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Abstract: In this paper, new refinements and improvements of Jordan’s and Kober’s inequalities
are presented. We give new polynomial bounds for the sinc(x) and cos(x) functions based on the
interpolation and approximation method. The results show that our bounds are tighter than the
previous methods.
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1. Introduction

Jordan’s inequality:

2
π
≤ sinc(x) =

sin(x)
x

< 1, x ∈ (0, π/2], (1)

has been studied in a large number of literature works, and many refinements have
been presented [1–6].

Zhang et al. [7] gave the polynomial bounds of degree one:

2
π

+
π − 2

π2 (π − 2x) ≤ sin(x)
x
≤ 2

π
+

2
π2 (π − 2x), x ∈ (0, π/2]. (2)

Zhang and Ma [8] gave the improvement of Inequality (2):

1 +
4− 2π

π2 x ≤ sin(x)
x
≤ 8
√

2−
√

2π

2π
+

2
√

2− 8
√

2
π2 x, x ∈ (0, π/2]. (3)

Qi et al. [9] presented the polynomial bounds of degree two:

2
π

+
1

π3 (π
2 − 4x2) ≤ sin(x)

x
≤ 2

π
+

π − 2
π3 (π2 − 4x2), x ∈ (0, π/2]. (4)

Zhang and Ma [8] gave the improvement of Inequality (4):

1 +
12− 4π

π2 x +
4π − 16

π3 x2 ≤ sin(x)
x
≤ 1 +

8− 4π

π3 x2, x ∈ (0, π/2]. (5)

Deng [10] obtained the polynomial bounds of degree three:

2
π

+
2

3π4 (π
3 − 8x3) ≤ sin(x)

x
≤ 2

π
+

π − 2
π4 (π3 − 8x3), x ∈ (0, π/2], (6)
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and Jiang and Yun [11] gave the polynomial bounds of degree four:

2
π

+
1

2π5 (π
4 − 16x4) ≤ sin(x)

x
≤ 2

π
+

π − 2
π5 (π4 − 16x4), x ∈ (0, π/2]. (7)

Debnath et al. [12] gave the improvements of Inequality (4) and Inequality (7):

gl
4,D1(x) ≤ sin(x)

x
≤ gu

4,D1(x), x ∈ (0, π/2], (8)

and:

gl
4,D2(x) ≤ sin(x)

x
≤ gu

4,D2(x), x ∈ (0, π/2], (9)

where

gl
4,D1(x) = 2

π + 1
π3 (π

2 − 4x2) + (1− 3
π )− ( 1

6 −
4

π3 )x2,
gu

4,D1(x) = 2
π + 1

π3 (π
2 − 4x2) + (1− 3

π )− ( 1
6 −

4
π3 )x2 + 1

120 x4,
gl

4,D2(x) = 2
π + 1

2π5 (π
4 − 16x4) + (1− 5

2π )−
1
6 x2,

gu
4,D2(x) = 2

π + π−2
2π5 (π

4 − 16x4) + (1− 5
2π )−

1
6 x2 + ( 8

π5 +
1

120 )x4.

Agarwal et al. [13] and Chen et al. [14] presented the further improvements of the polynomials
bounds of degree three and four:

gl
3,A(x) ≤ sin(x)

x
≤ gu

3,A(x), x ∈ (0, π/2], (10)

gl
3,C(x) ≤ sin(x)

x
≤ gu

3,C(x), x ∈ (0, π/2], (11)

gl
4,C(x) ≤ sin(x)

x
≤ gu

4,C(x), x ∈ (0, π/2], (12)

where

gl
3,A(x) = 1 + 4(66−43π+7π2)

π2 x− 4(124−83π+14π2)
π3 x2 − 4(12−4π)

π4 x3,

gu
3,A(x) = 1 + 4(75−49π+8π2)

π2 x− 4(142−95π+16π2)
π3 x2 − 4(12−4π)

π4 x3,

gl
3,C(x) = 1− 4(3π−8)

π3 x2 + 16(π−3)
π4 x3,

gu
3,C(x) = 1− 2(5π−2−16

√
2+2
√

2π)
π2 x + 8(4π−4−16

√
2+3
√

2π)
π3 x2 − 32(π−2−4

√
2+
√

2π)
π4 x3,

gl
4,C(x) = 1− 4(−48

√
2−2+17π+4

√
2π)

π3 x2 + 32(−28
√

2−2+9π+3
√

2π)
π4 x3 − 64(−16

√
2−2+5π+2

√
2π)

π5 x4,

gu
4,C(x) = 1 − 4(−8

√
2−7+3π+2

√
2π)

π2 x + 4(−32
√

2−68+13π+16
√

2π)
π3 x2 − 32(−4

√
2−26+3π+5

√
2π)

π4 x3 +
64(−12+π+2

√
2π)

π5 x4.

Zhang and Ma [8] gave the polynomial bounds of degree five:

gl
5(x) ≤ sin(x)

x
≤ gu

5 (x), (13)

where

gl
5(x) = 1 + 32−2048

√
2+2187

√
3−(113+128

√
2)π

2π2 x + −448+26,624
√

2−27,702
√

3+(1255+1536
√

2)π
2π3 x2

+ 1168−62,464
√

2+64,152
√

3−(2825+3392
√

2)π
π4 x3 + −2688+125,952

√
2−128,304

√
3+(5664+6528

√
2)π

π5 x4

+ 2304−92,160
√

2+93,312
√

3−(4176+4608
√

2)π
π6 x5,
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gu
5 (x) = 1 + 64+256

√
2−(92+32

√
2)π

π3 x2 + −624−1536
√

2+(528+256
√

2)π
π4 x3

+ 1920+3072
√

2−(1088+640
√

2)π
π5 x4 + −1792−2048

√
2+(768+512

√
2)π

π6 x5.

Zeng and Wu [15] obtained the polynomial bounds of degree m(m ≥ 2) for sinc(x):

2
π

+
2

mπm+1 (π
m − 2mxm) ≤ sin(x)

x
≤ 2

π
+

π − 2
πm+1 (π

m − 2mxm), x ∈ (0, π/2]. (14)

Another famous inequality,

cos(x) ≥ 1− 2
π

x, x ∈ [0, π/2], (15)

is called Kober’s inequality. Some improvements for Kober’s inequality have been proven [16,17].
Sándor [18] presented the polynomial bounds of degree one and two for cos(x):

1− 2
π

x ≤ cos(x) ≤ 1− 2
π

x +
2

π2 x(π − 2x), x ∈ [0, π/2], (16)

1− x2

2
≤ cos(x) ≤ 1− 4x2

π2 , x ∈ [0, π/2]. (17)

Zhang et al. [7] gave the refinement of Kober’s inequality:

1− 4− π

π
x− 2(π − 2)

π2 x2 ≤ cos(x) ≤ 1− 4
π2 x2, x ∈ [0, π/2]. (18)

Bhayo and Sándor [19] further proved that:

1− x2/2
1 + x2/12

≤ cos(x) ≤ 1− 24x2/(5π2)

1 + 4x2/(5π2)
, x ∈ [0, π/2]. (19)

It is very obvious that the right sides of Inequality (16), Inequality (17), and Inequality (18)
are the same. Recently, Bercu [20] provided a Padé-approximant-based method and obtained the
following inequalities:

−7x2 + 60
3x2 + 60

<
sin(x)

x
<

11x4 − 3602 + 2520
60x2 + 2520

, x ∈ (0, π/2]. (20)

17x4 − 480x2 + 1080
2x4 + 60x2 + 1080

< cos(x) <
3x4 − 562 + 120

4x2 + 120
, x ∈ [0, π/2]. (21)

Zhang et al. [21] gave the improvements of Inequality (20) and Inequality (21):

60,480− 9240x2 + 364x4 − 5x6

840(72 + x2)
<

sin(x)
x

<
166,320− 22,260x2 + 551x4

15(11,088 + 364x2 + 5x4)
, x ∈ (0, π/2]. (22)

20,160− 9720x2 + 660x4 − 13x6

360(x2 + 56)
< cos(x) <

15,120− 6900x2 + 313x4

15,120 + 660x2 + 13x4 , x ∈ [0, π/2]. (23)

In this paper, we present new refinements and improvements for Jordan’s and Kober’s inequalities
based on the interpolation and approximation method. New two-sided polynomial bounds of both
inequalities are given. The results show that our bounds are tighter than the previous conclusions.
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2. Main Results

Firstly, we introduce a theorem of interpolation and approximation, which is very useful for
our proof [22].

Theorem 1. Let w0, w1, · · · , wr be r + 1 distinct points in [a, b] and n0, n1, · · · nr be r + 1 integers ≥ 0.
Let N = n0 + · · ·+ nr + r. Suppose that g(t) is a polynomial of degree N such that:

g(i)(wj) = f (i)(wj), i = 0, · · · , nj, j = 0, · · · , r.

Then, there exists ξ(t) ∈ [a, b] such that:

f (t)− g(t) =
f (N+1)(ξ(x))
(N + 1)!

r

∏
i=0

(t− wi)
ni+1.

Next, we give new polynomial bounds of sinc(x) and cos(x) based on the above theorem of
interpolation and approximation.

Theorem 2. For x ∈ (0, π/2], we have that:

1 + c1x2 + d1x3 + e1x4 + f1x5 + g1x6 + h1x7 ≤ sinc(x) (24)

≤ 1 + b2x + c2x2 + d2x3 + e2x4 + f2x5 + g2x6 + h2x7,

where

c1 = 448−8192
√

2+8748
√

3−(1111/2+512
√

2)π
π3 ,

d1 = −7104+122,880
√

2−255,879
√

3/2+(14,691/2+7168
√

2)π
π4 ,

e1 = 44,352−712,704
√

2+730,458
√

3−(40,256+39,424
√

2)π
π5 ,

f1 = −136,000+2,007,040
√

2−2,033,910
√

3+(110,550+106,496
√

2)π
π6 ,

g1 = 204,288−2,752,512
√

2+2,764,368
√

3−(150,192+141,312
√

2)π
π7 ,

h1 = −119,808+1,474,560
√

2−1469,664
√

3+(80,352+73,728
√

2)π
π8 ,

b2 = −3398+2048
√

2+3159
√

3/2−(137/2+256
√

2+162
√

3)π
π2 ,

c2 = 80,572−45,056
√

2−39,123
√

3+(2683/2+6144
√

2+3564
√

3)π
π3 ,

d2 = −762,398+395,264
√

2+393,174
√

3−(12,389+59,648
√

2+31,914
√

3)π
π4 ,

e2 = 3,712,680−1,769,472
√

2−2,048,004
√

3+(62,154+299,520
√

2+149,040
√

3)π
π5 ,

f2 = −9,854,424+4,276,224
√

2+5,820,336
√

3−(173,844+820,224
√

2+382,968
√

3)π
π6 ,

g2 = 13,545,792−5,308,416
√

2−8,538,048
√

3+(254,016+1,161,216
√

2+513,216
√

3)π
π7 ,

h2 = −7,537,536+2,654,208
√

2+5,038,848
√

3−(150,336+663,552
√

2+279,936
√

3)π
π8 .

Proof. Let esinc,l(x) = sinc(x)− 1− c1x2 − d1x3 − e1x4 − f1x5 − g1x6 − h1x7, esinc,u(x) = sinc(x)−
1− b2x− c2x2 − d2x3 − e2x4 − f2x5 − g2x6 − h2x7, then we have e(8)sinc,l(x) = e(8)sinc,u(x) = sinc(8)(x).

It is very obvious that:

sinc(8)(x) =
(x8 − 56x6 + 1680x4 − 20,160x2 + 40,320) sin(x) + (8x7 − 336x5 + 6720x3 − 40,320x) cos(x)

x9 .

Let h(x) = (x8 − 56x6 + 1680x4 − 20,160x2 + 40,320) sin(x) + (8x7 − 336x5 + 6720x3 −
40,320x) cos(x); we have:
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h′(x) = x8cos(x) > 0, x ∈ (0, π/2).

Therefore, h(x) is an incremental function in (0, π/2), and we have h(x) ≥ h(0) = 0; and then,
sinc(8)(x) ≥ 0, for x ∈ (0, π/2).

By the definition of esinc,l(x) and esinc,u(x), we have:

esinc,l(0) = esinc,l(
π

4
) = esinc,l(

π

3
) = esinc,l(

π

2
) = e′sinc,l(0) = e′sinc,l(

π

4
) = e′sinc,l(

π

3
) = e′sinc,l(

π

2
) = 0,

esinc,u(0) = esinc,u(
π

6
) = esinc,u(

π

4
) = esinc,u(

π

3
) = esinc,u(

π

2
) = e′sinc,u(

π

6
) = e′sinc,u(

π

4
) = e′sinc,u(

π

3
) = 0.

By Theorem 1, there exit ζ j(x) ∈ (0, π/2), j = 1, 2, such that:

esinc,l(x) =
e(8)sinc,l(ζ1(x))

8!
x2(x− π

4
)2(x− π

3
)2(x− π

2
)2 ≥ 0,

esinc,u(x) =
e(8)sinc,u(ζ2(x))

8!
x(x− π

6
)2(x− π

4
)2(x− π

3
)2(x− π

2
) ≤ 0,

which means the conclusion is valid.
The proof of Theorem 2 is completed.

Theorem 3. For x ∈ [0, π/2], we have that:

1 + γ1x2 + δ1x3 + ξ1x4 + η1x5 + λ1x6 + θ1x7 ≤ cos(x) (25)

≤ 1 + β2x + γ2x2 + δ2x3 + ξ2x4 + η2x5 + λ2x6 + θ2x7,

where

γ1 = 4721/2−2560
√

2+(8+128
√

2+243
√

3/2)π
π2 ,

δ1 = −35,301+37,888
√

2−(128+1792
√

2+3645
√

3/2)π
π3 ,

ξ1 = 203,230−217,600
√

2+(808+9856
√

2+10,692
√

3)π)
π4 ,

η1 = −567,420+608,256
√

2−(2512+26,624
√

2+30,618
√

3)π
π5 ,

λ1 = 771,264−829,440
√

2+(3840+35,328
√

2+42,768
√

3)π
π6 ,

θ1 = −409,536+442,368
√

2−(2304+18,432
√

2+23,328
√

3)π
π7 ,

β2 = 458+256
√

2−729
√

3+(27+64
√

2+27
√

3/2)π
π ,

γ2 = −23,399/2−5120
√

2+17,010
√

3−(594+1536
√

2+675
√

3/2)π
π2 ,

δ2 = 118,669+39,168
√

2−159,165
√

3+(5319+14,912
√

2+3429
√

3)π
π3 ,

ξ2 = −62,0514−142,848
√

2+768,852
√

3−(24,840+74,880
√

2+18,090
√

3)π
π4 ,

η2 = 1,766,268+248,832
√

2−2,028,564
√

3+(63,828+205,056
√

2+52,164
√

3)π
π5 ,

λ2 = −2,592,000−165,888
√

2+2,776,032
√

3−(85,536+290,304
√

2+77,760
√

3)π
π6 ,

θ2 = 1,529,280−1,539,648
√

3+(46,656+165,888
√

2+46,656
√

3)π
π7 .

Proof. Let ecos,l(x) = cos(x) − α1 − γ1x2 − δ1x3 − ξ1x4 − η1x5 − λ1x6 − θ1x7, ecos,u(x) = cos(x) −
α2 − β2x− γ2x2 − δ2x3 − ξ2x4 − η2x5 − λ2x6 − θ2x7; then, we have e(8)cos,l(x) = e(8)cos,u(x) = cos(8)(x).

It is easy to see that cos(8)(x) = cos(x) and cos(8)(x) ≥ 0, for x ∈ (0, π/2).
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By the definition of ecos,l(x) and ecos,u(x), we have:

ecos,l(0) = ecos,l(
π

4
) = ecos,l(

π

3
) = ecos,l(

π

2
) = e′cos,l(0) = e′cos,l(

π

4
) = e′cos,l(

π

3
) = e′cos,l(

π

2
) = 0,

ecos,u(0) = ecos,u(
π

6
) = ecos,u(

π

4
) = ecos,u(

π

3
) = ecos,u(

π

2
) = e′cos,u(

π

6
) = e′cos,u(

π

4
) = e′cos,u(

π

3
) = 0.

By Theorem 1, there exist ζ j(x) ∈ (0, π/2), j = 3, 4, such that

ecos,l(x) =
e(8)cos,l(ζ3(x))

8!
x2(x− π

4
)2(x− π

3
)2(x− π

2
)2 ≥ 0,

ecos,u(x) =
e(8)cos,u(ζ4(x))

8!
x(x− π

6
)2(x− π

4
)2(x− π

3
)2(x− π

2
) ≤ 0,

which means the conclusion is valid.
The proof of Theorem 3 is completed.

3. Conclusions and Analysis

In this paper, we presented new refinements and improvements of Jordan’s and Kober’s
inequalities based on the interpolation and approximation method. Theorems 2 and 3 gave new
polynomial bounds of the sinc(x) and cos(x) functions. Table 1 gives the comparison of the maximum
errors between sinc(x) and the bounds for different methods. MaxErrorsinc_low and MaxErrorsinc_upp
denote the maximum errors between sinc(x) and the lower and upper bounds. It is obvious that
our results are superior to the previous conclusions. Similarly, MaxErrorcos_low and MaxErrorcos_upp

denote the maximum errors between cos(x) and the lower and upper bounds. Table 2 gives the
comparison of the maximum errors of cos(x). The maximum errors of Inequality (25) in Theorem 3 are
less than those of the previous methods.

Table 1. Comparison of the maximum errors between sinc(x) and the bounds for different methods.

Method
Error

MaxErrorsinc_low MaxErrorsinc_upp

Zhang [7] (Inequality (2)) 8.2396× 10−2 2.7320× 10−1

Zhang [8] (Inequality (3)) 8.2396× 10−2 9.3440× 10−2

Qi [9] (Inequality (4)) 4.5070× 10−2 1.1612× 10−2

Zhang [8] (Inequality (5)) 1.5412× 10−2 1.1612× 10−2

Deng [10] (Inequality (6)) 1.5117× 10−1 6.5359× 10−2

Jiang [11] (Inequality (7)) 2.0423× 10−1 1.0245× 10−1

Debnath [12] (Inequality (8)) 4.7771× 10−2 2.8730× 10−3

Debnath [12] (Inequality (9)) 2.0664× 10−1 2.0423× 10−1

Agarwal [13] (Inequality (10)) 2.6315× 10−3 9.8638× 10−4

Chen [14] (Inequality (11)) 2.4322× 10−3 6.5652× 10−4

Chen [14] (Inequality (12)) 1.0492× 10−4 1.1278× 10−4

Zeng [15] (Inequality (14) (m = 5)) 2.3606× 10−1 1.2987× 10−1

Zeng [15] (Inequality (14) (m = 10)) 2.9972× 10−1 2.0465× 10−1

Zeng [15] (Inequality (14) (m = 15)) 3.2094× 10−1 2.4001× 10−1

Bercu [20] (Inequality (20)) 2.6834× 10−3 6.5239× 10−5

Zhang [8] (Inequality (13)) 1.0600× 10−5 5.4563× 10−6

Zhang [21] (Inequality (22)) 1.1234× 10−6 1.9032× 10−6

Results of this paper (Inequality (24)) 4.1030 × 10−8 2.4379× 10−8
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Table 2. Comparison of the maximum errors between cos(x) and the bounds for different methods.

Method
Error

MaxErrorcos_low MaxErrorcos_upp

Sándor [18] (Inequality (16)) 2.1051× 10−1 5.6010× 10−2

Sándor [18] (Inequality (17)) 2.3325× 10−1 5.6010× 10−2

Zhang [7] (Inequality (18)) 7.2818× 10−2 5.6010× 10−2

Bhayo [19] (Inequality (19)) 2.3230× 10−2 1.0599× 10−2

Zhang [21] (Inequality (23)) 1.3987× 10−5 2.9435× 10−5

Results of this paper (Inequality (25)) 3.4330 × 10−7 2.0736× 10−7

The same conclusions can be found in Figures 1 and 2. We can see that Inequality (13), Inequality (22),
and Inequality (24) have similar results in Table 1. In order to better compare three results, Figure 1
presents the error curves of three methods. Here, the error of the bound is equal to the value of the
bound minus the value of the function. Therefore, the error curve of the lower bound is below the x-axis.
The error of Inequality (24) is obviously less than the errors of Inequality (13) and Inequality (22). For the
same reason, Figure 2 shows the comparison of the errors of Inequality (23) and Inequality (25). It is easy
to find that the errors of Inequality (25) are less than those of Inequality (23).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−12

−10

−8

−6

−4

−2

0

2

4

6
x 10

−6

x

E
rr

o
r

inequality(13)

inequality(13)

inequality(22)

inequality(22)

inequality(24)

inequality(24)

Figure 1. Error plots between sinc(x) and the bounds of Inequality (13), Inequality (22),
and Inequality (24).



Mathematics 2019, 7, 746 8 of 9

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3
x 10

−5

x

E
rr

o
r

inequality(23)

inequality(23)

 inequality(25)

inequality(25)

Figure 2. Error plots between cos(x) and the bounds of Inequality (23) and Inequality (25).
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