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Abstract: The current research explores the injection of a viscous fluid through a moving flat plate
with a transverse uniform magneto-hydrodynamic (MHD) flow field to reduce sliding drag. Two cases
of velocity slip between the slider and the ground are studied: a long slider and a circular slider.
Solving the porous slider problem is applicable to fluid-cushioned porous sliders, which are useful
in reducing the frictional resistance of moving bodies. By using a similarity transformation, three
dimensional Navier–Stokes equations are converted into coupled nonlinear ordinary differential
equations. The resulting nonlinear boundary value problem was solved analytically using the
homotopy analysis method (HAM). The HAM provided a fast convergent series solution, showing
that this method is efficient, accurate, and has many advantages over the other existing methods.
Solutions were obtained for the different values of Reynolds numbers (R), velocity slip, and magnetic
fields. It was found that surface slip and Reynolds number had substantial influence on the lift and
drag of the long and the circular sliders. Moreover, the effects of the applied magnetic field on the
velocity components, load-carrying capacity, and friction force are discussed in detail with the aid of
graphs and tables.

Keywords: porous slider; MHD flow; reynolds number; velocity slip; homotopy analysis method

1. Introduction

It is a well-established fact that a moving body reduces drag if it is elevated by a layer of
air. This phenomenon is used in air-cushioned vehicles and in air hockey, in which the frictional
resistance of moving objects is reduced. Skalak and Wang [1] were the pioneers of studying the
three-dimensional flow that arises between a moving porous flat plate and the ground, and they
later on wrote an erratum on their own paper [2]. Wang also studied elliptical porous sliders [3].
In the case of Newtonian fluids, past studies have included porous circular, long, inclined, and
elliptical sliders. R. C. Bhattacharjee studied a porous slider bearing lubricated with a coupled stress (a
magneto-hydrodynamic (MHD) fluid) [4]. Jimit made a comparison of the different porous structures
on the performance of a magnetic fluid [5]. Prawal Sinha analyzed the thermal effects of a long porous
rough slider bearing [6]. Mohmmadrayian analyzed a rough porous inclined slider bearing lubricated
with a ferrofluid in consideration of slip velocity [7]. Ji Lang both theoretically and experimentally
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investigated the transient squeezing flow in a highly porous film [8]. Similarly, a large amount of
literature is available in relation to long porous sliders (LPSs) [1,6,9–13] and circular porous sliders
(CPSs) [2,14–18]. Awati investigated the lubrication of a long porous slider by using the homotopy
analysis method (HAM) [10]. In a separate study, Khan studied the effects of Reynolds numbers
by using different analytical methods [11,12]. Naeem studied the influence of Reynolds numbers
(R) on long [13] and circular porous sliders [18]. Ghoreishi studied the circular slider [14]. Madani
investigated the circular porous slider by using HPM, and also analyzed its lift and drag [19].

All the above mentioned studies were done without a slip condition on either the immobile
ground or slider. However, a slip condition is essential for super-hydrophobic planes, as it is difficult to
have a zero mean tangential velocity from where the fluid is injected when there is a slip. Furthermore,
in order to minimize adhesion, the fluid could be a rarefied gas, where the compact exterior could be
coated with a material, or the ground could be uneven so that an equivalent slip exists or there is a slip
flow regime. Wang [16] discussed slip effects, but didn’t consider the effects of a transverse magnetic
field. Therefore, the goal of the current work is to examine the impact of slip and Reynolds numbers
when a transverse magnetic field is affecting the performance of a porous slider. Through the literature
survey, it is assumed that a three-dimensional flow with slip and a uniform magnetic field does not
exist. Hence, the goal of the current research is to analyze the performance of porous sliders in the
presence of slip and a Reynolds number with a constant magnetic field, and to assess their effects on
the components of velocity lift and drag.

The structure of the article is as follows: In the introduction, a brief history of the problem of the
porous slider and its application is presented. In the second section, the formulation of the problems are
given, while in the third section the formulation of a homotopic solution is presented [20]. The fourth
section deals with the convergence criteria of the HAM. Results and discussions are given in the fifth
section. Finally, the conclusion is given in the sixth section, with a list of nomenclature.

As discussed above, the velocity slip condition is considered in this study. Navier introduced the
slip condition for the first time as follows:

x1 = Hς (1)

In Equation (1), tangential velocity u is proportional to the shear stress and H is the constant of
proportionality, which is actually a slip coefficient. In order to ignore the end effects, it is assumed that
the gap between slider and ground is quite small as compared to the slider’s lateral dimension. Both
circular and long porous sliders are considered in this study.

2. Problem Formulation of Long and Circular Sliders

In this study, the incompressible and steady flow of a viscous fluid between porous (long and
circular) sliders and the ground is considered in the presence of a uniform magnetic field, as shown in
Figure 1.
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Figure 1. (a) Schematic diagram of the movement of a long porous slider (LPS). (b) Schematic diagram
of the movement of a circular porous slider (CPS).

Length and width are quite big compared to height d. The slider moves with the velocity
components and is elevated because of the injection of fluid from below with a magnetic field applied
externally. In order to avoid the induced magnetic field formed by the movement of the fluid, it is
assumed that the magnetic Reynolds number is not very big. Furthermore, the induced and imposed
electric field are supposed to be negligible, and therefore the electromagnetic body force per unit
volume simplifies Fem = σ0(v× B) × B, where B =(0, 0, B0) is the magnetic field.

Under the above-stated assumptions and conditions, Navier–Stokes equations take the
following form:
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φ1
∂φ3
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 (4)

Velocity components are expressed as (φ1,φ2,φ3), where ρ, p, and υ are density, pressure and
kinematic viscosity, respectively. Law of conservation of mass is as follows:

∂φ1

∂x1
+
∂φ2

∂x2
+
∂φ3

∂x3
= 0 (5)

According to Naeem [13], the following transform has been used:

φ1 = Uψ1(ς) +
W
d

x1ψ3
/(ς),φ2 = Vψ2(ς),φ3 = −Wψ3(ς). (6)

where ς = x3
d . By adding Equation (6) into Equations (2)–(4), the following ordinary differential

equations are obtained:
ψiv

3 = R
(
ψ/

3ψ
//
3 −ψ3ψ

///
3

)
+ M2ψ/

3 (7)

ψ//
1 = R

(
ψ1ψ

/
3 −ψ3ψ

/
1

)
+ M2ψ1 (8)

ψ//
2 = −R

(
ψ1ψ

/
2

)
+ M2ψ2 (9)

where R is the Reynolds number (R = Wd/υ). Boundary conditions at x3 = 0 and x3 = d are given in
Equations (10) and (11), respectively.

φ1 = U + H1µ
∂φ1

∂x3
, φ2 = V + H1µ

∂φ2

∂x3
, φ3 = 0 (10)

φ1 = −H2µ
∂φ1

∂x3
, φ2 = −H2µ

∂φ2

∂x3
= 0, φ3 = −W (11)

where H1, H2, and µ = ρυ are slip coefficients and viscosity, respectively. Equations (10) and (11) take
the following form:

ψ/
3 (0) = β1ψ

//
3 (0) =,ψ3(0) = 0,

ψ3(1) = 1,ψ/
3 (1) = −β2ψ

//
3 (1),

ψ1(1) = −β2ψ
/
1 (1),ψ1(0) − 1 = β1ψ

/
1 (0),

ψ2(1) = −β2ψ
/
2 (1),ψ2(0) − 1 = β1ψ

/
2 (0).

(12)

where β1 = H1µ/d, β2 = H2µ/d are slip factors. Equations (7)–(9) and (12) will be solved by the HAM.
The expression for pressure can be deduced from Equations (2)–(4) as follows:

−
p
ρ
=

W2Λx2
1

2d
+

1
2
φ2

3 − γφ3,x3 + A (13)

where Λ, A are constants and
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(
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1
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If 2l is the width of the slider with ambient pressure ρ0, then Equation (13) gives

p− p0 = −ρ
ΛW2

(
x2

1 − l2
)

2d2 . (15)
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The relationship between depth and lift can be expressed as follows:

L =

1∫
−1

(p− p0)dx =
2ρW2l3

3d2 Λ. (16)

where 2ρW2l3/
(
3d2

)
is normalized factor. The relationship between depth and drag in the x1−

direction is

Dx1 = −

1∫
−1

µ
∂φ1

∂x3
| z=ddx1 = −

2µUl
d

ψ/
1 (1). (17)

Similarly, 2µUl/d is the normalized factor of drag in the x1− direction, which is −ψ/
1 (1), while

−ψ/
2 (1) is normalized drag for the x2− direction:

Dx2 = −

1∫
−1

µ
∂φ2

∂x3
| z=ddx1 = −

2µVl
d

ψ/
2 (1). (18)

Similarly, from Figure 1b, a circular slider can be seen, where L is the radius of the slider (which
can be assumed to be comparatively bigger than the width). Since the slider is levitated, the axes on
the slider can be fixed so that the ground is moving with a velocity component in the x1− direction.
For the circular slider, a similar transform [18] helps to reduce the partial differential equations into
ordinary differential equations:

x1 = Uψ5(ς) +
W
d

x1ψ
/
4 (ς), x2 =

W
d

x2ψ
/
4 (ς), x3 = −2Wψ4(ς). (19)

With the help of Equation (19), Equations (2)–(4) take the following form

ψiv
4 − 2Rψ4ψ

///
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1
2

x2
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in which Λ, C are constants and
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(
ψ/
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)2
−

1
R
ψ///

4 (0). (23)

The boundary conditions on x3 = 0&d :

ψ/
4 (0) = β1ψ

//
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//
4 (1),
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/
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/
5 (0).

(24)

To normalize the lift, integrating the bottom of the slider as a result of the normalized factor can
be expressed as πρW2l4/4d.

L =
4d

πρW2l4

x

s
(p− p0)ds =

1
R3 Λ. (25)

The relationship between depth and drag in the x1− direction is

Dx1 =
d

πµUl2

x

s
Hx3x1ds = −

1
R3ψ

/
5 (1). (26)
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3. Homotopic Solution Procedure

To apply HAM [20], the following initial guesses for Equations (7)–(9), (20), and (21) can be
chosen as

ψ3,0(ς) =
−2ς3(1+β1+β2)+3ς(1+2β2)(ς+2β1)

1+4(β1+β2)+12β1β2
,

ψ1,0(ς) =
1−ς+β2

1+β1+β2
,ψ2,0(ς) =

1−ς+β2
1+β1+β2

,

ψ4,0(ς) =
−2ς3(1+β1+β2)+3ς(1+2β2)(ς+2β1)

2(1+4(β1+β2)+12β1β2)
,ψ5,0(ς) =

1−ς+β2
1+β1+β2

(27)

For the initial approximation, the following auxiliary linear operators can be chosen:

L(ψ3) =
d4h
dς4 , L(ψ1) =

d2θ
dς2 , L(ψ2) =

d2θ
dς2 ,

L(ψ4) =
d4θ
dς4 , L(ψ5) =

d2θ
dς2 .

(28)

which satisfies
Lψ1 [A5 + A6ς] = 0, Lψ2 [A7 + A8ς] = 0,
Lψ3

[
A1 + A2ς+ A3ς2 + A4ς4

]
= 0,

Lψ4

[
A9 + A10ς+ A11ς2 + A12ς4

]
= 0, Lψ5 [A13 + A14ς] = 0.

(29)

in which Ai(i = 1− 14) are constants of integration.

Initial Order Deformation Problem

The deformation equations for the initial order can be viewed as follows:

(1−Φ)Lψ1

[_
ψ1(ς, Φ) −

_
ψ1,0(ς, Φ)

]
= Φ}ψ1Hψ1Nψ1

[_
ψ1(ς, Φ)

]
(30)

(1−Φ)Lψ2
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ψ2(ς, Φ) −

_
ψ2,0(ς, Φ)

]
= Φ}ψ2Hψ2Nψ2
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ψ2(ς, Φ)

]
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(1−Φ)Lψ3
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ψ3(ς, Φ) −

_
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]
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]
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_
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]
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and the boundary conditions are
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_
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/
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_
ψ

/
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_
ψ
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_
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_
ψ

/
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_
ψ
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_
ψ

/

4 (0, Φ) = µ1
_
ψ

//

4 (0, Φ),
_
ψ4(0, Φ) = 0,

_
ψ4(1, Φ) = 1/2,

_
ψ

/

4 (1, Φ) = −µ2
_
ψ

//

4 (1, Φ), (38)

_
ψ5(1, Φ) = −µ2

_
ψ

/

5 (1, Φ),
_
ψ5(0, Φ) − 1 = −µ1

_
ψ

/

5 (0, Φ) (39)

where Nψ1 , Nψ2 , Nψ3 , Nψ4 , and Nψ5 are defined as

Nψ3

[_
ψ3(ς; Φ)

]
=

_
ψ3

////
−R

(_
ψ3

/
_
ψ3

//
−
_
ψ3

_
ψ3

///
)
−M2ψ/

3 (40)

N_
ψ1

[_
ψ1(ς; Φ)

]
=

_
ψ1

//
−R

(_
ψ1

_
ψ3

/
−
_
ψ3

_
ψ1

/
)
−M2ψ1, (41)
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N_
ψ2

[_
ψ2(ς; Φ)

]
=

_
ψ2

// + R
(_
ψ3

_
ψ2

/
)
−M2ψ2, (42)

Nψ4

[_
ψ4(ς; Φ)

]
=

_
ψ4

////
− 2R

_
ψ4

_
ψ4

///
−M2

_
ψ4

/ (43)

Nψ5

[_
ψ5(ς; Φ)

]
=

_
ψ5

//
−R

(_
ψ5

_
ψ4

/
− 2

_
ψ4

_
ψ5

/
)
−M2

_
ψ5 (44)

Here, the auxiliary parameters are }ψ1 , 0,}ψ2 , 0,}ψ3 , 0,}ψ4 , 0, and }ψ5 , 0, while
the non-zero auxiliary functions are expressed as Hψ1 , Hψ2 , Hψ3 , Hψ4 , and Hψ5 , and ς ∈ [0, 1] is the
embedding parameter.

From Equations (30)–(34), it is observed that when ς = 0 there is

_
ψ1(ς, 0) =

_
ψ1,0(ς),

_
ψ2(ς, 0) =

_
ψ2,0(ς),

_
ψ3(ς, 0) =

_
ψ3,0(ς),

_
ψ4(ς, 0) =

_
ψ4,0(ς),

_
ψ5(ς, 0) =

_
ψ5,0(ς). (45)

As ς = 1 and }ψ1 , 0,}ψ2 , 0,}ψ3 , 0,}ψ4 , 0, }ψ5 , 0 and Hψ1 , 0, Hψ2 , 0, Hψ3 , 0,
Hψ4 , 0, Hψ5 , 0, then Equations (30)–(34) are obtained as

_
ψ1(ς, 1) =

_
ψ1(ς),

_
ψ2(ς, 1) =

_
ψ2(ς),

_
ψ3(ς, 1) =

_
ψ3(ς),

_
ψ4(ς, 1) =

_
ψ4(ς),

_
ψ5(ς, 1) =

_
ψ5(ς),

In order to get mth- order deformation equations, Equations (30)–(34) are differentiated m- times
with respect to ς, after substituting ς = 0 and dividing both sides by m!. Finally, the mth- order
deformation equations take the following forms:

Lψ1 [ψ1,m(ς) − χmψ1,m−1(ς)] = }ψ1R1,m(ς). (46)

Lψ2 [ψ2,m(ς) − χmψ2,m−1(ς)] = }ψ2R3,m(ς). (47)

Lψ3

[
ψ3,m(ς) − χψ3hψ3−1(ς)

]
= }ψ3R3,m(ς). (48)

Lψ4

[
ψ4,m(ς) − χψ4hψ4−1(ς)

]
= }ψ4R4,m(ς). (49)

Lψ5

[
ψ5,m(ς) − χψ5hψ5−1(ς)

]
= }ψ5R5,m(ς). (50)

with boundary conditions

_
ψ1,m(1) = −µ2

_
ψ

/

1,m(1),
_
ψ1,m(0) − 1 = µ1

_
ψ

/

1,m(0) (51)

_
ψ2,m(1) = −µ2

_
ψ

/

2,m(1),
_
ψ2,m(0) − 1 = µ1

_
ψ

/

2,m(0) (52)

_
ψ

/

3,m(0) = µ1
_
ψ

//

3,m(0) =,
_
ψ3,m(0) = 0,

_
ψ3,m(1) = 0,

_
ψ

/

3,m(1) = −µ2
_
ψ

//

3,m(1) (53)

_
ψ

/

4,m(0) = µ1
_
ψ

//

4,m(0) =,
_
ψ4,m(0) = 0,

_
ψ4,m(1) = 0,

_
ψ

/

4,m(1) = −µ2
_
ψ

//

4,m(1) (54)

_
ψ5,m(1) = −µ2

_
ψ

/

5,m(1),
_
ψ5,m(0) − 1 = µ1

_
ψ

/

5,m(0) (55)

where

R1,m(ς) = ψ//
1,m−1 −R

m−1∑
k=0

ψ1,m−1ψ
/
3,k + R

m−1∑
k=0

ψ3,m−1ψ
/
1,k (56)

R2,m(ς) = ψ//
2,m−1 + R

m−1∑
k=0

ψ3,m−1ψ
/
2,k (57)
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R3,m(ς) = ψ////
3,m−1 −R

m−1∑
k=0

ψ/
3,m−1ψ

//
3,k + R

m−1∑
k=0

ψ3,m−1ψ
///
3,k (58)

R4,m(ς) = ψ////
4,m−1 − 2R

m−1∑
k=0

ψ4,m−1ψ
///
4,k −M2

m−1∑
k=0

ψ/
4,k (59)

R5,m(ς) = ψ//
5,m−1 −R

m−1∑
k=0

ψ5,m−1ψ
/
4,k − 2

m−1∑
k=0

ψ4,m−1ψ
//
5,k −M2ψ5 (60)

A well-known software called MATHEMATICA has been used to solve the modeled problem.

4. Convergence Criteria

HAM was applied to compute the solution of the problems given in Equations (7)–(9), (20), and
(21), as HAM contains the non-zero auxiliary parameter }i(i = 1− 5), which ensures the convergence of
the solution. To get a suitable value for the }i,}i− curves are displayed. To guarantee the convergence,
20th order }i− curves have been drawn in Figures 2–6. It can easily be seen from the }i curves that the
acceptable values of }i were 0.5 ≤ }1 ≤ 1.5, − 1.5 ≤ }2 ≤ −0.5, 0 ≤ }3 ≤ 6, for the long slider. Similarly,
acceptable values for the circular slider were 0.5 ≤ }4 ≤ 1.5, − 1 ≤ }5 ≤ 4.

Figure 2. }1 for the strip/long slider.
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Figure 3. }2 for the strip/long slider.

Figure 4. }3 for the strip/long slider.
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Figure 5. }4 for the circular slider.

Figure 6. }5 for the circular slider.

5. Results and Discussion

The obtained results from the above-mentioned method (HAM) are presented in the form of tables
and graphs. Tables 1 and 2 display the effects of the slip on the dynamic properties of a slider, showing
that normalized lift and drag decrease as the slip and/or Reynolds number increases. The lift (per area)
of the strip slider was much greater than the circular slider, although the drag remained the same in
both cases. The effect of slip could be substantial, affecting the drag much more than the lift.
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Table 1. Properties of the long porous slider. Normalized lift Λ, normalized x1− direction drag, and
normalized x2− direction drag.

β1,β2 M2 R Λ −ψ/1(1) −ψ/2(1)

0, 0 0 0.2 62.33 0.896 0.932
- - 0.5 26.34 0.760 0.836
- - 2.0 8.412 0.334 0.467
- - 5.0 4.917 0.063 0.123
- - 20 3.267 0 0
- - 50 2.909 0 0

0.1, 0.1 2 0.2 39.27 0.743 0.780
- 4 0.5 16.78 0.626 0.704
- 6 2.0 6.596 0.4372 0.2536
- 10 5.0 3.436 0.3245 0

20 20.0 2.440 0.1520 0
50 50.0 2.240 0 0

0.1, 1 2 0.2 20.31 0.424 0.463
- 4 0.5 8.859 0.357 0.436
- 6 2.0 3.159 0.160 0.321
- 10 5.0 2.050 0.035 0.123

20 20.0 1.513 0 0.0632
50 50.0 1.391 0 0.012

0.1, 10 2 0.2 5.316 0.064 0.082
- 4 0.5 2.702 0.046 0.080
- 6 2.0 1.413 0.013 0
- 10 5.0 1.175 0.002 0

20 20.0 1.068 0 0
50 50.0 1.047 0 0

1, 1 2 0.2 9.727 0.275 0.315
- 4 0.5 4.591 0.210 0.288
- 6 2.0 2.048 0.068 0.172

10 5.0 1.569 0.011 0.047
20 20.0 1.355 0 0
50 50.0 1.315 0 0
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Table 2. Properties of the circular porous slider. Normalized lift Λ, normalized drag −ψ/
1 (1).

β1,β2 M2 R Λ −ψ/1(1)

0, 0 0 0.2 30.78 0.914
- - 0.5 12.79 0.797
- - 2.0 3.833 0.392
- - 5.0 2.019 0.085
- - 20 1.349 0
- - 50 1.194 0

0.1, 0.1 2 0.2 19.33 0.761
- 4 0.5 8.089 0.663
- 6 2.0 2.503 0.310
- 10 5.0 1.445 0.1014

20 20.0 0.994 0
50 50.0 0.908 0

0.1, 1 2 0.2 9.853 0.441
- 4 0.5 4.130 0.394
- 6 2.0 1.288 0.129
- 10 5.0 0.752 0.0145

20 20.0 0.529 0
50 50.0 0.483 0

0.1, 10 2 0.2 6.438 0.084
- 4 0.5 2.699 0.076
- 6 2.0 0.841 0.015
- 10 5.0 0.488 0

20 20.0 0.338 0
50 50.0 0.305 0

1, 1 2 0.2 4.611 0.294
- 4 0.5 2.043 0.244
- 6 2.0 0.776 0.0215

10 5.0 0.549 0
20 20.0 0.466 0
50 50.0 0.453 0

Velocity distributions for the long and circular slider are presented graphically in Figures 7–9.

Figure 7. Similarity function ψ/
3 for the long slider.
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Figure 8. Similarity function ψ2 for the long slider.

Figure 9. Similarity function ψ1 for the long slider.

For the long slider, the effect of the Reynolds number in the presence of slip and the magnetic field
is shown in Figures 10–18. It is observed that the velocity profile was very much changed. It was seen
that slip near the ground reduced the lateral velocity much more than slip on the slider. Moreover,
increasing the magnetic parameter decreased the lateral velocity components further (see Figure 12).
The effects of the Reynolds number on the typical velocity distribution for the circular slider were
similar, as displayed in Figures 19–28. The behavior of velocity profiles was similar for the long and
circular sliders in cases of no-slip (see Figures 19 and 20). Further, velocity profiles behaved in a similar
fashion in both cases (i.e., parabolic or linear for a low Reynolds number, while a boundary layer
formed near the surface in cases of a large Reynolds number). Figures 21–28 demonstrate the effect of
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the slip parameter on the velocity components corresponding to different Reynolds numbers. These
pictorial descriptions demonstrate that velocity profiles decrease with an increase in slip parameters,
and that this decrease become even greater after applying the magnetic field. This is due to the fact
that slip hinders fluid particles and displaces motion in the vicinity.

Figure 10. Similarity function ψ/
3 for the long slider.

Figure 11. Similarity function ψ2 for the long slider.

Figure 12. Similarity function ψ1 for the long slider.
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Figure 13. Similarity function ψ/
3 for the long slider.

Figure 14. Similarity function ψ2 for the long slider.

Figure 15. Similarity function ψ1 for the long slider.



Mathematics 2019, 7, 748 16 of 23

Figure 16. Similarity function ψ/
3 for the long slider.

Figure 17. Similarity function ψ1 for the long slider.

Figure 18. Similarity function ψ/
3 for the long slider.
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Figure 19. Similarity function ψ/
3 for the circular slider.

Figure 20. Similarity function ψ1 for the circular slider.
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Figure 21. Similarity function ψ/
3 for the circular slider.

Figure 22. Similarity function ψ1 for the circular slider.
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Figure 23. Similarity function ψ/
3 for the circular slider.

Figure 24. Similarity function ψ1 for the circular slider.

Figure 25. Similarity function ψ/
3 for the circular slider.
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Figure 26. Similarity function ψ1 for the circular slider.

Figure 27. Similarity function ψ/
3 for the circular slider.



Mathematics 2019, 7, 748 21 of 23

Figure 28. Similarity function ψ1 for the circular slider.

These results qualitatively confirm the expectation that a drag-like Lorentz force is created by
the magnetic field normal to the lateral flow direction, and this force decreases the lateral velocity
components. Lift and drag components are important physical quantities for a porous slider. It is
interesting to note that the lift is free of translation, but the drag components depend on a cross flow.
The effectiveness of a porous slider can be enhanced by making the ratio of friction force to lift smaller.
As pointed out by Wang [16], the porous slider should be operated at a cross-flow Reynolds number
below unity for optimum efficiency. According to Table 1, porous sliders should be operated at small
values that are still valid even when an external uniform magnetic field is applied. Moreover, from the
point of view of optimum efficiency, it is more efficient to move a flat slider on a fluid subject than in a
high-intensity magnetic field.

6. Conclusions

In this research, different studies have been complied altogether. Different researchers have
analyzed fluid flow on a long slider without slip, while others were interested only in a circular slider
without slip. Wang presented a comparative study of the both sliders and added velocity slip, but did
not cover the effects of a magnetic field. As such, one concern of this study was theoretical investigation
of a steady three-dimensional flow of a viscous fluid between a porous slider and the ground in the
presence of a transverse uniform magnetic field with velocity slip. The effects of different physical
parameter values like Reynolds number and magnetic field on the lateral velocity profiles and lift and
drag components were presented in graphs and tables in the presence of velocity slip. It is expected
that the results of the present study could be useful for the understanding of various technical problems
related to porous sliders where magnetic and velocity slip are the main physical parameters. The main
findings are as follows:

• It was shown that normalized lift and drag go down as slip and/or the Reynolds number goes up
(see Tables 1 and 2). The lift (per area) of a long slider is much greater than a circular slider. The
drag remains the same for both sliders.

• Slip near the ground reduces lateral velocity of the slider much more than slip. By increasing the
magnetic parameter, the lateral velocity components decrease further.
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• The behavior of velocity profiles is similar for the long and the circular sliders in cases of no-slip
(i.e., parabolic or linear for a low Reynolds number).

• In cases of a large Reynolds number, a boundary layer formed near the surface, while velocity
profiles decreased with an increase in slip parameters, a decrease which grew more pronounced
after applying the magnetic field.
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Nomenclature

B0 Magnetic field µ Dynamic viscosity
d Width η Similarity variable
H1, H2 Slip coefficient τ Extra stress tensor
I Identity tensor β1, β2 Slip factors
l Length ψ1,ψ2,ψ3 Velocity function
p Pressure φ1,φ2,φ3 Velocity components
v0 Constant viscosity ρ Fluid density
x1, x2, x3 Space coordinates
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