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Abstract: A novel public key cryptographic algorithm using a matrix pattern is developed to
improve encrypting strength. Compared to the Rivest–Sharmir–Adleman (RSA) and Elliptic Curve
Cryptography (ECC) algorithms, our proposed algorithm has superior encrypting strength due to
several unknown quantities and one additional sub-equation during the encrypting process. Our
proposed algorithm also provides a faster encoding/decoding speed when the patient’s images for
tele-ultrasound applications are transmitted/received, compared to the RSA and ECC encrypting
algorithms, because it encodes/decodes the plain memory block by simple addition and multiplication
operations of n terms. However, the RSA and ECC algorithms encode/decode each memory block
using complex mathematical exponentiation and congruence. To implement encrypting algorithms
for tele-ultrasound applications, a streaming server was constructed to transmit the images to the
systems using ultrasound machines. Using the obtained ultrasound images from a breast phantom,
we compared our developed algorithm, utilizing a matrix pattern, with the RSA and ECC algorithms.
The elapsed average time for our proposed algorithm is much faster than that for the RSA and
ECC algorithms.

Keywords: cryptographic algorithm; matrix pattern; tele-ultrasound

1. Introduction

Ultrasound is a non-expensive, non-invasive, and non-ionizing medical imaging modality
compared to positron emission tomography (PET), single photo emission tomography (SPECT), and
X-ray or computer tomography (CT) [1–4]. Ultrasound machines have been widely used in a variety of
diagnostic areas, such as intravascular, esophageal, and intra-cardiac applications, and therapeutic areas,
such as prostate cancer, uterine fibroid treatment, and breast cancer applications [5–10]. Ultrasound
imaging or therapeutic machines have also been combined with other medical imaging modalities, such
as magnetic resonance imaging (MRI), PET, and CT [11–13]. However, examination of the ultrasound
images is operator-dependent, limited to trained medical specialists only [14,15].

Tele-ultrasound is a specific type of tele-medicine using commercial ultrasound machines [16–18].
When ultrasound examinations are performed remotely, the patient’s images obtained from the
ultrasound machine are transferred to other computers or terminal devices, including cellular phones
and tablet devices, for further diagnosis and treatment [16]. Over the past 10 years, tele-ultrasound
research has been widely involved with a variety of clinical applications, such as emergency diagnosis
and surgery, intensive care units, and remote education or consultation [18]. For emergency diagnosis,
ultrasound machines have recently been used as a diagnostic tool in ambulances for emergency
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diagnosis cases with non-physicians before patients arrive at the hospital or medical center [16]. In the
case of an emergency situation, the patient’s image data, obtained from the ultrasound machine in the
ambulance or emergency room, must be transferred though high-speed communication channels to
other workstations or computers should a medical clinician need to advise further diagnosis for the
immediate treatment and appropriate care of the patient [19].

Due to the development of the semiconductor industry, the manufacturing and fabrication costs of
the application-specific integrated circuit (ASIC), one of the main components of the portable ultrasound
scanner, have reduced [20–22]. Therefore, for intensive care applications, portable ultrasound scanners,
particularly, have been used to check the chests and abdomens of severely-injured patients or children
in emergency departments [17,23]. Remotely monitoring patients’ conditions with portable ultrasound
scanners provides real-time guidance for non-physicians through the acquisition of high-quality
images [24]. An example of a remote consultation application is the focused assessment sonography
for trauma (FAST) exam, operated by non-physicians, which has been utilized to check the free
intraperitoneal fluid in the abdomen area [25,26]. Therefore, an accurate consultation from a primary
doctor must be performed remotely in hospitals. By utilizing the FAST exam remotely, clinicians can
estimate the suspected abdomen area and may reduce any intra-abdominal bleeding in the liver or
cardiac area for the emergent situation before patients arrive at hospitals [27].

There are security issues when transferring and accessing patients’ data for tele-ultrasound
applications [28,29]. Recently, research has increased into technological approaches concerning the
security issues that surround the transmission and sharing of medical imaging data, as well as into
the development of tele-ultrasound applications [29]. Cryptographic algorithms for the encryption of
medical images in the tele-ultrasound areas are one of the fundamental mechanisms used for patient
confidentiality. A Kobayasi encrypting algorithm was introduced to extract the patients’ images and
security data for tele-medicine applications [30]. However, this encryption must extract the pixel data
and security data together to achieve the appropriate algorithms. Double chaotic layer encryption
was proposed for electroencephalograms (EEG), tele-medicine applications, which are effective for
low-frequency and low-size EEG data [31]. A cryptosystem based on the chaotic theory was proposed
for large data tele-ophthalmology applications and requires the production of pseudorandom sequences
and a highly-uniform histogram together [32]. The RSA algorithm, with 2-D discrete wavelet transform
watermarking procedures, was utilized for MRI, CT, and ultrasound medical images [33]. However,
these methods require the extraction of patients’ image data with the help of a private key in the
wavelet domain and, hence, require a large database and wavelet domain conversion process. Owing
to its higher security, elliptic curve cryptography (ECC) was used in wireless healthcare systems for
ultrasound machines instead of the RSA algorithms [34]. There are many encrypting algorithms for
tele-medicine applications, including tele-ultrasound applications. However, our developed public
key cryptographic algorithm using a matrix pattern may have a strong encrypting capability with a
faster transmit speed.

Digital imaging and communication in medicine (DICOM) is a standard of transmitting medical
images which are protected by digital signature algorithms and watermarking, both of which are
security mechanisms for medical image protection [35]. However, there are many terminal devices
for tele-ultrasound applications, such as cellular phones, personal digital assistants, tablets, and
readers. These terminal devices favor the use of other image formats, such as the tagged image file
format (TIFF), graphics interchange format (GIF), portable network graphics (PNG), joint photographic
experts group (JPEG) and JPEG-2000, independent JPEG (IJG), and Lempel–Ziv–Welch (LZW), because
they have limited data spaces and memory for efficient data transmission [16,36]. In other words, it
is essential that medical image transmission is compressed and encrypted. Therefore, our system
structure for tele-ultrasound applications must be tested using one of these compressed image formats
to demonstrate its encoding/decoding capabilities.

Figure 1 shows the flow chart of the proposed tele-ultrasound system with commercial ultrasound
systems. The patients’ DICOM or BMP images, obtained from the ultrasound system, are stored in a
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web server, then the encoding JPEG process is performed in the transmission system. The encoded
JPEG images are then transmitted through high-speed communication channels, such as Wi-Fi channels,
to the receiving system to de-code the compressed images.

Figure 1. Flow chart of proposed tele-ultrasound system methodology.

This paper is structured as follows. In Section II, we describe how to construct the RSA and
ECC algorithms and prove the algorithms mathematically. In Section III, we describe how to
construct our proposed algorithm and prove the algorithm mathematically. The proposed algorithm
introduced in this section is novel and it is obtained by the improvement of public key cryptosystem
and vector orthogonality. In Section IV, we show the measurement and comparison experimental
results of our proposed algorithm with other algorithms to evaluate the encrypting strength and the
encoding/decoding speed of each encrypting algorithm. Section V provides the concluding remarks of
this study.

2. Preliminary

We used the basic theory of Euler’s totient function, Euler’s theorem, and Euclid’s theorem
for constructing the cryptographic algorithms [37,38]. Euler’s totient function is defined below [39].
Euclid’s theorem can be expressed as a linear combination of the integers [40].

2.1. RSA Algorithm

The RSA algorithm is a famous cryptographic algorithm used by modern computers and
communications to encrypt and decrypt messages [41]. It is a kind of asymmetric and public key
cryptographic algorithm based on number theories [42]. The RSA algorithm is derived from Euler’s
totient function, Euler’s theorem, and Euclid’s theorem [43]. For any natural number n, Euler’s totient
function symbol is Φ(n), which refers to the number of positive integers that are less than n and coprime
with n. For the RSA algorithm, factorization of composite numbers that comprise sufficiently large two
prime numbers is too difficult. The key generation and the encoding and decoding steps for the RSA
algorithm are described as follows [44].

2.1.1. Key Generation Step

(A) Randomly choose two prime number integers p and q,

(p, q) = 1, (1)

where (p, q) is the greatest common divisor of p and q.
(B) Compute n = p × q, where n is used as modulo for both the public and private key.
(C) Compute Euler’s function Φ(n) using the two prime numbers p and q.

Φ(n) = Φ (p · q) = Φ(p) · Φ(q) = (p − 1) · (q − 1). (2)

(D) Choose an integer e such that
(Φ(n), e) = 1, (3)
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where 1 < e < Φ(n).
(E) Since (Φ(n), (e)=1 by Equation (3), there exist integers d and t such that ed + Φ(n)t = 1. Thus, we

can compute d by using Euclid’s theorem so that the product of e and d is as follows:

e · d ≡ 1 (mod Φ(n)). (4)

(F) Select the integers n and e as the public key, then, select the integers p, q, and d as the private key.

2.1.2. Encoding Step

(A) M is a separated memory block which is stored into the M1, M2, . . . , Mn such that it represents a
value in the range of 1 to n.

M= (M1, M2, . . . , Mn). (5)

(B) Encode to cipher block using the public key n and e to obtain Mi:

Mi
e
≡ Ci(mod n), (6)

where i = 1, 2, . . . .

2.1.3. Decoding Step

(A) The cipher block Ci is decrypted into Mi.
(B) Decode to plain block using the key p, q, and d.

Ci
d
≡Mi(mod n). (7)

2.2. Elliptic Curve Cryptographic Algorithm

The elliptic curve cryptography (ECC) system is based on a discrete logarithm problem of finite
fields defined on the elliptic curve group and is a public key cryptographic algorithm proposed
independently by Miller and Koblitz in 1985 [45]. This algorithm has been intensively researched for
number theories and algebraic geometry fields for 150 years and was also used to prove Fermat’s last
theorem [46]. Recently, the ECC theory has been used for factorization, primality test, and public key
cryptographic algorithms, which are the basic crypto-system [37]. The elliptic curve on a finite field is
a set such that

E =
{
(x, y) ∈ F× F

∣∣∣ y2 = x3 + ax + b
}
, (8)

where E is a set of the point (x, y) that satisfies the following equation: y2 = x3 + ax + b. However, the
characteristics of a finite field F are assumed as over 0 or 4. If the multiple root of the equation y2 = x3 +

ax + b does not exist, then
4a3 + 27b2 , 0. (9)

In the case of Equation (9), the sum of the set is the following: E(F) = E ∪O, where the set E
and infinite origin O are to the commutative group, as shown in Equations (10) and (11). We also
call the E(F) a group over elliptic curve. An additional theorem of a group over elliptic curve E(F) is
described below.

P + O = O + P = P, (10)

where ∃P ∈ E(F).
In Equation (10), P is a point on the E and the O is an identity element to satisfy the

commutative group.
(x, y) + (x, −y) = 0, i.e., −P = (x, −y), (11)

where P = (x, y) ∈ E(F).
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P = (x, y) is a point on the symmetry curve E. In the case: P , Q, Q , O, Q , −P
(2) P , Q,
Point K is an intersection point of PQ and E. The symmetry point K is defined to be P + Q.
(ii) P = Q,
Point K is an intersection point tangent to P and E. The symmetry point K is defined to be P + Q.
Figure 2 explains the elliptic curve. Let Equation (12) be the equation of the line through the

points P and Q.
y = αx + β, (12)

α = (y2 − y1)/(x2 − x1), (13)

β = y1 − αx1, (14)

(αx + β)2 = x3 + ax + b. (15)

Figure 2. Addition of a group over elliptic curve.

Using Equations (8) and (12), we can obtain Equations (13), (14), and (15). Therefore, we can
obtain the three valuables, x1, x2, and x3, in Equation (16).

x3 = α2
− x1 − x2. (16)

In addition, point (x3, y3) is on the straight line in Equation (12) such that we can obtain
Equation (17).

−y3 = αx3 + (y1 − αx1) = y1 + α(x3 − x1). (17)

Therefore, from (16) and (17), the coordinates (x3, y3) of P + Q can be represented by Equations (18)
and (19).

x3 =

(
y2 − y1

x2 − x1

)2

− x1 − x2, (18)

y3 = −y1 +

(
y2 − y1

x2 − x1

)
(x1 − x3). (19)
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The key generation and the encoding and decoding steps for the ECC algorithm are described as
follows [47].

2.2.1. Key Generation Step

(A) Select an elliptic curve group E(F) of a finite field F and select a maximum characteristic element
P of E(F).

(B) Select any integer α ∈ Z and calculate the element Q.

Q = αP. (20)

(C) Select (F, E(F)), elements P and Q as a public key, then select an integer α as a private key.

2.2.2. Encoding Step

(A) Prepare a plain memory block for the encoding of E(F).
(B) Select any integer k ∈ Z and encode the plain memory block M to cipher like a (C1, C2).

C1 = kP, C2 = M + KQ. (21)

2.2.3. Decoding Step

(A) Decode the cipher block.

C2 − αC1 = (M + KQ) − α(kP) = (M + kQ) − k Q = M. (22)

The security of modern ECC depends on the intractability of determining α from Q = α P given
known values of Q and P if α is sufficiently large (α ≥ 500). This is because the addition of two points
on an elliptic curve (or the addition of one point to itself) yields a third point on the elliptic curve
whose location has no obvious relationship to the locations of the first two, and repeating this many
times over yields a point αP that may be essentially anywhere.

3. Proposed Algorithm

The proposed algorithm uses an n × n matrix, three pairs of private/public keys, and a salt matrix
that makes it quite difficult to find the private keys [48]. The strength of the proposed algorithm is
given by the cipher changing by the salt matrix every encoding step.

3.1. Key Generation Algorithm

(A) Select a positive integer n and select the 1 × n matrix A to use as a first private key. The matrix A
is a super-increasing sequence [48,49].

A = (a1, a2, . . . , an),

where a1, a2, . . . , an are positive integers, such that we can obtain

ai >
i−1∑
j=1

a j, f or I = 2, . . . , n. (23)

(B) Select a positive integer m such that

(a1 + a2 + . . . , an) < m, (24)
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where m is used as a modulus of congruence.
(C) Select a 1 × n matrix K in Zm to use as a second private key.

K = (k1, k2, . . . , kn), (25)

where Zm = {0, 1, 2, . . . , m− 1} is the least complete residue class modulo m.
(D) Select Si (1 ≤ i ≤ n) in Zm such that

(k1S1 + k2S2 + . . . + knSn) ≡ O (mod m), (26)

where ki (1 ≤ I ≤ n) are the integers selected in (C).
(E) S is described as an n × n matrix to use as a first public key.

S =


s1 s1 . . . s1

s2 s2 . . . s2

. . . . . .
sn sn . . . sn

, (27)

where Si (1 ≤ i ≤ n) are the integers selected in (D).
(F) Select an n × n matrix B in Zm to use as a second public key such that

KB ≡ (a1, a2, . . . , an) (mod m), (28)

where ai and Si (1 ≤ i ≤ n) are the integers selected in (A) and (C), respectively.
(G) Use as public keys n, m, S, and B.

3.2. Encoding Algorithm

(A) Select an n × n random matrix P to use the element pij as a salt:

P = (Pij), (29)

where pij ∈ Zm, 1≤ i, j ≤ n.
(B) The plain memory block M to binary memory block:

M = (m1, m2, . . . , mn), (30)

where mi ∈ {0, 1}, j = 1,2, . . . , n.
(C) Encoding the plain memory block M:

(SP + B) ×MT ≡ CT (mod m), (31)

where C is a cipher block, S is a matrix using Equation (27), B is a matrix using Equation (28), P is
a matrix using Equation (29), and MT and CT are matrix transforms.

3.3. Decoding Algorithm

(A) Find a positive integer α such that

KCT
≡ α (mod m), (32)

where α ≡ (k1m1 + k2m2 + . . . + knmn) (mod m). Notice that α ≡ (α 1m1 + α 2m2 + . . . + α nmn)
(mod m).
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(B) Find a plain memory block.

mn =

{
0 : α < an

1 : α ≥ an
and mi =


0 : α −

n∑
j=i+1

a jm j < ai

1 : α −
n∑

j=i+1
a jm j ≥ ai

, (i = 1, 2, . . . , n− 1) (33)

According to the conditions, Deffuant models propose how to decide the threshold of the opinion
in the social networks [50,51]. However, this paper describes how to decide the plain memory block
value according to the conditions.

<Example of proposed algorithm>

1. Key Generation Step Let n = 4, the super-increasing sequence A = (1, 3, 5, 15) and let
m = 30. Select

K =
[

2 8 3 11
]

, S =


1 1 1 1
1 1 1 1
2 2 2 2
4 4 4 4

, and B =


0 4 1 2
0 1 0 1
3 2 1 1
2 1 0 0

.

Then, KS ≡ O (mod 30) and KB ≡ A (mod 30).
2. Public Keys: n, m, S, B and Private Keys: A, K
3. Encoding Step Let the plain text.

M ≡ [m1 m2 m3 m4] = [1 0 1 1].

Choose any 4 × 4 matrix

P =


5 1 3 1
1 0 1 4
3 1 0 3
4 1 2 7

.
The plain text M is encrypted by computing.

(SP + B)


1
0
1
1

 ≡


7
5

13
18

(mod 30)

The cipher text is C = [7 5 13 18].
4. Decoding Step

Compute

KCT =
[

2 8 3 11
] 

7
5

13
8

 = 291 ≡ 21 (mod 30)

This yields m1 + 3m2 + 5m3 + 15m4 = 21. Therefore, the cipher text C is decrypted as

[m1 m2 m3 m4] = [1 0 1 1].
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Table 1 shows the decoding procedure for the proposed public key cryptographic algorithm
process using matrix patterns. Using Equation (31) and private key A, the cipher memory is decoded
into matrix R. The initial α value is generated from Equation (32). After determination of sumA, which
satisfies α value from the elements of the matrix K, we store 1 or 0 as a result of matrix R using Equation
(33). If the row and column size of the matrix R reach zero, the decoding process is complete. The value
“α” is the same valuable in Equation (32). “Alpha-sumk” means that alpha minus sumK. “row and
column” are a row and a column of the matrix A or R, respectively.

Table 1. Decoding procedure of proposed algorithm.

Algorithm. Find a plain memory

INPUT: matrix A, α
OUTPUT: matrix R
alpha = α
procedure Decoding()

WHILE row > 0 DO
WHILE column > 0 DO

Set sumA to sum from A(1,1) to A(row, column)
IF alpha >= sumK THEN

Compute alpha as alpha - sumK
Set R(row,column) to 1

ELSE
Set R(row,column) to 0

ENDIF
Compute column as column - 1

ENDWHILE
Compute row as row - 1

ENDWHILE
RETURN with error code

We prove the proposed algorithm mathematically as shown below from Equation (34) to
Equation (38).

Figure 3 explains the sequence diagram regarding the key management of this study. To send the
coded message, Alice (sender) and Bob (receiver) are selected. Alice generates the super-increasing
subsequence matrix A and modulo m using Equations (23) and (24), then, the S and B public key using
Equations (26), (27), and (28) to pass them to Bob. Bob generates matrix S’ and B’, respectively, based
on the size of n and modulo m, and exchanges the public keys between Alice and Bob. Alice generates
a random matrix P to send a message M, encoding the message using Equation (31), then, sends that to
Bob. Bob decodes the received encrypted message using Equation (32).
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Figure 3. Key generation, exchange, and message encoding/decoding sequence.

3.4. Proof of the Algorithm

(A) We already know private key K when using Equation (25), cipher CT, and Equation (31).

α ≡ KCT (mod m). (34)

(B) We can transfer CT to Equation (37) when using Equation (31).

CT
≡

{
(SP + B) ×MT

}
(mod m). (35)

(C) We can calculate Equation (36).

K
{
(SP + B) ×MT

}
≡

{
(KS) × PMT + (KB) ×MT

}
(mod m). (36)

(D) (KS) equals to the matrix O when using Equation (26). Therefore, we obtain the following equation:{
O + (KB) ×MT

}
≡ (KB) ×MT(mod m). (37)



Mathematics 2019, 7, 752 11 of 19

(E) (KB) represents Equation (38) when using Equation (28).

(KB) ×MT
≡ (a1, a2, . . . , an)



m1

m2

.

.

.
mn


(mod m). (38)

(F) In Equation (39), we re-write Equation (32) to Equation (38).

α ≡ KCT
≡ K

{
(SP + B) ×MT

}
≡ (KS) × PMT + (KB) ×MT

≡ O + (KB) ×MT

≡ (KB) ×MT
≡ (a1, a2, . . . , an)



m1

m2

.

.

.
mn


≡ (a1m1 + a2m2 + . . . anmn) (mod m)

(39)

As most of the public key cryptographic algorithm uses the same key in its encryption process, it
is vulnerable to attacks when analysis of character frequency is used [52]. However, the public key
cryptographic algorithm proposed in this paper is much safer from these attack types because users
select the matrix at random aside from the public key when they encrypt plain memory. Figure 4
explains the differences between the RSA, ECC, and the proposed algorithms. Compared to the RSA
and ECC algorithms, our proposed algorithm used an additional matrix pattern, which could increase
the strength of the cryptographic capability as different codes can be created for every round compared
to the RSA and ECC algorithms, which make the same codes.

Figure 4. Cont.
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Figure 4. Encoding processes of (a) RSA and (b) proposed algorithms.

4. Results and Discussion

For the case of the RSA algorithm, there is a disadvantage that the same cipher text can be
generated in all rounds if the plain text is encoded with the same pattern. However, for the case of our
proposed algorithms, the matrix P, defined in Equation (28), can be generated randomly in all rounds
of encoding time when using Equation (31). Therefore, there is an advantage that different cipher texts
can be generated each time when the plain text of the same pattern is encoded with same public key.

Tele-medical transmission applications have been used to verify capability of the encrypting
algorithms using the time to find the private keys [53,54]. The probability P of finding the private keys
A and K from the proposed algorithm can be calculated by Equation (40). The probability of finding
each element in private key A in Equation (23) is used in Equation (40).

P =
1

n−1∏
i=0

m
2i

, (40)

where any integer n > 1 and m > 1.
For example, the calculated probability to find matrix A if integers n = 8 and m = 1024 are

1/17,592,186,044,416. It will take 557,844 years to find one matrix per second. For the larger integer m,
the probability is further reduced.

The private key K can be calculated as a matrix multiplication with the public key S using Equation
(26). However, it is impossible to find private keys for calculation because there are eight unknown
quantities and one additional subequation. For the RSA algorithm, it takes a long time to factorize the
prime numbers for a composite number over 100 digits [44]. Recent research has shown that the RSA
cryptosystem is rapidly breaking down when using quantum computers [55]. However, our proposed
algorithm increases encryption strength using private key A, which is less likely to be found, and
private key K, which cannot be computed mathematically, at the same time. Equation (41) describes
the public key and private key generation algorithm of the ECC:

y = gx (mod p), (41)

where any integer x > 1, g > 1, and p are prime.
We will describe how to perform the experimental results to estimate the encrypting strength.
RSA: We measured the elapsed fractional decomposition of the composite number 10,967,909

against the prime number 4,613,169.
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ECC: The p and x prime numbers in Equation (31) are fixed to 3461, 3169, and 1024. Then, the x
prime number that satisfies a private key y is sequentially retrieved to measure the elapsed time.

Proposed: After we set the matrix A for the private key (16,644; 34,543; 205,415; 307,306; 702,750;
1,388,246; 2,794,512; and 5,504,370) and set modulo m to 10,955,976 by Equation (24), we measured the
time to find the matrix elements searched for each element by Equation (33). The time complexity of
encoding is O (N × log m) in Equation (31) and the space complexity of encoding is 4 × N2 from the N
× N matrix S, P, B, and A.

In Table 2, the average elapsed time for searching the private key when using our proposed
algorithm (42.41753 ms) is much longer than those using the RSA and ECC encrypting algorithms,
respectively (2.80888 and 0.72106 ms). As a result, we observed that the search speed of the proposed
algorithm using a small value is much longer than that of the RSA and ECC algorithms, such that the
stability of the key is experimentally confirmed.

Table 2. Elapsed time (ms) to find private keys when using RSA, ECC, and the proposed algorithms.

Number of Experiments RSA ECC Proposed

1 2.8101 0.7209 42.4272
2 2.8092 0.7211 42.4146
3 2.8101 0.7214 42.4151
4 2.8078 0.7219 42.4147
5 2.8106 0.7166 42.4159
6 2.8089 0.7218 42.4216
7 2.8036 0.7212 42.4183
8 2.8092 0.7222 42.4131
9 2.8095 0.7218 42.4194

10 2.8098 0.7217 42.4154

Figure 5 shows the elapsed time to search the private key versus the number of experiments to
compare the encrypting strength for the RSA, ECC, and proposed algorithms. To show the encrypting
strength consistency for the algorithms, we repeated the test 10 times.

Figure 5. Elapsed time to find out private key vs. number of experiments to compare encrypting
strength when using RSA (yellow color), ECC (light blue color), and proposed algorithms (purple color).

The RSA algorithm searches the private key based on mathematical theory, therefore, it takes a
long time to decompose smaller numbers [44]. The ECC and proposed algorithms are the method
of probability to find each key element [47]. For the case of the ECC and proposed algorithms, we
consider the characteristics of this cryptographic algorithm, which assumes that the private key was
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known in advance. Therefore, we performed experiments with similar values in a range smaller than
the composite number used for the RSA.

To apply the encrypting algorithms for tele-ultrasound applications, the ultrasound images of
the multimodal breast phantom (Model 073, CIRS Inc., Norfolk, VA, USA) were obtained using a
commercial ultrasound machine (E-cube 12R, Alpinion Technology Inc., Seoul, South Korea). Figure 6
shows the setup of the commercial ultrasound machine with the breast phantom and its image.

Figure 6. (a) Commercial ultrasound machine with breast phantom and (b) breast phantom image.

In the experiment, libjpeg 9b version is used [56]. Using the libjpeg process, DICOM images were
obtained from the commercial ultrasound machine with the breast phantom and were converted to
JPEG images to reduce the image data size, because the tele-ultrasound applications have limited
bandwidths when using wireless channels, such as Wi-Fi [29]. Afterwards, the images were tested using
the RSA, ECC, and the proposed algorithms to check the encoding/decoding speeds, as communication
speed is an important merit for tele-ultrasound applications [16]. In this paper, we used an RSA
and ECC algorithm in the OpenSSL cryptographic library, which is an open license [56]. A Linux
stand-alone system composed of an Intel core i5 3.20 GHz, 6144 KB cache size, and 8 GB memory
was used to test the encrypting strength capability of the RSA, ECC, and our proposed algorithms.
Figure 7 shows the encoding/decoding procedure of the RSA, ECC, and the proposed algorithms. The
procedure details are described as below.

1. The DICOM image is converted to a JPEG image that is then reduced in size.
2. The JPEG image splits pixel data into plain memory by the encoder.
3. The encoding procedure performs the encoding process from the pixel data to the encoded data.
4. The decoding procedure performs the decoding process from the encoded data to the decoded data.
5. A JPEG image is produced by the decoder.
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Figure 7. Block diagram for encoding/decoding procedures of the RSA/ECC/proposed algorithms.

Table 3 shows the measured elapsed time to check the encoding speed when using the RSA, ECC,
and our proposed algorithms. To demonstrate the consistency in the algorithms, we repeated the test
10 times. The average elapsed time (0.0195 ms) when using our proposed algorithm is much faster than
those when using the RSA and ECC encrypting algorithms (4.4311 ms and 7.3931 ms, respectively).
Table 3 shows the measured elapsed time to check the encoding speed when using the RSA, ECC, and
our proposed algorithms. To demonstrate the consistency in the algorithms, we repeated the test 10
times. The average elapsed time (0.0195 ms) when using our proposed algorithm is much faster than
those when using the RSA and ECC encrypting algorithms (4.4311 ms and 7.3931 ms, respectively).

Table 3. Elapsed time (ms) to check the encoding speed when using the RSA, ECC, and
proposed algorithms.

Number of Experiments RSA ECC Proposed

1 4.4304 7.3606 0.0185
2 4.4315 7.3862 0.0184
3 4.4320 7.3959 0.0185
4 4.4315 7.3779 0.0185
5 4.4314 7.4165 0.0185
6 4.4317 7.4220 0.0184
7 4.4316 7.4005 0.0184
8 4.4306 7.4154 0.0299
9 4.4301 7.3790 0.0183

10 4.4309 7.3773 0.0183

Figure 8 shows the elapsed time to the check encoding speeds when using the RSA, ECC, and our
proposed algorithms. To show consistency in the encrypting algorithms, we repeated the test 10 times.
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Figure 8. Elapsed time vs. number of experiments to compare encoding speeds when using RSA (green
color), ECC (yellow color), and proposed algorithms (red color).

Table 4 shows the measured elapsed time to check the decoding speed when using the RSA, ECC,
and our proposed algorithms. The average elapsed time for the decoding speed when using our
proposed algorithm (0.0184 ms) is much faster than those when using the RSA and ECC encrypting
algorithms (4.4316 ms and 7.3891 ms, respectively). Therefore, we can conclude that our proposed
public key cryptographic algorithm using a matrix pattern could outperform, regarding the encoding
and decoding speeds, compared to the RSA and ECC algorithms.

Table 4. Elapsed time (ms) to check decoding speed when using RSA, ECC, and proposed algorithms.

Number of Experiments RSA ECC Proposed

1 4.4316 7.3736 0.0185
2 4.4320 7.3836 0.0185
3 4.4309 7.3850 0.0184
4 4.4312 7.3900 0.0184
5 4.4329 7.4220 0.0185
6 4.4315 7.3790 0.0185
7 4.4318 7.3886 0.0184
8 4.4320 7.3830 0.0183
9 4.4318 7.4070 0.0187

10 4.4312 7.3798 0.0184

Figure 9 shows the elapsed time to check the decoding speeds of the RSA, ECC, and our
proposed algorithms.

Figure 9. Elapsed time vs. number of experiments to compare decoding speeds when using RSA (green
color), ECC (yellow color), and proposed algorithms (red color).
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In this paper, we did not address the entire information security system for the ultrasound
machines. Distributed multi-agent is a technique for securing the information integrity held by each
agent. A security system mechanism using distributed multi-agent was recently proposed [57,58]. A
strong security system can be constructed with an encryption algorithm with distributed multi-agent
security system technology.

5. Conclusions

In addition to the hardware development for ultrasound machines, wireless internet technology
development will boost the usage of tele-ultrasound applications because tele-ultrasound requires a fast
internet access speed for immediate diagnosis and remote treatment. For our proposed algorithm, it is
impossible to find the private keys for the calculation because there are 8 unknown quantities and one
additional subequation. The average elapsed time to search the private key when using our proposed
algorithm (42.41753 ms) is much longer than those when using RSA and ECC encrypting algorithms,
respectively (2.80888 ms and 0.72106 ms). Therefore, our proposed algorithm shows more difficulty
in the search of private keys such that it has a superior performance for the encrypting strength of
the image data compared to the RSA and ECC algorithms, which are widely used for tele-ultrasound
applications. In addition, our proposed algorithm encodes/decodes the plain memory block by the
addition and multiplication of n terms. However, the RSA and ECC encode/decode each memory
block with complex mathematical exponentiation and congruence. The average elapsed encoding time
(0.0195 ms) for our proposed algorithm is much faster than the RSA and ECC algorithms (4.4311 ms and
7.3931 ms, respectively). The average elapsed decoding time (0.0184 ms) for our proposed algorithm is
also much faster than the RSA and ECC algorithms (4.4316 ms and 7.3891 ms, respectively). As a result,
our proposed algorithm encoding/decoding speed is faster than the RSA and ECC encoding/decoding
speeds. Therefore, our proposed public key cryptographic algorithm using a matrix pattern could be
an alternative solution for tele-ultrasound applications due to its superior encrypting strength and
faster encoding/decoding time. The overall security system for medical information systems, such as
PACS, is considered to be a stable system if a cryptographic algorithm is applied.
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