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Abstract

:

The aims of this study are to propose the linguistic picture fuzzy Dombi (LPFD) aggregation operators and decision-making approach to deal with uncertainties in the form of linguistic picture fuzzy sets. LPFD operators have more flexibility due to the general fuzzy set. Utilizing the Dombi operational rule, the series of Dombi aggregation operators were proposed, namely linguistic picture fuzzy Dombi arithmetic/geometric, ordered arithmetic/ordered geometric and Hybrid arithmetic/Hybrid geometric aggregation operators. The distinguished feature of these proposed operators is studied. At that point, we have used these Dombi operators to design a model to deal with multiple attribute decision-making (MADM) issues under linguistic picture fuzzy information. Finally, an illustrative example to evaluate the emerging technology enterprises is provided to demonstrate the effectiveness of the proposed approach, together with a sensitivity analysis and comparison analysis, proving that its results are feasible and credible.
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1. Introduction


The intuitionistic fuzzy set (IFS) [1] has discussed only two categories of responses “yes” and “no”, but many real life problems have more then two types of responses, such that, in case of selection, we face three types of responses “yes”, “no” and “refusal”. Thus, to overcome this issue, Cuong [2,3] introduced a novel concept of picture fuzzy set (PFS), which is dignified in three different functions presenting the positive, neutral and negative membership degrees. Cuong [4] studied some characteristic of PFSs and also approved their distance measures. Cuong and Hai [5] defined firstly the fuzzy logic operators and implications functions for PFS. Cuong et al. [6] examined the characteristic of picture fuzzy t-norm and t-conorm. Phong et al. [7] examined certain configurations of PF relations. Wei et al. [8,9,10] defined many procedures to compute the closeness between PFSs. Presently, many researchers have developed more models in the PFS condition: a correlation coefficient of PFS is proposed by Sing [11] and applies it to clustering analysis. Son et al. [12,13] provided time arrangement calculation and temperature estimation on the basis of PFS domain. Son [14,15] defined picture fuzzy separation measures, generalized picture fuzzy distance measures and picture fuzzy association measures, and combined it to tackle grouping examination under PFS condition. A novel fuzzy derivation structure on PFS is defined by Son et al. [16] to improve the performance of the classical fuzzy inference system. To handle decision making problems, Ashraf et al. [17] introduced two decision techniques; firstly, they proposed a series of geometric aggregation operators and, secondly, introduced the TOPSIS method to deal with uncertainty in the form of PF sets. In addition, Ashraf et al. [18] proposed the PF linguistic set to deal with linguistic information in (decision-making) DM problems. Zeng et al. [19] proposed the exponential jensen PF divergence measure to deal with DM problems using PF information. Khan et al. [20] examined the application of a generalized PF soft set in DM problems. Khan et al. [21] introduced the Einstein aggregation operators for PF information. Thong et al. [22,23] proposed the DM approach using PF clustering to deal with uncertainty in the form of PF sets. Khan et al. [24] described the application of logarithmic aggregation operators of PF numbers in DM problems. Wei [25] proposed the series of aggregation operator to handle the decision problem using PF information. Peng et al. [26] proposed an PFS algorithm and tested it in decision-making. Bo and Zhang [27] studied some new operations of picture fuzzy relations such as type-2 inclusion relation, type-2 union, type-2 intersection and type-2 complement operations and also defined the anti-reflexive kernel, symmetric kernel, reflexive closure and symmetric closure of a picture fuzzy relation. For more detailed study, we refer to [28,29,30].



Dombi introduced [31] a new type of operations called the Dombi triangular norm and Dombi triangular conorm, demonstrating the preference of variability with the operation of parameters. For the first time in [32], Dombi operations were used for IFS to handle decision-making problems by introducing a Dombi Bonferroni mean operator. Dombi aggregation operation was further extended to a single neutrosophic set [33]. Travel decision-making problems were solved by using Dombi operations [34] by inspecting neutrosophic cubic sets. Dombi aggregation operations were further extended to linguistic cubic variables [35], Dombi hesitant fuzzy information [36] by utilizing the multi attribute decision-making methods to solve different real-life problems. Furthermore, Dombi picture fuzzy sets and aggregation operation are proposed in [37] for evaluating different significances of selections among others in the decision-making process. Bipolar fuzzy Dombi aggregation operators are introduced [38] based on arithmetic and geometric Dombi operations. Pythagorean fuzzy Dombi aggregation operators are proposed [39] for evaluating the uncertainty in decision-making problems. Application of spherical fuzzy Dombi aggregation operators is introduced [40] for evaluating the best alternative using spherical fuzzy information.



Motivated by the above discussion, we proposed the naval aggregation operators for linguistic picture fuzzy numbers using Dombi t-norm and Dombi t-conorm. The proposed operators play a vital role of aggregating the linguistic picture fuzzy information. For revelation and numerical application of the proposed operators, a numerical example is constructed. The rest of this study is designed as follows. Section 2 provides a brief overview of the basic knowledge of the extension of a linguistic fuzzy set. The novel Dombi aggregation operators are introduced in Section 3. Section 4 consists of some discussion on the application of a defined approach. In Section 5, we discussed the comparison and advantages of the proposed work and, finally, conclusions are drawn in Section 6.




2. Preliminaries


Definition 1.

([2]) Let H^ be a fixed set; then, a PFS p in h^ is defined as


p={(h^,α^p(h^),β^p(h^),γ^p(h^))|h^∈H^},



(1)




whereα^p(h^):H^⟶[0,1],h^∈H^⟶α^p(h^)∈[0,1];



β^p(h^):H^⟶[0,1],h^∈H^⟶β^p(h^)∈[0,1];γ^p(h^):H^⟶[0,1],



h^∈H^⟶α^p(h^)∈[0,1]satisfies the condition: 0≤α^p(h^),β^p(h^),γ^p(h^)≤1. Furthermore, α^p(h^),β^p(h^) and γ^p(h^) indicate the positive, neutral and negative grads of the element h^∈H^ to the set p, respectively. For each PFS, p⊆H^,πp(h^)=1−α^p(h^)−β^p(h^)−γ^p(h^) is said to be the refusal degree of H^ to p.





Definition 2.

([2,25]) Let p=(α^p(h^),β^p(h^),γ^p(h^)) and Q=(α^Q(h^),β^Q(h^),γ^Q(h^)) be two PFNs on the universe h^. Then, the operation laws between p and Q are stated as:



(1) p⊆Q, if α^p(h^)≤α^Q(h^),β^p(h^)≤β^Q(h^) and γ^p(h^)≥γ^Q(h^)∀h^∈H^;



(2) p=Q iff p⊆Q and p⊇Q;



(3) p∪Q=(h^,max{α^p(h^),α^Q(h^)},min{β^p(h^),β^Q(h^)},min{γ^p(h^),γ^Q(h^))|h^∈H^;



(4) p∩Q=(h^,min{α^p(h^),α^Q(h^)},max{β^p(h^),β^Q(h^)},max{γ^p(h^),γ^Q(h^))|h^∈H^;



(5) p/=γ^p(h^),β^p(h^),α^p(h^);



(6) p⊕Q=α^p(h^)+α^Q(h^)−α^p(h^).α^Q(h^),β^p(h^).β^Q(h^),γ^p(h^),γ^Q(h^);



(7) p⊗Q=α^p(h^).α^Q(h^),β^p(h^)+β^Q(h^)−β^p(h^).β^Q(h^),γ^p(h^)+γ^Q(h^)−γ^p(h^),γ^Q(h^);



(8) λp=1−(1−α^p(h^))λ,β^pλ(h^),γ^Qλ(h^);



(9) pλ=α^pλ(h^),1−(1−β^p(h^))λ,1−(1−γ^p(h^))λ.





Definition 3.

([41,42]) Let S´=(s´1,s´2,…,s´t) be the finite and absolutely order distinct term set. Then, S´ is the linguistic term set, where t is the odd value, e.g., 3,5,…, when t=5, then S´ can be written as S´=(s´1,s´2,s´3,s´4,s´5)= ( poor, slightly poor, fair, slightly good, good)



The following characteristics of the linguistic set S´ must be satisfied:



(1) Ordered :s´k≺s´l,⇔k≺l;



(2) Negation: neg (s´k)=s´t−1−k;



(3) Max: (s´k,s´l)=s´k, iff k≥l;



(4) Min: (s´k,s´l)=s´k, iff k≤l.



The extended form of the discrete term set S´ is called a continuous linguistic term set and defined as S´*={s´ψ|s´0≤s´ψ≤s´g,ψ∈[0,t], and, if s´ψ∈S´*, then s´ψ is called the original term otherwise, virtual term.





Definition 4.

([18]) Let H^≠0 and S´*={s´ψ|s´0≤s´ψ≤s´g,ψ∈[0,t] be a continuous linguistic set. Then, an LPFS is defined as


p={h^,s´θ(h^),s´τ(h^),s´σ(h^)|h^∈H^},



(2)




where s´θ(h^),s´τ(h^),s´σ(h^)∈s´* stands for the linguistic positive, linguistic neutral and linguistic negative degrees of the element H^ to p. We shall denote the triple of s´θ(h^),s´τ(h^),s´σ(h^) as p=s´θ,s´τ,s´σ and referred to as linguistic picture fuzzy value (LPFV).



For any h^∈h^, the condition θ+τ+σ≤t is always satisfied, and π(h^)=s´t−θ−τ−σ is the linguistic refusal degree of h^ to p. Obviously, if θ−τ−σ=t, then LPFS has the minimum linguistic indeterminacy degree, that is,π(h^)=s´0, which means the membership degree of h^ to p can be precisely expressed with a single linguistic term and LPFS p is reduced to a linguistic variable. On the contrary, if θ=τ=σ=0, then LPFS A(h^) has the maximum linguistic indeterminacy degree; that is, π(h^)=s´0.





Definition 5.

([43]) If p^=(s´θ,s´τ,s´σ) is an LPFN, then the score index and accuracy index is defined as


E¯(p^)=θ+τ−σt,E¯(p^)∈[−1,1],



(3)






L^(p^)=θ+τ+σt,L^(p^)∈[0,1].



(4)









Definition 6.

([17]) Let p^ and Q^ be the picture fuzzy numbers. Then, p^>Q^ iff;



(1) If Ē(p^)> Ē(Q^), then p^ is superior to Q^, denoted by p^>Q^;



(2) Ē(p^)= Ē(Q^), then



(a) L^(p^)>L^(Q^), implies that p^ is superior to Q^, denoted by p^>Q^;



(b)L^(p^)=L^(Q^), implies that p^ is equivalent to Q^, denoted by p^∼Q^;





Definition 7.

([31]) Let A and B be any two real numbers. If (A,B)∈[0,1]×[0,1], then Dombi traingular-norm and triangular-conorm are defined as


Do(A,B)=11+1−AAℜ+1−BBℜ1ℜ,



(5)






Doc(A,B)=1−11+A1−Aℜ+B1−Bℜ1ℜ,



(6)




where ℜ>0,Do(A,B)∈[0,1] and Doc(A,B)∈[0,1].






3. Linguistic Picture Fuzzy Arithmetic Aggregation Operators


Definition 8.

Let p^1=(s´θ1,s´τ1,s´σ1) and p^1=(s´θ2,s´τ2,s´σ2) be two LPFNs, ℜ>1 and λ>0. Then, Dombi triangular-conorm and Dombi triangular-conorm operation of LPFNs are expressed as



(1)p^1⊕p^2=s´t−t1+θ1t−θ1ℜ+θ2t−θ2ℜ1ℜ,s´t1+t−τ1τ1ℜ+t−τ2τ2ℜ1ℜ,s´t1+t−σ1σ1ℜ+t−σ2σ2ℜ1ℜ



(2) p^1⊗p^2=s´t1+t−θ1θ1ℜ+t−θ2θ2ℜ1ℜ,s´t−t1+τ1t−τ1ℜ+τ2t−τ2ℜ1ℜ,s´t−t1+σ1t−σ1ℜ+σ2t−σ2ℜ1ℜ



(3) λ.p^1=s´t−t1+λθ1t−θ1ℜ1ℜ,s´t1+λt−τ1τ1ℜ1ℜ,s´t1+λt−σ1σ1ℜ1ℜ



(4) p^1λ=s´t1+λt−θ1θ1ℜ1ℜ,s´t−t1+λτ1t−τ1ℜ1ℜ),s´t−t1+λσ1t−σ1ℜ1ℜ.





Example 1.

Let p^1=(s´3,s´2,s´5) and p^2=(s´6,s´3,s´3)∈Λ[0,9], be two LPFNs, then utilizing the Dombi operation defined in Definition 8 for ℜ=1, and λ=0.5, we get



(1)p^1⊕p^2=s´9−91+39−31+69−6111,s´91+9−221+9−33111,s´91+9−551+9−33111=s´6.43,s´7.62,s´6.64



(2)p^1⊕p^2=s´91+9−331+9−66111,s´9−91+29−21+39−3111,s´9−91+59−51+39−3111=s´2.57,s´3.94,s´5.72



(3)0.5.p^1=s´9−91+0.539−3111,s´91+0.59−22111,s´91+0.59−55111=s´1.80,s´3.27,s´6.42



(4)p^10.5=s´91+0.59−33111,s´9−91+0.529−2111,s´9−91+0.559−5111.=s´4.50,s´1.12,s´3.47





Theorem 1.

Let p^=(s´θ,s´τ,s´σ),p^1=(s´θ1,s´τ1,s´σ1) and p^1=(s´θ2,s´τ2,s´σ2) be two LPFNs, then we have



(1) p^1⊕p^2=p^2⊕p^1;



(2) p^1⊗p^2=p^2⊗p^1;



(3) λ(p^1⊕p^2)=λp^2⊕λp^1,λ>0;



(4) (λ1⊕λ2)p^=λ1p^⊕λ2p^,λ1,λ2>0;



(5) (p^1⊗p^2)λ=p^1λ⊗p^2λ,λ>0;



(6) p^λ1⊗p^λ2=p^(λ1+λ2),λ1,λ2>0.





Proof. 

(1) By Definition 8, we can write


p^1⊕p^2=s´t−t1+θ1t−θ1ℜ+θ2t−θ2ℜ1ℜ,s´t1+t−τ1τ1ℜ+t−τ2τ2ℜ1ℜ,s´t1+t−σ1σ1ℜ+t−σ2σ2ℜ1ℜ










=s´t−t1+θ2t−θ2ℜ+θ1t−θ1ℜ1ℜ,s´t1+t−τ2τ2ℜ+t−τ1τ1ℜ1ℜ,s´t1+t−σ2σ2ℜ+t−σ1σ1ℜ1ℜ










=p^2⊕p^1











(2) It is obvious.



(3) Let λ(p^1⊕p^2)=λs´t−t1+θ1t−θ1ℜ+θ2t−θ2ℜ1ℜ,s´t1+t−τ1τ1ℜ+t−τ2τ2ℜ1ℜ,s´t1+t−σ1σ1ℜ+t−σ2σ2ℜ1ℜ



=s´t−t1+λθ1t−θ1ℜ+λθ2t−θ2ℜ1ℜ,s´t1+λt−τ1τ1ℜ+λt−τ2τ2ℜ1ℜ,s´t1+λt−σ1σ1ℜ+λt−σ2σ2ℜ1ℜ



Now, λp^1⊕λp^2=s´t−t1+λθ1t−θ1ℜ1ℜ,s´t1+λt−τ1τ1ℜ1ℜ,s´t1+λt−σ1σ1ℜ1ℜ



⊕s´t−t1+λθ2t−θ2ℜ1ℜ,s´t1+λt−τ2τ2ℜ1ℜ,s´t1+λt−σ2σ2ℜ1ℜ



=s´t−t1+λθ1t−θ1ℜ+λθ2t−θ2ℜ1ℜ,s´t1+λt−τ1τ1ℜ+λt−τ2τ2ℜ1ℜ,s´t1+λt−σ1σ1ℜ+λt−σ2σ2ℜ1ℜ



=λ(p^1⊕p^2)



(4) λ1p^⊕λ2p^



=s´t−t1+λ1θ1t−θ1ℜ1ℜ,s´t1+λ1t−τ1τ1ℜ1ℜ,s´t1+λ1t−σ1σ1ℜ1ℜ



⊕s´t−t1+λ2θ1t−θ1ℜ1ℜ,s´t1+λ2t−τ1τ1ℜ1ℜ,s´t1+λ2t−σ1σ1ℜ1ℜ



=s´t−t1+(λ1+λ2)θ1t−θ1ℜ1ℜ,s´t1+(λ1+λ2)t−τ1τ1ℜ1ℜ,s´t1+(λ1+λ2)t−σ1σ1ℜ1ℜ



=(λ1⊕λ2)p^



(5) (p^1⊗p^2)λ=



s´t1+θ1t−θ1ℜ+t−θ2θ2ℜ1ℜ,s´t−t1+τ1t−τ1ℜ+τ2t−τ2ℜ1ℜ,s´t−t1+σ1t−σ1ℜ+σ2t−σ2ℜ1ℜλ



s´t1+λt−θ1θ1ℜ+λt−θ2θ2ℜ1ℜ,s´t−t1+λτ11−τ1ℜ+λτ2t−τ2ℜ1ℜ,s´t−t1+λσ1t−σ1ℜ+λσ2t−σ2ℜ1ℜ



s´t1+λθ1t−θ1ℜ1ℜ,s´t−t1+λτ1t−τ1ℜ1ℜ,s´t−t1+λσ1t−σ1ℜ1ℜ⊗



s´t1+λt−θ2θ2ℜ1ℜ,s´t−t1+λτ2t−τ2ℜ1ℜ,s´t−t1+λσ2t−σ2ℜ1ℜ=p^1λ⊗p^2λ



(6) p^1λ1⊗p^1λ2=s´t1+λ1t−θ1θ1ℜ1ℜ,s´t−t1+λ1τ1t−τ1ℜ1ℜ,s´t−t1+λ2σ1t−σ1ℜ1ℜ



⊗s´t1+λ2t−θ1θ1ℜ1ℜ,s´t−t1+λ2τ1t−τ1ℜ1ℜ,s´t−t1+λ2σ1t−σ1ℜ1ℜ



=s´t1+(λ1+λ2)t−θ1θ1ℜ1ℜ,s´t−t1+(λ1+λ2)τ1t−τ1ℜ1ℜ,s´t−t1+(λ1+λ2)σ1t−σ1ℜ1ℜ=p^1(λ1+λ2).  □





Definition 9.

Let p^k=(s´θk,s´τk,s´σk)(k=1,2,…,n) be a collection of LPFNs. Then, the linguistic picture fuzzy Dombi weighted averaging (LPFDWA) operator can be defined as


LPFDWA℧(p^1,p^2,…,p^n)=∑k=1n(℧kp^k),



(7)




where the weighting vector of p^k(k=1,2,σ,n) is ℧=(℧1,℧2,…,℧n)T, with ℧k>0 and ∑k=1n℧k=1.





Theorem 2.

Let p^k=(s´θk,s´τk,s´σk)(k=1,2,…,n) be a collection of LPFNs. Then, structure of linguistic picture fuzzy Dombi weighted averaging (LPFDWA) operator is defined using Dombi operation with ℜ>0;


LPFDWA℧(p^1,p^2,…,p^n)=∑k=1n(℧kp^k)=s´t−t1+∑k=1n℧kθkt−θkℜ1ℜ,s´t1+∑k=1n℧kt−τkτkℜ1ℜ,s´t1+∑k=1n℧kt−σkσkℜ1ℜ,



(8)




where ℧=(℧1,℧2,…,℧n)T is the weighting vector of p^k(k=1,2,…,n), with ℧k>0 and ∑k=1n℧k=1.





Proof. 

(i) If n=2, then using Dombi operations of LPFNs, we write



LPFDWA℧(p^1,p^2)=(p^1⊕p^2)



=s´t−t1+θ1t−θ1ℜ+θ2t−θ2ℜ1ℜ,s´t1+t−τ1τ1ℜ+t−τ2τ2ℜ1ℜ,s´t1+t−σ1σ1ℜ+t−σ2σ2ℜ1ℜ



=s´t−t1+∑k=12θkt−θkℜ1ℜ,s´t1+∑k=12t−τkτkℜ1ℜ,s´t1+∑k=12t−σkσkℜ1ℜ.



Hence, Equation (8) is valid for n=2.



(ii) Assume that Equation (8) is valid for n=w, then, by Equation (3), we get



LPFDWA℧(p^1,p^2,…,p^h^)=∑k=1w(℧kp^k)



=s´t−t1+∑k=1wθkt−θkℜ1ℜ,s´t1+∑k=1wt−τkτkℜ1ℜ,s´t1+∑k=1wt−σkσkℜ1ℜ.



Now, for n=w+1, then



LPFDWA℧(p^1,p^2,…,p^w)=∑k=1w(℧kp^k)⊕℧w+1p^w+1



=s´t−t1+∑k=1wθkt−θkℜ1ℜ),s´t1+∑k=1wt−τkτkℜ1ℜ,s´t1+∑k=1wt−σkσkℜ1ℜ



⊕s´t−t1+℧h^+1θw+1t−θw+1ℜ1ℜ,s´t1+℧w+1t−τw+1τw+1ℜ1ℜ,s´t1+℧h^+1t−σw+1σw+1ℜ1ℜ)



=s´t−t1+∑k=1w+1℧kθkt−θkℜ1ℜ,s´t1+∑k=1w+1℧kt−τkτkℜ1ℜ,s´t1+∑k=1w+1℧kt−σkσkℜ1ℜ.



Thus, Equation (8) holds for n=w+1, which is required.  □





Theorem 3.

(Idempotency). If p^k=(s´θk,s´τk,s´σk)(k=1,2,…,n) is a collection of LPFNs, then, p^k=p^∀k, then LPFDWA℧(p^1,p^2,…,p^n)=p^.





Proof. 

Since p^k=(s´θk,s´τk,s´σk)(k=1,2,…,n), then, by Equation (8), we have



LPFDWA℧(p^1,p^2,…,p^n)=∑k=1n(℧kp^k)



=s´t−t1+∑k=1n℧kθkt−θkℜ1ℜ,s´t1+∑k=1n℧kt−τkτkℜ1ℜ,s´t1+∑k=1n℧kt−σkσkℜ1ℜ



=s´t−t1+θkt−θkℜ1ℜ,s´t1+t−τkτkℜ1ℜ),s´t1+t−σkσkℜ1ℜ



=(s´θ,s´τ,s´σ)=p^.



Thus,


LPFDWA℧(p^1,p^2,…,p^n)=p^.








 □





Theorem 4.

(Boundedness). Let p^k=(s´θk,s´τk,s´σk)(k=1,2,…,n) be a collection of LPFNs. Assume that p^k=min(s´θk,s´τk,s´σk)=(s´θk−,s´τk−,s´σk−) and p^k=max(s´θk,s´τk,s´σk)=(s´θk+,s´τk+,s´σk+), where s´θ−=mink(s´θk),s´τ−=maxk(s´τk),s´σ−=maxk(s´σk),s´θ+=maxk(s´θk),s´τ+=mink(s´τk),s´σ+=mink(s´σk). Then, we have



s´t−t1+∑k=1n℧kθ−t−θℜ1ℜ≤s´t−t1+∑k=1n℧kθt−θℜ1ℜ≤s´t−t1+∑k=1n℧kθ+t−θ+ℜ1ℜ,



s´t−t1+∑k=1n℧kτ−t−τ−ℜ1ℜ≤s´t−t1+∑k=1n℧kτt−τℜ1ℜ≤s´t−t1+∑k=1n℧kτ+t−τ+ℜ1ℜ,



s´t−t1+∑k=1n℧kσ−t−σℜ1ℜ)≤s´t−t1+∑k=1n℧kσt−σℜ1ℜ)≤s´t−t1+∑k=1n℧kσ+t−σ+ℜ1ℜ.



Therefore,


p−^≤LPFDWA℧(p^1,p^2,…,p^n)≤p+^.













Theorem 5.

(Monotonicity). Let p^k and p/^k(k=1,2,…,n) be the two sets of LPFNs, if p^k≤p/^k∀k, then


LPFDWA℧(p^1,p^2,…,p^n)=LPFDWA℧(p/^1,p/^2,…,p/^n),








where p/^k(k=1,2,…,n) is the permutation of p^k(k=1,2,…,n).





Definition 10.

Let p^k=(s´θk,s´τk,s´σk)(k=1,2,…,n) be a collection of LPFNs. Then, the linguistic picture fuzzy Dombi order weighted averaging (LPFDOWA) operator can be defined as


LPFDOWA℧(p^1,p^2,…,p^n)=∑k=1n(℧kp^k(δ)),



(9)




where (δ(1),δ(2),…,δ(n)) is the permutation of p^k(k=1,2,…,n), for which p^k(δ−1)≥p^δ(k), and the weighting vector of p^k(k=1,2,…,n) are ℧=(℧1,℧2,…,℧n)T, with ℧k>0 and ∑k=1n℧k=1.





Theorem 6.

Let p^k=(s´θk,s´τk,s´σk)(k=1,2,…,n) be a collection of LPFNs. Then, the structure of a linguistic picture fuzzy Dombi weighted averaging (LPFDWA) operator is defined using Dombi operation with ℜ>0;


LPFDOWA℧(p^1,p^2,…,p^n)=∑k=1n(℧kp^k(δ))=s´t−t1+∑k=1n℧kθδ(k)t−θδ(k)ℜ1ℜ,s´t1+∑k=1n℧kt−τδ(k)τδ(k)ℜ1ℜ,s´t1+∑k=1n℧kt−σδ(k)σδ(k)ℜ1ℜ,



(10)




where (δ(1),δ(2),…,δ(n)) are the permutation of (k=1,2,…,n), for which p^k(δ−1)≥p^δ(k), with the corresponding weighting vector of p^k(k=1,2,…,n) are ℧=(℧1,℧2,…,℧n)T, such that ℧k>0 and ∑k=1n℧k=1.





Theorem 7.

(Idempotency). If p^k=(s´θk,s´τk,s´σk)(k=1,2,…,n) is a collection of LPFNs that are all identical, i.e., p^k=p^∀k, then LPFDOWA℧(p^1,p^2,…,p^n)=p^.





Theorem 8.

(Boundedness). Let p^k=(s´θk,s´τk,s´σk)(k=1,2,…,n) be a collection of LPFNs. Assume that p−^=minkp^k, and p+^=maxkp^k. Then,


p−^≤LPFDOWA℧(p^1,p^2,…,p^n)≤p+^.













Theorem 9.

(Monotonicity). Let p^k and p/^k(k=1,2,…,n) be the two sets of LPFNs, then


LPFDOWA℧(p^1,p^2,…,p^n)=LPFDOWA℧(p/^1,p/^2,…,p/^n),








where p/^k(k=1,2,…,n) is any permutation of p^k(k=1,2,…,n).





Definition 11.

A linguistic picture fuzzy Dombi hybrid weighted averaging (LPFDHWA) operator of dimension n is a function LPFDHWA:pn^→p^, with corresponding weight ℧=(℧1,℧2,…,℧n)T, such that ℧k>0 and ∑k=1n℧k=1. Therefore, LPFDHWA operator as defined as


LPFDHWA℧(p^1,p^2,….,p^n)=∑k=1n(℧k(δ)p*^δ(k))=s´t−t1+∑k=1n℧kθδ(k)*t−θδ(k)*ℜ1ℜ,s´t1+∑k=1n℧kt−τδ(k)*τδ(k)*ℜ1ℜ,s´t1+∑k=1n℧kt−σδ(k)*σδ(k)*ℜ1ℜ,



(11)




where p*^δ(k) is the kth largest weighted linguistic fuzzy values p*^j(p*^k=n℧kp*^k,k=1,2,…,n), and ℧=(℧1,℧2,…,℧n)T, with ℧k>0 and ∑k=1n℧k=1, where n is the balancing coefficient. When ℧=(1n,1n,…,1n), then LPFDWG and LPFDOWG operator is a specific type of LPFDHG operator. Thus, the generalized form of LPFDWG and LPFDOWG is the LPFDHWG operator.





3.1. Linguistic Picture Fuzzy Dombi Geometric Operators


Definition 12.

Let p^k=(s´θk,s´τk,s´σk)(k=1,2,…,n) be a collection of LPFNs. Then, the linguistic picture fuzzy Dombi weighted geometric (LPFDWG) operator can be defined as


LPFDWG℧(p^1,p^2,…,p^n)=∏k=1n(p^k)℧k,



(12)




the weighting vector of p^k(k=1,2,…,n) are ℧=(℧1,℧2,…,℧n)T, where ℧k>0 and ∑k=1n℧k=1.





Theorem 10.

Let p^k=(s´θk,s´τk,s´σk)(k=1,2,…,n) be a collection of LPFNs. Then, the structure of linguistic picture fuzzy Dombi weighted geometric (LPFDWG) operator is defined using Dombi operation with ℜ>0;


LPFDWG℧(p^1,p^2,…,p^n)=∏k=1n(p^k)℧k=s´t1+∑k=1n℧kθkt−θkℜ1ℜ,s´t−t1+∑k=1n℧kt−τkτkℜ1ℜ,s´t−t1+∑k=1n℧kt−σkσkℜ1ℜ,



(13)




where the weighting vector of p^k(k=1,2,…,n) is ℧=(℧1,℧2,…,℧n)T, with ℧k>0 and ∑k=1n℧k=1.





Proof. 

(i) If n=2, then using Dombi operations of LPFNs, we write



LPFDWG℧(p^1,p^2)=(p^1⊗p^2)



=s´t1+t−θ1θ1ℜ+t−θ2θ2ℜ1ℜ,s´t−t1+τ1t−τ1ℜ+τ2t−τ2ℜ1ℜ,s´t−t1+σ1t−σ1ℜ+σ2t−σ2ℜ1ℜ



=s´t1+∑k=12t−θkθkℜ1ℜ,s´t−t1+∑k=12τkt−τkℜ1ℜ,s´t−t1+∑k=12σkt−σkℜ1ℜ.



Hence, Equation (13) is valid for n=2.



(ii) Assume that Equation (13) is valid for n=w, then, by Equation (4), we get



LPFDWG℧(p^1,p^2,…,p^h^)=∑k=1w(℧kp^k)



=s´t1+∑k=1wt−θkθkℜ1ℜ,s´t−t1+∑k=1wτkt−τkℜ1ℜ,s´t−t1+∑k=1wσkt−σkℜ1ℜ.



Now, for n=w+1, then



LPFDWG℧(p^1,p^2,…,p^w)=∑k=1w(p^k)℧k⊕(p^k+1)℧w+1



=s´t1+∑k=1wt−θkθkℜ1ℜ),s´t−t1+∑k=1wτkt−τkℜ1ℜ,s´t−t1+∑k=1wσkt−σkℜ1ℜ



⊕s´t1+℧h^+1t−θw+1θw+1ℜ1ℜ,s´t−t1+℧w+1τw+1t−τw+1ℜ1ℜ,s´t−t1+℧h^+1σw+1t−σw+1ℜ1ℜ)



=s´t1+∑k=1w+1℧kt−θkθkℜ1ℜ,s´t−t1+∑k=1w+1℧kτkt−τkℜ1ℜ,s´t−t1+∑k=1w+1℧kσkt−σkℜ1ℜ.



Thus, Equation (13) holds for n=w+1, which is required.  □





Theorem 11.

(Idempotency). If p^k=(s´θk,s´τk,s´σk)(k=1,2,…,n) is a collection of LPFNs that are all identical, i.e., p^k=p^∀k, then LPFDWG℧(p^1,p^2,…,p^n)=p^.





Theorem 12.

(Boundedness). Let p^k=(s´θk,s´τk,s´σk)(k=1,2,…,n) be a collection of LPFNs. Assume that p−^=minkp^k, and p+^=maxkp^k. Then,


p−^≤LPFDWG℧(p^1,p^2,…,p^n)≤p+^.













Theorem 13.

(Monotonicity). Let p^k and p/^k(k=1,2,…,n) be the two sets of LPFNs, then


LPFDWG℧(p^1,p^2,…,p^n)=LPFDWG℧(p/^1,p/^2,…,p/^n),








where p/^k(k=1,2,…,n) is any permutation of p^k(k=1,2,…,n).





Definition 13.

Let p^k=(s´θk,s´τk,s´σk)(k=1,2,…,n) be a collection of LPFNs. Then, the linguistic picture fuzzy Dombi order weighted average (LPFDOWG) operator can be defined as


LPFDOWG℧(p^1,p^2,…,p^n)=∏k=1n(p^k(δ))℧k,



(14)




where (δ(1),δ(2),…,δ(n)) is the permutation of (k=1,2,…,n), for which p^k(δ−1)≥p^δ(k), and the weighting vectors of p^k(k=1,2,…,n) are ℧=(℧1,℧2,…,℧n)T, with ℧k>0 and ∑k=1n℧k=1.





Theorem 14.

Let p^k=(s´θk,s´τk,s´σk)(k=1,2,…,n) be a collection of LPFNs. Then, the structure of linguistic picture fuzzy Dombi ordered weighted geometric (LPFDWG) operator is defined using Dombi operation with ℜ>0;


LPFDOWG℧(p^1,p^2,…,p^n)=∏k=1n(p^k(δ))℧k=s´t1+∑k=1n℧kt−θδ(k)θδ(k)ℜ1ℜ,s´t−t1+∑k=1n℧kτδ(k)t−τδ(k)ℜ1ℜ,s´t−t1+∑k=1n℧kσδ(k)t−σδ(k)ℜ1ℜ,



(15)




where (δ(1),δ(2),…,δ(n)) is the permutation of (k=1,2,…,n), for which p^k(δ−1)≥p^δ(k), with the corresponding weight vector of p^k(k=1,2,…,n) are ℧=(℧1,℧2,…,℧n)T, such that ℧k>0 and ∑k=1n℧k=1.





Theorem 15.

(Idempotency). If p^k=(s´θk,s´τk,s´σk)(k=1,2,…,n) is a collection of LPFNs that are all identical, i.e., p^k=p^∀k, then LPFDOWG℧(p^1,p^2,…,p^n)=p^.





Theorem 16.

(Boundedness). Let p^k=(s´θk,s´τk,s´σk)(k=1,2,…,n) be a collection of LPFNs. Assume that p−^=minkp^k, and p+^=maxkp^k. Then,


p−^≤LPFDOWG℧(p^1,p^2,…,p^n)≤p+^.













Theorem 17.

(Monotonicity). Let p^k and p/^k(k=1,2,…,n) be the two sets of LPFNs, then


LPFDOWG℧(p^1,p^2,…,p^n)=LPFDOWG℧(p/^1,p/^2,…,p/^n),








where p/^k(k=1,2,…,n) is any permutation of p^k(k=1,2,…,n).





Definition 14.

A linguistic picture fuzzy Dombi hybrid weighted averaging (LPFDHWG) operator of dimension n is a function LPFDHWG:pn^→p^, with corresponding weight ℧=(℧1,℧2,…,℧n)T, such that ℧k>0 and ∑k=1n℧k=1. Therefore, LPFDHWG operator as defined as


LPFDHWG℧(p^1,p^2,…,p^n)=∑k=1n(℧k(δ)p*^δ(k))=s´t1+∑k=1n℧kt−θδ(k)*θδ(k)*ℜ1ℜ,s´t−t1+∑k=1n℧kτδ(k)*t−τδ(k)*ℜ1ℜ,s´t−t1+∑k=1n℧kσδ(k)*t−σδ(k)*ℜ1ℜ,



(16)




where p*^δ(k) is the kth largest weighted linguistic fuzzy values p*^j(p*^k=n℧kp*^k,k=1,2,…,n), and ℧=(℧1,℧2,…,℧n)T, with ℧k>0 and ∑k=1n℧k=1, where n is the balancing coefficient. When ℧=(1n,1n,…,1n), then LPFDWG and LPFDOWG operator is a specific type of LPFDHWG operator. Thus, the generalized form of LPFDWG and LPFDOWG is an LPFDHWG operator.







4. Approach for Madm Using Linguistic Picture Fuzzy Information


Suppose that the set of alternatives is H=(H1,H2,…,Hm), and the set of attributes is D=(D1,D2,…,Dn). Let the attributes weight vector be ℧=(℧1,℧2,…,℧n)T, with ℧k>0 and ∑k=1n℧k=1. Suppose that R=(s´θgk,s´τgk,s´σgk)m×n is the linguistic picture fuzzy decision matrix, and s´θgk is the positive membership degree of the alternative Hk under the attribute Dk, s´τgk is the neutral membership degree of the alternative Hk under the attribute Dk, and s´σgk is the negative membership degree of the alternative Hk under the attribute Dk, which was given by the decision makers, where s´θgk∈Λ[0,9],s´τgk∈Λ[0,9] and s´σgk∈Λ[0,9].



Step 1. According to Equations (8) and (13), calculate the total preference values ψg(g=1,2,…,m) of the alternative Hg:


ψg=LPFDWA(ψg1,ψg2,…,ψgn)=∑k=1n(℧kψgk)=s´t−t1+∑k=1n℧kθkt−θkℜ1ℜ,s´t1+∑k=1n℧kt−τkτkℜ1ℜ,s´t1+∑k=1n℧kt−σkσkℜ1ℜ








and


ψg=LPFDWG(ψg1,ψg2,…,ψgn)=∑k=1n(ψgk)℧ks´t1+∑k=1n℧kt−θkθkℜ1ℜ,s´t−t1+∑k=1n℧kτkt−τkℜ1ℜ,s´t−t1+∑k=1n℧kσkt−σkℜ1ℜ.











Step 2. Find the score values of ψg(g=1,2,…,m) using the Definition 5.



Step 3. Give the ranking to the alternative ψg(g=1,2,…,m), and choose the best one’s on the basis of score index.



4.1. Example


Assume that there is a committee which selects five applicable emerging technology enterprises Hg(g=1,2,3,4,5). To assess the possible rising technology enterprises, one chooses four attributes, which are D1 (advancement), D2 (market risk), D3 (financial investments) and D4 (progress of science and technology). To avoid the conflict between them, the decision makers take the attribute weights as ℧=(0.2,0.1,0.3,0.4)T. The decision matrix is given in Table 1, where all the information is in the format of LPFNs.



Step 1. Assume that the perimeter ℜ=1, and utilize the LPFDWAoperator to compute the total preference values of ψg of emerging technology enterprises Hg(g=1,…,5):


ψ1=LPFDWA(ψ11,ψ12,ψ13,ψ14)=s´1.851,s´2.790,s´2.702,ψ2=LPFDWA(ψ21,ψ22,ψ23,ψ24)=s´4.419,s´1.463,s´1.250,ψ3=LPFDWA(ψ31,ψ32,ψ33,ψ34)=s´2.585,s´1.538,s´2.678,ψ4=LPFDWA(ψ41,ψ42,ψ43,ψ44)=s´3.466,s´1.621,s´2.000,ψ5=LPFDWA(ψ51,ψ52,ψ53,ψ54)=s´2.563,s´3.468,s´1.379.











Step 2. Compute the score values using Definition 5, Ē(ψg)(g=1,…,5) of the all LPFNs as



Ē(ψ1)=0.2154, Ē(ψ2)=0.5146, Ē(ψ3)=0.1605,



Ē(ψ4)=0.343, Ē(ψ5)=0.5168.



Step 3. According to score values, rank all the emerging technology systems Ē(ψg)(g=1,…,5) of the LPFNs as


H5>H2>H4>H1>H3.











Step 4. Thus, Form the Table 2 the most preferable developing technology enterprise is H5.



Ranking results of LPFDWA with average weights are shown in Figure 1.



Now, if we use the PFDWG operator, then the problem gives us the following results:



Step 1. Assume the parameter ℜ=1, and utilize the LPFDWG operator to compute the total preference values of ψg of emerging technology enterprises Hg(g=1,…,5).


ψ1=LPFDWG(ψ11,ψ12,ψ13,ψ14)=s´1.578,s´2.970,s´3.331,ψ2=LPFDWG(ψ21,ψ22,ψ23,ψ24)=s´3.821,s´1.463,s´1.727,ψ3=LPFDWG(ψ31,ψ32,ψ33,ψ34)=s´2.222,s´1.538,s´3.025,ψ4=LPFDWG(ψ41,ψ42,ψ43,ψ44)=s´2.579,s´1.621,s´2.832,ψ5=LPFDWG(ψ51,ψ52,ψ53,ψ54)=s´1.449,s´3.468,s´1.838.











Step 2. Compute the score values using Definition 5, Ē(ψg)(g=1,2,…,5) of the all LPFNs as



Ē(ψ1)=0.1152, Ē(ψ2)=0.3250, Ē(ψ3)=0.0816,



Ē(ψ4)=0.1540, Ē(ψ5)=0.3420.



Step 3. According to score values, the emerging technology systems Ē(ψg)(g=1,2,…,5) of the LPFNs ranking are:


H5>H2>H4>H1>H3.











Step 4. Thus, Form the Table 3 the most preferable developing technology enterprise is H2.



Ranking results of LPFDWG with average weights are shown in Figure 2.





5. Comparative Study


The concept proposed in this article approaches the linguistic picture fuzzy environment, although the existing method [35,37] deals with the picture of fuzzy information and linguistic cubic variables but not in LPFSs. Therefore, our defined operators LPFDWA and LPFDWG operators for the MADM method are more accurate and precise. We compare our method with the Jana et al. [35] and Liu et al. [37]. In Table 4, we write the comparative results, which show that our introduced methods are ordinary and more workable than other existing methods to control linguistic picture fuzzy MADM problems.




6. Conclusions


Multi-criteria decision-making has continuously been applied to many real-world problems. Many techniques and methods have been proposed by the researchers in recently.



The aim of this manuscript is to present a series of Dombi operators to aggregate the linguistic PF fuzzy information. Some properties like the idempotency, boundedness, and monotonicity of these operators are discussed briefly. The proposed operators are compared with other existing well-known operators, which shows that the proposed operators and their corresponding techniques provide more stability and practicality during the aggregation process. An approach for solving the decision-making problems has been presented by taking different values of ℜ, which makes the proposed operators more flexible and offers various choices to the decision-makers for assessing the decisions.
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Figure 1. Ranking results of LPFDWA. 
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Figure 2. Ranking results of LPFDWG. 






Figure 2. Ranking results of LPFDWG.



[image: Mathematics 07 00764 g002]







[image: Table]





Table 1. Linguistic picture fuzzy numbers
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	D1
	D2
	D3
	D2





	H1
	s´2,s´4,s´2
	s´3,s´1,s´5
	s´1,s´4,s´2
	s´2,s´3,s´4



	H2
	(s´6,s´1,s´1)
	(s´5,s´2,s´1)
	(s´4,s´1,s´3)
	(s´3,s´3,s´1)



	H3
	(s´1,s´3,s´5)
	(s´2,s´3,s´3)
	(s´3,s´2,s´3)
	(s´4,s´1,s´2)



	H4
	(s´2,s´3,s´1)
	(s´4,s´2,s´2)
	(s´5,s´1,s´2)
	(s´2,s´2,s´4)



	H5
	(s´5,s´2,s´1)
	(s´1,s´3,s´4)
	(s´2,s´4,s´1)
	(s´1,s´5,s´2)
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Table 2. Ranking order of influence of the parameters ℜ, using a PFDWA operator.
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	ℜ
	Ē(ψ1)
	Ē(ψ2)
	Ē(ψ3)
	Ē(ψ4)
	Ē(ψ5)
	Ranking





	1
	0.2154
	0.5146
	0.1605
	0.3430
	0.5168
	H5>H2>H4>H1>H3



	2
	0.1943
	0.5441
	0.1761
	0.4068
	0.5747
	H5>H2>H4>H1>H3



	3
	0.1764
	0.5692
	0.1874
	0.4470
	0.6062
	H5>H2>H4>H3>H1



	4
	0.1698
	0.5888
	0.1964
	0.4716
	0.6221
	H5>H2>H4>H3>H1



	5
	0.1697
	0.6014
	0.2038
	0.4870
	0.7423
	H5>H2>H4>H3>H1



	6
	0.1724
	0.6118
	0.2100
	0.4980
	0.6370
	H5>H2>H4>H3>H1



	7
	0.1757
	0.6190
	0.2147
	0.5060
	0.6411
	H5>H2>H4>H3>H1



	8
	0.1790
	0.6252
	0.2180
	0.5127
	0.6440
	H5>H2>H4>H3>H1



	9
	0.1831
	0.6298
	0.2220
	0.5170
	0.6460
	H5>H2>H4>H3>H1



	10
	0.1862
	0.6333
	0.2250
	0.5212
	0.6481
	H5>H2>H4>H3>H1
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Table 3. Ranking order of influence of the parameters ℜ using the PFDWG operator.
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	ℜ
	Ē(ψ1)
	Ē(ψ2)
	Ē(ψ3)
	Ē(ψ4)
	Ē(ψ5)
	Ranking





	1
	0.1152
	0.3420
	0.0816
	0.1540
	0.3950
	H5>H2>H4>H1>H3



	2
	0.0114
	0.3217
	0.0091
	0.0777
	0.3558
	H5>H2>H4>H1>H3



	3
	−0.0680
	0.1668
	−0.0390
	0.0288
	0.2711
	H5>H2>H4>H3>H1



	4
	−0.1230
	0.1101
	−0.0707
	−0.0024
	0.2370
	H5>H2>H4>H3>H1



	5
	−0.1570
	0.0708
	−0.0920
	−0.0230
	0.2150
	H5>H2>H4>H3>H1



	6
	−0.1820
	0.0411
	−0.1085
	0.0372
	0.1990
	H5>H2>H4>H3>H1



	7
	−0.2175
	0.0199
	−0.1206
	−0.4822
	0.1870
	H5>H2>H4>H3>H1



	8
	−0.217
	0.0037
	−0.1300
	0.0075
	0.0667
	H5>H2>H4>H3>H1



	9
	−0.2291
	0.0097
	−0.1303
	−0.0621
	0.1703
	H5>H2>H4>H3>H1



	10
	−0.2398
	−0.0192
	−0.1481
	−0.0672
	0.1647
	H5>H2>H4>H3>H1
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Table 4. Comparison with some other existing approaches.
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	Method
	Ē(ψ1)
	Ē(ψ2)
	Ē(ψ3)
	Ē(ψ4)
	Ē(ψ5)
	Ranking





	Proposed Method
	0.2154
	0.5146
	0.1605
	0.3430
	0.5168
	H5>H2>H4>H1>H3



	C. Jana et al.
	0.7293
	0.8260
	0.7960
	0.8112
	0.8016
	H2>H4>H5>H3>H3



	X. Lu and J. Ye
	0.7620
	0.7538
	0.7596
	0.7507
	0.7556
	H1>H3>H5>H2>H4
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