1
fk

 t−τ∗
δ(k)

τ∗
δ(k)

<


1
<

 ,

ś t

1+

 n
∑

k=1
fk

 t−σ∗
δ(k)

σ∗
δ(k)

<


1
<




, (11)

where
ˆ

p∗δ(k)is the kth largest weighted linguistic fuzzy values
ˆ

p∗ j(
ˆ

p∗k = nfk
ˆ

p∗k, k = 1, 2, ..., n), and f =

(f1,f2, ...,fn)T , with fk > 0 and
n
∑

k=1
fk = 1, where n is the balancing coefficient. When f = ( 1

n , 1
n , ..., 1

n ),

then LPFDWG and LPFDOWG operator is a specific type of LPFDHG operator. Thus, the generalized form of
LPFDWG and LPFDOWG is the LPFDHWG operator.

3.1. Linguistic Picture Fuzzy Dombi Geometric Operators

Definition 12. Let
ˆ
pk = (śθk , śτk , śσk )(k = 1, 2, ..., n) be a collection of LPFNs. Then, the linguistic picture

fuzzy Dombi weighted geometric (LPFDWG) operator can be defined as

LPFDWGf(
ˆ
p1,

ˆ
p2, ...,

ˆ
pn) =

n

∏
k=1

(
ˆ
pk)

fk , (12)

the weighting vector of
ˆ
pk(k = 1, 2, ..., n) are f = (f1,f2, ...,fn)T , where fk > 0 and

n
∑

k=1
fk = 1.

Theorem 10. Let
ˆ
pk = (śθk , śτk , śσk )(k = 1, 2, ..., n) be a collection of LPFNs. Then, the structure of linguistic

picture fuzzy Dombi weighted geometric (LPFDWG) operator is defined using Dombi operation with < > 0;

LPFDWGf(
ˆ
p1,

ˆ
p2, ...,

ˆ
pn) =

n

∏
k=1

(
ˆ
pk)

fk

=



ś t

1+

{
n
∑

k=1
fk

(
θk

t−θk

)<} 1
<

 ,

śt− t

1+

{
n
∑

k=1
fk

(
t−τk

τk

)<} 1
<

 ,

ś
t− t

1+

{
n
∑

k=1
fk

(
t−σk

σk

)<} 1
<




, (13)

where the weighting vector of
ˆ
pk(k = 1, 2, ..., n) is f = (f1,f2, ...,fn)T , with fk > 0 and

n
∑

k=1
fk = 1.
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Proof. (i) If n = 2, then using Dombi operations of LPFNs, we write

LPFDWGf(
ˆ
p1,

ˆ
p2) = (

ˆ
p1 ⊗

ˆ
p2)

=



ś t

1+

{(
t−θ1

θ1

)<
+

(
t−θ2

θ2

)<} 1
<

 ,

śt− t

1+

{(
τ1

t−τ1

)<
+

(
τ2

t−τ2

)<} 1
<

 ,

śt− t

1+

{(
σ1

t−σ1

)<
+

(
σ2

t−σ2

)<} 1
<





=



ś t

1+

{
2
∑

k=1

(
t−θk

θk

)<} 1
<

 ,

śt− t

1+

{
2
∑

k=1

(
τk

t−τk

)<} 1
<

 ,

śt− t

1+

{
2
∑

k=1

(
σk

t−σk

)<} 1
<




.

Hence, Equation (13) is valid for n = 2.
(ii) Assume that Equation (13) is valid for n = w, then, by Equation (4), we get

LPFDWGf(
ˆ
p1,

ˆ
p2, ...,

ˆ
pĥ) =

w
∑

k=1
(fk

ˆ
pk)

=



ś t

1+

{
w
∑

k=1

(
t−θk

θk

)<} 1
<

 ,

śt− t

1+

{
w
∑

k=1

(
τk

t−τk

)<} 1
<

 ,

śt− t

1+

{
w
∑

k=1

(
σk

t−σk

)<} 1
<




.

Now, for n = w + 1, then

LPFDWGf(
ˆ
p1,

ˆ
p2, ...,

ˆ
pw) =

w
∑

k=1
(

ˆ
pk)

fk ⊕ (
ˆ
pk+1)

fw+1

=



ś t

1+

{
w
∑

k=1

(
t−θk

θk

)<} 1
<
)

 ,

śt− t

1+

{
w
∑

k=1

(
τk

t−τk

)<} 1
<

 ,

śt− t

1+

{
w
∑

k=1

(
σk

t−σk

)<} 1
<





⊕



ś t

1+

{
fĥ+1

(
t−θw+1

θw+1

)<} 1
<

 ,

śt− t

1+

{
fw+1

(
τw+1

t−τw+1

)<} 1
<

 ,

śt− t

1+

{
fĥ+1

(
σw+1

t−σw+1

)<} 1
<
)
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=



ś t

1+

{
w+1

∑
k=1

fk

(
t−θk

θk

)<} 1
<

 ,

śt− t

1+

{
w+1

∑
k=1

fk

(
τk

t−τk

)<} 1
<

 ,

śt− t

1+

{
w+1

∑
k=1

fk

(
σk

t−σk

)<} 1
<




.

Thus, Equation (13) holds for n = w + 1, which is required.

Theorem 11. (Idempotency). If
ˆ
pk = (śθk , śτk , śσk )(k = 1, 2, ..., n) is a collection of LPFNs that are all identical,

i.e.,
ˆ
pk =

ˆ
p∀k, then LPFDWGf(

ˆ
p1,

ˆ
p2, ...,

ˆ
pn) =

ˆ
p.

Theorem 12. (Boundedness). Let
ˆ
pk = (śθk , śτk , śσk )(k = 1, 2, ..., n) be a collection of LPFNs. Assume that

ˆ
p− = mink

ˆ
pk, and

ˆ
p+ = maxk

ˆ
pk. Then,

ˆ
p− ≤ LPFDWGf(

ˆ
p1,

ˆ
p2, ...,

ˆ
pn) ≤

ˆ
p+.

Theorem 13. (Monotonicity). Let
ˆ
pk and

ˆ
p/

k(k = 1, 2, ..., n) be the two sets of LPFNs, then

LPFDWGf(
ˆ
p1,

ˆ
p2, ...,

ˆ
pn) = LPFDWGf(

ˆ

p/
1,

ˆ

p/
2, ...,

ˆ

p/
n),

where
ˆ

p/
k(k = 1, 2, ..., n) is any permutation of

ˆ
pk(k = 1, 2, ..., n).

Definition 13. Let
ˆ
pk = (śθk , śτk , śσk )(k = 1, 2, ..., n) be a collection of LPFNs. Then, the linguistic picture

fuzzy Dombi order weighted average (LPFDOWG) operator can be defined as

LPFDOWGf(
ˆ
p1,

ˆ
p2, ...,

ˆ
pn) =

n

∏
k=1

(
ˆ
pk(δ))

fk , (14)

where (δ(1), δ(2), ..., δ(n)) is the permutation of (k = 1, 2, ..., n), for which
ˆ
pk(δ−1) ≥

ˆ
pδ(k), and the weighting

vectors of
ˆ
pk(k = 1, 2, ..., n) are f = (f1,f2, ...,fn)T , with fk > 0 and

n
∑

k=1
fk = 1.
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Theorem 14. Let
ˆ
pk = (śθk , śτk , śσk )(k = 1, 2, ..., n) be a collection of LPFNs. Then, the structure of linguistic

picture fuzzy Dombi ordered weighted geometric (LPFDWG) operator is defined using Dombi operation with
< > 0;

LPFDOWGf(
ˆ
p1,

ˆ
p2, ...,

ˆ
pn) =

n

∏
k=1

(
ˆ
pk(δ))

fk

=



ś t

1+

 n
∑

k=1
fk

(
t−θδ(k)

θδ(k)

)<
1
<

 ,

śt− t

1+

 n
∑

k=1
fk

(
τδ(k)

t−τδ(k)

)<
1
<

 ,

śt− t

1+

 n
∑

k=1
fk

(
σδ(k)

t−σδ(k)

)<
1
<




, (15)

where (δ(1), δ(2), ..., δ(n)) is the permutation of (k = 1, 2, ..., n), for which
ˆ
pk(δ−1) ≥

ˆ
pδ(k), with the

corresponding weight vector of
ˆ
pk(k = 1, 2, ..., n) are f = (f1,f2, ...,fn)T , such that fk > 0 and

n
∑

k=1
fk = 1.

Theorem 15. (Idempotency). If
ˆ
pk = (śθk , śτk , śσk )(k = 1, 2, ..., n) is a collection of LPFNs that are all identical,

i.e.,
ˆ
pk =

ˆ
p∀k, then LPFDOWGf(

ˆ
p1,

ˆ
p2, ...,

ˆ
pn) =

ˆ
p.

Theorem 16. (Boundedness). Let
ˆ
pk = (śθk , śτk , śσk )(k = 1, 2, ..., n) be a collection of LPFNs. Assume that

ˆ
p− = mink

ˆ
pk, and

ˆ
p+ = maxk

ˆ
pk. Then,

ˆ
p− ≤ LPFDOWGf(

ˆ
p1,

ˆ
p2, ...,

ˆ
pn) ≤

ˆ
p+.

Theorem 17. (Monotonicity). Let
ˆ
pk and

ˆ
p/

k(k = 1, 2, ..., n) be the two sets of LPFNs, then

LPFDOWGf(
ˆ
p1,

ˆ
p2, ...,

ˆ
pn) = LPFDOWGf(

ˆ

p/
1,

ˆ

p/
2, ...,

ˆ

p/
n),

where
ˆ

p/
k(k = 1, 2, ..., n) is any permutation of

ˆ
pk(k = 1, 2, ..., n).
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Definition 14. A linguistic picture fuzzy Dombi hybrid weighted averaging (LPFDHWG) operator of

dimension n is a function LPFDHWG :
ˆ

pn → ˆ
p, with corresponding weight f = (f1,f2, ...,fn)T , such that

fk > 0 and
n
∑

k=1
fk = 1. Therefore, LPFDHWG operator as defined as

LPFDHWGf(
ˆ
p1,

ˆ
p2, ...,

ˆ
pn) =

n

∑
k=1

(fk(δ)

ˆ
p∗δ(k))

=



ś t

1+

 n
∑

k=1
fk

 t−θ∗
δ(k)

θ∗
δ(k)

<


1
<

 ,

śt− t

1+

 n
∑

k=1
fk

 τ∗
δ(k)

t−τ∗
δ(k)

<


1
<

 ,

śt− t

1+

 n
∑

k=1
fk

 σ∗
δ(k)

t−σ∗
δ(k)

<


1
<




, (16)

where
ˆ

p∗δ(k)is the kth largest weighted linguistic fuzzy values
ˆ

p∗ j(
ˆ

p∗k = nfk
ˆ

p∗k, k = 1, 2, ..., n),

and f = (f1,f2, ...,fn)T , with fk > 0 and
n
∑

k=1
fk = 1, where n is the balancing coefficient.

When f = ( 1
n , 1

n , ..., 1
n ), then LPFDWG and LPFDOWG operator is a specific type of LPFDHWG operator.

Thus, the generalized form of LPFDWG and LPFDOWG is an LPFDHWG operator.

4. Approach for Madm Using Linguistic Picture Fuzzy Information

Suppose that the set of alternatives is H = (H1, H2, ..., Hm), and the set of attributes is
D = (D1, D2, ..., Dn). Let the attributes weight vector be f = (f1,f2, ...,fn)T , with fk > 0 and

n
∑

k=1
fk = 1. Suppose that R = (śθgk , śτgk , śσgk )m×n is the linguistic picture fuzzy decision matrix, and śθgk

is the positive membership degree of the alternative Hk under the attribute Dk, śτgk is the neutral
membership degree of the alternative Hk under the attribute Dk, and śσgk is the negative membership
degree of the alternative Hk under the attribute Dk, which was given by the decision makers, where
śθgk ∈ Λ[0,9], śτgk ∈ Λ[0,9] and śσgk ∈ Λ[0,9].

Step 1. According to Equations (8) and (13), calculate the total preference values ψg(g = 1, 2, ..., m)

of the alternative Hg:

ψg = LPFDWA(ψg1, ψg2, ..., ψgn) =
n

∑
k=1

(fkψgk)

=



śt− t

1+

{
n
∑

k=1
fk

(
θk

t−θk

)<} 1
<

 ,

ś t

1+

{
n
∑

k=1
fk

(
t−τk

τk

)<} 1
<

 ,

ś t

1+

{
n
∑

k=1
fk

(
t−σk

σk

)<} 1
<




and
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ψg = LPFDWG(ψg1, ψg2, ..., ψgn) =
n

∑
k=1

(ψgk)
fk



ś t

1+

{
n
∑

k=1
fk

(
t−θk

θk

)<} 1
<

 ,

śt− t

1+

{
n
∑

k=1
fk

(
τk

t−τk

)<} 1
<

 ,

śt− t

1+

{
n
∑

k=1
fk

(
σk

t−σk

)<} 1
<




.

Step 2. Find the score values of ψg(g = 1, 2, ..., m) using the Definition 5.
Step 3. Give the ranking to the alternative ψg(g = 1, 2, ..., m), and choose the best one’s on the

basis of score index.

4.1. Example

Assume that there is a committee which selects five applicable emerging technology enterprises
Hg(g = 1, 2, 3, 4, 5). To assess the possible rising technology enterprises, one chooses four attributes,
which are D1 (advancement), D2 (market risk), D3 (financial investments) and D4 (progress of science
and technology). To avoid the conflict between them, the decision makers take the attribute weights
as f = (0.2, 0.1, 0.3, 0.4)T . The decision matrix is given in Table 1, where all the information is in the
format of LPFNs.

Table 1. Linguistic picture fuzzy numbers

D1 D2 D3 D2

H1 〈ś2, ś4, ś2〉 〈ś3, ś1, ś5〉 〈ś1, ś4, ś2〉 〈ś2, ś3, ś4〉
H2 (ś6, ś1, ś1) (ś5, ś2, ś1) (ś4, ś1, ś3) (ś3, ś3, ś1)
H3 (ś1, ś3, ś5) (ś2, ś3, ś3) (ś3, ś2, ś3) (ś4, ś1, ś2)
H4 (ś2, ś3, ś1) (ś4, ś2, ś2) (ś5, ś1, ś2) (ś2, ś2, ś4)
H5 (ś5, ś2, ś1) (ś1, ś3, ś4) (ś2, ś4, ś1) (ś1, ś5, ś2)

Step 1. Assume that the perimeter < = 1,and utilize the LPFDWAoperator to compute the total
preference values of ψg of emerging technology enterprises Hg (g = 1, ..., 5) :

ψ1 = LPFDWA(ψ11, ψ12, ψ13, ψ14) = 〈ś1.851, ś2.790, ś2.702〉 ,

ψ2 = LPFDWA(ψ21, ψ22, ψ23, ψ24) = 〈ś4.419, ś1.463, ś1.250〉 ,

ψ3 = LPFDWA(ψ31, ψ32, ψ33, ψ34) = 〈ś2.585, ś1.538, ś2.678〉 ,

ψ4 = LPFDWA(ψ41, ψ42, ψ43, ψ44) = 〈ś3.466, ś1.621, ś2.000〉 ,

ψ5 = LPFDWA(ψ51, ψ52, ψ53, ψ54) = 〈ś2.563, ś3.468, ś1.379〉 .

Step 2. Compute the score values using Definition 5, Ē(ψg)(g = 1, ..., 5) of the all LPFNs as
Ē(ψ1) = 0.2154, Ē(ψ2) = 0.5146, Ē(ψ3) = 0.1605,
Ē(ψ4) = 0.343, Ē(ψ5) = 0.5168.
Step 3. According to score values, rank all the emerging technology systems Ē(ψg)(g = 1, ..., 5)

of the LPFNs as

H5 > H2 > H4 > H1 > H3.

Step 4. Thus, Form the Table 2 the most preferable developing technology enterprise is H5.
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Table 2. Ranking order of influence of the parameters <, using a PFDWA operator.

< Ē(ψ1) Ē(ψ2) Ē(ψ3) Ē(ψ4) Ē(ψ5) Ranking

1 0.2154 0.5146 0.1605 0.3430 0.5168 H5 > H2 > H4 > H1 > H3
2 0.1943 0.5441 0.1761 0.4068 0.5747 H5 > H2 > H4 > H1 > H3
3 0.1764 0.5692 0.1874 0.4470 0.6062 H5 > H2 > H4 > H3 > H1
4 0.1698 0.5888 0.1964 0.4716 0.6221 H5 > H2 > H4 > H3 > H1
5 0.1697 0.6014 0.2038 0.4870 0.7423 H5 > H2 > H4 > H3 > H1
6 0.1724 0.6118 0.2100 0.4980 0.6370 H5 > H2 > H4 > H3 > H1
7 0.1757 0.6190 0.2147 0.5060 0.6411 H5 > H2 > H4 > H3 > H1
8 0.1790 0.6252 0.2180 0.5127 0.6440 H5 > H2 > H4 > H3 > H1
9 0.1831 0.6298 0.2220 0.5170 0.6460 H5 > H2 > H4 > H3 > H1
10 0.1862 0.6333 0.2250 0.5212 0.6481 H5 > H2 > H4 > H3 > H1

Ranking results of LPFDWA with average weights are shown in Figure 1.

Figure 1. Ranking results of LPFDWA.

Now, if we use the PFDWG operator, then the problem gives us the following results:
Step 1. Assume the parameter < = 1, and utilize the LPFDWG operator to compute the total

preference values of ψg of emerging technology enterprises Hg (g = 1, ..., 5).

ψ1 = LPFDWG(ψ11, ψ12, ψ13, ψ14) = 〈ś1.578, ś2.970, ś3.331〉 ,

ψ2 = LPFDWG(ψ21, ψ22, ψ23, ψ24) = 〈ś3.821, ś1.463, ś1.727〉 ,

ψ3 = LPFDWG(ψ31, ψ32, ψ33, ψ34) = 〈ś2.222, ś1.538, ś3.025〉 ,

ψ4 = LPFDWG(ψ41, ψ42, ψ43, ψ44) = 〈ś2.579, ś1.621, ś2.832〉 ,

ψ5 = LPFDWG(ψ51, ψ52, ψ53, ψ54) = 〈ś1.449, ś3.468, ś1.838〉 .

Step 2. Compute the score values using Definition 5, Ē(ψg)(g = 1, 2, ..., 5) of the all LPFNs as
Ē(ψ1) = 0.1152, Ē(ψ2) = 0.3250, Ē(ψ3) = 0.0816,
Ē(ψ4) = 0.1540, Ē(ψ5) = 0.3420.
Step 3. According to score values, the emerging technology systems Ē(ψg)(g = 1, 2, ..., 5) of the

LPFNs ranking are:
H5 > H2 > H4 > H1 > H3.

Step 4. Thus, Form the Table 3 the most preferable developing technology enterprise is H2.
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Table 3. Ranking order of influence of the parameters < using the PFDWG operator.

< Ē(ψ1) Ē(ψ2) Ē(ψ3) Ē (ψ4) Ē(ψ5) Ranking

1 0.1152 0.3420 0.0816 0.1540 0.3950 H5 > H2 > H4 > H1 > H3
2 0.0114 0.3217 0.0091 0.0777 0.3558 H5 > H2 > H4 > H1 > H3
3 −0.0680 0.1668 −0.0390 0.0288 0.2711 H5 > H2 > H4 > H3 > H1
4 −0.1230 0.1101 −0.0707 −0.0024 0.2370 H5 > H2 > H4 > H3 > H1
5 −0.1570 0.0708 −0.0920 −0.0230 0.2150 H5 > H2 > H4 > H3 > H1
6 −0.1820 0.0411 −0.1085 0.0372 0.1990 H5 > H2 > H4 > H3 > H1
7 −0.2175 0.0199 −0.1206 −0.4822 0.1870 H5 > H2 > H4 > H3 > H1
8 −0.2176 0.0037 −0.1300 0.0075 0.0667 H5 > H2 > H4 > H3 > H1
9 −0.2291 0.0097 −0.1303 −0.0621 0.1703 H5 > H2 > H4 > H3 > H1
10 −0.2398 −0.0192 −0.1481 −0.0672 0.1647 H5 > H2 > H4 > H3 > H1

Ranking results of LPFDWG with average weights are shown in Figure 2.

Figure 2. Ranking results of LPFDWG

5. Comparative Study

The concept proposed in this article approaches the linguistic picture fuzzy environment, although the
existing method [35,37] deals with the picture of fuzzy information and linguistic cubic variables but not in
LPFSs. Therefore, our defined operators LPFDWA and LPFDWG operators for the MADM method are
more accurate and precise. We compare our method with the Jana et al. [35] and Liu et al. [37]. In Table 4, we
write the comparative results, which show that our introduced methods are ordinary and more workable
than other existing methods to control linguistic picture fuzzy MADM problems.

Table 4. Comparison with some other existing approaches.

Method Ē(ψ1) Ē(ψ2) Ē(ψ3) Ē(ψ4) Ē(ψ5) Ranking

Proposed Method 0.2154 0.5146 0.1605 0.3430 0.5168 H5 > H2 > H4 > H1 > H3
C. Jana et al. 0.7293 0.8260 0.7960 0.8112 0.8016 H2 > H4 > H5 > H3 > H3
X. Lu and J. Ye 0.7620 0.7538 0.7596 0.7507 0.7556 H1 > H3 > H5 > H2 > H4

6. Conclusions

Multi-criteria decision-making has continuously been applied to many real-world problems.
Many techniques and methods have been proposed by the researchers in recently.

The aim of this manuscript is to present a series of Dombi operators to aggregate the linguistic PF
fuzzy information. Some properties like the idempotency, boundedness, and monotonicity of these
operators are discussed briefly. The proposed operators are compared with other existing well-known
operators, which shows that the proposed operators and their corresponding techniques provide more
stability and practicality during the aggregation process. An approach for solving the decision-making
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problems has been presented by taking different values of <, which makes the proposed operators
more flexible and offers various choices to the decision-makers for assessing the decisions.
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