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Abstract: One of the fastest growing and efficient methods for solving the unconstrained
minimization problem is the conjugate gradient method (CG). Recently, considerable efforts have
been made to extend the CG method for solving monotone nonlinear equations. In this research
article, we present a modification of the Fletcher–Reeves (FR) conjugate gradient projection method
for constrained monotone nonlinear equations. The method possesses sufficient descent property
and its global convergence was proved using some appropriate assumptions. Two sets of numerical
experiments were carried out to show the good performance of the proposed method compared with
some existing ones. The first experiment was for solving monotone constrained nonlinear equations
using some benchmark test problem while the second experiment was applying the method in signal
and image recovery problems arising from compressive sensing.

Keywords: nonlinear equations; conjugate gradient method; projection method; convex constraints;
signal and image processing

MSC: 65K05; 90C52; 90C56; 94A08

1. Introduction

In this paper, we are considering a system of nonlinear monotone equations of the form

F(x) = 0, subject to x ∈ E, (1)

where E ⊆ Rn is closed and convex, F : Rn → Rm, (m ≥ n) is continuous and monotone, which means

〈F(x)− F(y), (x− y)〉 ≥ 0, ∀x, y ∈ Rn.
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A well-known fact is that under the above assumption, the solution set of (1) is convex unless
is empty. It is important to mention that nonlinear monotone equations arise in many practical
applications. These and other reasons motivate researchers to develop a large number of class
of Iterative methods for solving such systems, for example, see [1–7] among others. In addition,
convex constrained equations have application in many scientific fields, some of which are the
economic equilibrium problems [8], the chemical equilibrium systems [9], etc. Several algorithms
were developed to solve (1), among them, are the trust-region [10] and the Levenberg-Marquardt
method [11]. Moreover, the requirement to compute and store the matrix in every iteration makes
them ineffective for large-scale nonlinear equations.

Conjugate gradient (CG) methods are efficient for solving large-scale optimization and nonlinear
systems because of their low memory requirements. This forms part of the reason several Iterative
methods with CG-like directions are proposed in recent years [12,13]. Initially, CG methods and
their modified versions are proposed for unconstrained optimization problems [14–19]. Inspired by
them, in the last decade, many authors used the CG direction to solve nonlinear monotone equations
for both constrained and unconstrained cases. Since in this article, we are interested in solving
nonlinear monotone equations with convex constraints, we will only discuss existing methods with
such properties.

Many methods for solving nonlinear monotone equations with convex constraints have been
presented in the last decade. For examples, Xiao and Zhu [20] presented a CG method, which
combines the well-known CG-DESCENT method in [17] and the projection method by Solodov
and Svaiter [21]. Liu et al. [22] proposed two CG methods with projection strategy for solving (1).
In [23], a modification of the method in [20] was presented by Liu and Li. One of the reasons for the
modification was to improve the numerical performance of the method in [20]. Also, Sun and Liu [24]
presented derivative-free projection methods for solving nonlinear equations with convex constraints.
These methods are the combination of some existing CG methods and the well-known projection
method. In addition, a hybrid CG projection method for convex constrained equations was developed
in [25]. Ou and Li [26] proposed a combination of a scaled CG method and the projection strategy to
solve (1). Furthermore, Ding et al. [27] extended the Dai and Kou (DK) CG method to solve (1) by
also combining it with the projection method. Just recently, to popularize the Dai-Yuan (DY) method,
Liu and Feng [28] proposed a modified DY method for solving convex constraints monotone equation.
The global convergence was also obtained under certain assumptions and finally, some numerical
results were reported to show its efficiency.

Inspired by some the above proposals, we present a simple modification of the Fletcher–Reeves
(FR) conjugate gradient method [19] considered in [12] to solve nonlinear monotone equations with
convex constraints. The modification ensures that the direction is automatically descent, improves its
numerical performance and still inherits the nice convergence properties of the method. Under suitable
assumptions, we establish the global convergence of the proposed algorithm. Numerical experiments
presented show the good performance and competitiveness of the method. In addition, the proposed
method has the advantages of the direct methods [29] such as boundary control method by Belishev
and Kuryiev [30], the globally convergent method proposed by Beilina and Klibanov [31] and method
based on the multidimensional analogs of Gelfand–Levitan–Krein equations [32,33]. The proposed
method can be seen as a local method that looks for the closest root. However, there are several global
nonlinear solvers that guarantee finding all roots inside a domain and within a very fine double-float
accuracy. In some cases a combination of subdivision-based polynomial solver with a decomposition
algorithm are employed in order to handle large and complex systems (see for examples [34–36] and
references therein).

The remaining part of this article is organized as follows. In Section 2, we mention some
preliminaries and present the proposed method. The global convergence of the method is established
in Section 3. Finally, Section 4 reports some numerical results to show the performance of the method
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in solving monotone nonlinear equations with convex constraints, and also apply it to recover a noisy
signal and a blurred image.

2. Algorithm

In this section, we define the projection map together with its well-known properties, give some
useful assumptions and finally present the proposed algorithm. Throughout this article, ‖ · ‖ denotes
the Euclidean norm.

Definition 1. Let E ⊂ Rn be nonempty closed and convex set. Then for any x ∈ Rn, its projection onto E is
defined as

PE(x) = arg min{‖x− y‖ : y ∈ E.}

The following lemma gives some properties of the projection map.

Lemma 1 ([37]). Suppose E ⊂ Rn is nonempty, closed and convex set. Then the following statements are true:

1. 〈x− PE(x), PE(x)− z〉 ≥ 0, ∀x, z ∈ Rn.
2. ‖PE(x)− PE(y)‖ ≤ ‖x− y‖, ∀x, y ∈ Rn.
3. ‖PE(x)− z‖2 ≤ ‖x− z‖2 − ‖x− PE(x)‖2, ∀x, z ∈ Rn.

Throughout, we suppose the followings

(C1) The solution set of (1), denoted by E
′
, is nonempty.

(C2) The mapping F is monotone.
(C3) The mapping F is Lipschitz continuous, that is there exists a positive constant L such that

‖F(x)− F(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rn.

Our algorithm is motivated by the work of Papp and Rapajić in [12]. In the paper, they
modified the well known Fletcher–Reeves conjugate gradient method to solve unconstrained
nonlinear monotone equation. The modification was adding the term −θkF(xk) to the direction
of Fletcher–Reeves. The parameter θk was then determined in three different ways and three different
directions were proposed, namely, M3TFR1, M3TFR2 and M3TFR3. The direction we are interested in
is M3TFR1 and is defined as:

dk =

{
−F(xk), if k = 0,

−F(xk) + βFR
k wk−1 + θkF(xk), if k ≥ 1,

(2)

where,

βFR
k =

‖F(xk)‖2

‖F(xk−1)‖2 , θk = −
F(xk)

Twk−1

‖F(xk−1)‖2 , wk−1 = zk−1 − xk−1, zk−1 = xk−1 + αk−1dk−1.

It follows that
F(xk)

Tdk = −‖F(xk)‖2.

Using same modification proposed in [3], we modify the direction (2) as follows

dk =

−F(xk), if k = 0,

−F(xk) +
‖F(xk)‖2wk−1−F(xk)

Twk−1F(xk)
max{µ‖wk−1‖‖F(xk)‖,‖F(xk−1)‖2} , if k ≥ 1,

(3)

where µ > 0 is a positive constant. The difference between the M3TFR1 direction and the
direction proposed in this paper is the scaling term appearing in the denominator of Equation (3)



Mathematics 2019, 7, 745 4 of 25

i.e., max{µ‖wk−1‖‖F(xk)‖, ‖F(xk−1)‖2}. This modification was shown to have a very good numerical
performance in [3] and also helps in obtaining the boundedness of the direction easily.

Remark 1. Note the the parameter µ is chosen to be strictly positive because if µ ≤ 0 then

max{µ‖wk−1‖‖F(xk)‖, ‖F(xk−1)‖2} = ‖F(xk−1)‖2.

This means that the direction dk will always be M3TFR1 given by (2).

3. Convergence Analysis

To prove the global convergence of Algorithm 1, the following results are needed.

Algorithm 1: A modified descent Fletcher–Reeves CG method (MFRM).

Step 0. Select the initial point x0 ∈ Rn, parameters µ > 0, σ > 0, 0 < ρ < 1, Tol > 0, and set
k := 0.

Step 1. If ‖F(xk)‖ ≤ Tol, stop, otherwise go to Step 2.
Step 2. Find dk using (3).
Step 3. Find the step length αk = γρmk where mk is the smallest non-negative integer m such
that

− 〈F(xk + αkdk), dk〉 ≥ σαk‖F(xk + αkdk)‖‖dk‖2. (4)

Step 4. Set zk = xk + αkdk. If zk ∈ E and ‖F(zk)‖ ≤ Tol, stop. Else compute

xk+1 = PE[xk − ζkF(zk)]

where

ζk =
F(zk)

T(xk − zk)

‖F(zk)‖2 .

Step 5. Let k = k + 1 and go to Step 1.

Lemma 2. Let dk be defined by Equation (3), then

dT
k F(xk) = −‖F(xk)‖2 (5)

and

‖F(xk)‖ ≤ ‖dk‖ ≤
(

1 +
2
µ

)
‖F(xk)‖. (6)

Proof. By Equation (3), suppose k = 0,

dT
k F(xk) = −F(xk)

T F(xk) = −‖F(xk)‖2.

Now suppose k > 0,

dT
k F(xk) = −F(xk)

T F(xk) +
(‖F(xk)‖2wk−1)

T F(xk)− (F(xk)
Twk−1F(xk))

T F(xk)

max{µ‖wk−1‖‖F(xk)‖, ‖F(xk−1)‖2}

= −‖F(xk)‖2 +
‖F(xk)‖2wT

k−1F(xk)− F(xk)
T(wT

k−1F(xk))F(xk)

max{µ‖wk−1‖‖F(xk)‖, ‖F(xk−1)‖2}

= −‖F(xk)‖2 +
‖F(xk)‖2wT

k−1F(xk)− ‖F(xk)‖2wT
k−1F(xk)

max{µ‖wk−1‖‖F(xk)‖, ‖F(xk−1)‖2}
= −‖F(xk)‖2.

(7)
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Using Cauchy–Schwartz inequality, we get

‖F(xk)‖ ≤ ‖dk‖. (8)

Furthermore, since max{µ‖wk−1‖‖F(xk)‖, ‖F(xk−1)‖2} ≥ µ‖wk−1‖‖F(xk)‖, then,

‖dk‖ =
∥∥∥∥−F(xk) +

‖F(xk)‖2wk−1 − (F(xk)
Twk−1)F(xk)

max{µ‖wk−1‖‖F(xk)‖, ‖F(xk−1)‖2}

∥∥∥∥
≤ ‖− F(xk)‖+

‖‖F(xk)‖2wk−1 − (F(xk)
Twk−1)F(xk)‖

max{µ‖wk−1‖‖F(xk)‖, ‖F(xk−1)‖2}

≤ ‖F(xk)‖+
‖F(xk)‖2‖wk−1‖
µ‖wk−1‖‖F(xk)‖

+
‖F(xk)

Twk−1F(xk)‖
µ‖wk−1‖‖F(xk)‖

≤ ‖F(xk)‖+
‖F(xk)‖2‖wk−1‖
µ‖wk−1‖‖F(xk)‖

+
‖F(xk)‖2‖wk−1‖
µ‖wk−1‖‖F(xk)‖

= ‖F(xk)‖+
2‖F(xk)‖

µ

=

(
1 +

2
µ

)
‖F(xk)‖.

(9)

Combining (8) and (9), we get the desired result.

Lemma 3. Suppose that assumptions (C1)–(C3) hold and the sequences {xk} and {zk} are generated by
Algorithm 1. Then we have

αk ≥ ρ min

{
1,

‖F(xk)‖2

(L + σ)‖F(xk +
αk
ρ dk)‖‖dk‖2

}

Proof. Suppose αk 6= ρ, then αk
ρ does not satisfy Equation (4), that is

− F
(

xk +
αk
ρ

dk

)
< σ

αk
ρ
‖F(xk +

αk
ρ

dk)‖‖dk‖2.

This combined with (7) and the fact that F is Lipschitz continuous yields

‖F(xk)‖2 = −F(xk)
Tdk

=

(
F(xk +

αk
ρ

dk)− F(xk)

)T
dk − FT

(
xk +

αk
ρ

dk

)
dk

≤ L
αk
ρ
‖F(xk +

αk
ρ

dk)‖‖dk‖2 + σ
αk
ρ
‖F(xk +

αk
ρ

dk)‖‖dk‖2

=
L + σ

ρ
αk‖F(xk +

αk
ρ

dk)‖‖dk‖2.

(10)

The above equation implies

αk ≥ ρ min
‖F(xk)‖2

(L + σ)‖F(xk +
αk
ρ dk)‖‖dk‖2 ,

which completes the proof.
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Lemma 4. Suppose that assumptions (C1)–(C3) holds, then the sequences {xk} and {zk} generated by
Algorithm 1 are bounded. Moreover, we have

lim
k→∞
‖xk − zk‖ = 0 (11)

and
lim
k→∞
‖xk+1 − xk‖ = 0. (12)

Proof. We will start by showing that the sequences {xk} and {zk} are bounded. Suppose x̄ ∈ E
′
,

then by monotonicity of F, we get

〈F(zk), xk − x̄〉 ≥ 〈F(zk), xk − zk〉. (13)

Also by definition of zk and the line search (4), we have

〈F(zk), xk − zk〉 ≥ σα2
k‖F(zk)‖‖dk‖2 ≥ 0. (14)

So, we have

‖xk+1 − x̄‖2 = ‖PE[xk − ζkF(zk)]− x̄‖2 ≤ ‖xk − ζkF(zk)− x̄‖2

= ‖xk − x̄‖2 − 2ζ〈F(zk), xk − x̄〉+ ‖ζF(zk)‖2

≤ ‖xk − x̄‖2 − 2ζk〈F(zk), xk − zk〉+ ‖ζF(zk)‖2

= ‖xk − x̄‖2 −
(
〈F(zk), xk − zk〉
‖F(zk)‖

)2

≤ ‖xk − x̄‖2.

(15)

Thus the sequence {‖xk − x̄‖} is non increasing and convergent, and hence {xk} is bounded.
Furthermore, from Equation (15), we have

‖xk+1 − x̄‖2 ≤ ‖xk − x̄‖2, (16)

and we can deduce recursively that

‖xk − x̄‖2 ≤ ‖x0 − x̄‖2, ∀k ≥ 0.

Then from assumption (C3), we obtain

‖F(xk)‖ = ‖F(xk)− F(x̄)‖ ≤ L‖xk − x̄‖ ≤ L‖x0 − x̄‖.

If we let L‖x0 − x̄‖ = κ, then the sequence {F(xk)} is bounded, that is,

‖F(xk)‖ ≤ κ, ∀k ≥ 0. (17)

By the definition of zk, Equation (14), monotonicity of F and the Cauchy–Schwatz inequality,
we get

σ‖xk − zk‖ =
σ‖αkdk‖2

‖xk − zk‖
≤ 〈F(zk), xk − zk〉

‖xk − zk‖
≤ 〈F(xk), xk − zk〉

‖xk − zk‖
≤ ‖F(xk)‖. (18)
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The boundedness of the sequence {xk} together with Equations (17) and (18), implies the sequence
{zk} is bounded.

Now, as {zk} is bounded, then for any x̄ ∈ E
′
, the sequence {zk − x̄} is also bounded, that is,

there exists a positive constant ν > 0 such that

‖zk − x̄‖ ≤ ν.

This together with assumption (C3), this yields

‖F(zk)‖ = ‖F(zk)− F(x̄)‖ ≤ L‖zk − x̄‖ ≤ Lν.

Therefore, using Equation (15), we have

σ2

(Lν)2 ‖xk − zk‖4 ≤ ‖xk − x̄‖2 − ‖xk+1 − x̄‖2,

which implies

σ2

(Lν)2

∞

∑
k=0
‖xk − zk‖4 ≤

∞

∑
k=0

(‖xk − x̄‖2 − ‖xk+1 − x̄‖2) ≤ ‖x0 − x̄‖ < ∞. (19)

Equation (19) implies
lim
k→∞
‖xk − zk‖ = 0.

However, using statement 2 of Lemma 1, the definition of ζk and the Cauchy-Schwartz inequality,
we have

‖xk+1 − xk‖ = ‖PE[xk − ζkF(zk)]− xk‖

≤ ‖xk − ζkF(zk)− xk‖

= ‖ζkF(zk)‖

= ‖xk − zk‖,

(20)

which yields
lim
k→∞
‖xk+1 − xk‖ = 0.

Remark 2. By Equation (11) and definition of zk, then

lim
k→∞

αk‖dk‖ = 0. (21)

Theorem 1. Suppose that assumption (C1)–(C3) holds and let the sequence {xk} be generated by
Algorithm 1, then

lim inf
k→∞

‖F(xk)‖ = 0. (22)

Proof. Assume that Equation (22) is not true, then there exists a constant ε > 0 such that

‖F(xk)‖ ≥ ε, ∀k ≥ 0. (23)
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Combining (8) and (23), we have

‖dk‖ ≥ ‖F(xk)‖ ≥ ε, ∀k ≥ 0.

As wk = xk + αkdk and limk→∞ ‖xk − zk‖ = 0, we get limk→∞ αk‖dk‖ = 0 and

lim
k→∞

αk = 0. (24)

On the other side, if M =
(

1 + 2
µ

)
κ, Lemma 3 and Equation (9) implies αk‖dk‖ ≥ ρ ε2

(L+σ)MLν
,

which contradicts with (24). Therefore, (22) must hold.

4. Numerical Experiments

To test the performance of the proposed method, we compare it with accelerated conjugate
gradient descent (ACGD) and projected Dai-Yuan (PDY) methods in [27,28], respectively. In addition,
MFRM method is applied to solve signal and image recovery problems arising in compressive sensing.
All codes were written in MATLAB R2018b and run on a PC with intel COREi5 processor with 4GB of
RAM and CPU 2.3GHZ. All runs were stopped whenever ‖F(xk)‖ < 10−5. The parameters chosen for
each method are as follows:

MFRM method: γ = 1, ρ = 0.9, µ = 0.01, σ = 0.0001.
ACGD method: all parameters are chosen as in [27].
PDY method: all parameters are chosen as in [28].

We tested eight problems with dimensions of n = 1000, 5000, 10,000, 50,000, 100,000 and 6
initial points: x1 = (0.1, 0.1, · · · , 1)T , x2 = (0.2, 0.2, · · · , 0.2)T , x3 = (0.5, 0.5, · · · , 0.5)T , x4 =

(1.2, 1.2, · · · , 1.2)T , x5 = (1.5, 1.5, · · · , 1.5)T , x6 = (2, 2, · · · , 2)T . In Tables 1–8, the number of
Iterations (Iter), number of function evaluations (Fval), CPU time in seconds (time) and the norm at the
approximate solution (NORM) were reported. The symbol ‘−’ is used when the number of Iterations
exceeds 1000 and/or the number of function evaluations exceeds 2000.

The test problems are listed below, where the function F is taken as F(x) =

( f1(x), f2(x), . . . , fn(x))T .
Problem 1 [38] Exponential Function.

f1(x) = ex1 − 1,

fi(x) = exi + xi − 1, for i = 2, 3, ..., n,

and E = Rn
+.

Problem 2 [38] Modified Logarithmic Function.

fi(x) = ln(xi + 1)− xi
n

, for i = 2, 3, ..., n,

and E = {x ∈ Rn :
n

∑
i=1

xi ≤ n, xi > −1, i = 1, 2, . . . , n}.

Problem 3 [6] Nonsmooth Function.

fi(x) = 2xi − sin |xi|, i = 1, 2, 3, ..., n,

and E = {x ∈ Rn :
n

∑
i=1

xi ≤ n, xi ≥ 0, i = 1, 2, . . . , n}.

It is clear that problem 3 is nonsmooth at x = 0.
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Problem 4 [38] Strictly Convex Function I.

fi(x) = exi − 1, for i = 1, 2, ..., n,

and E = Rn
+.

Problem 5 [38] Strictly Convex Function II.

fi(x) =
i
n

exi − 1, for i = 1, 2, ..., n,

and E = Rn
+.

Problem 6 [39] Tridiagonal Exponential Function

f1(x) = x1 − ecos(h(x1+x2)),

fi(x) = xi − ecos(h(xi−1+xi+xi+1)), for i = 2, ..., n− 1,

fn(x) = xn − ecos(h(xn−1+xn)),

h =
1

n + 1
and E = Rn

+.

Problem 7 [40] Nonsmooth Function

fi(x) = xi − sin |xi − 1|, i = 1, 2, 3, ..., n.

and E = {x ∈ Rn :
n

∑
i=1

xi ≤ n, xi ≥ −1, i = 1, 2, . . . , n}.

Problem 8 [27] Penalty 1

ti =
n

∑
i=1

x2
i , c = 10−5

fi(x) = 2c(xi − 1) + 4(ti − 0.25)xi, i = 1, 2, 3, ..., n.

and E = Rn
+.

To show in detail the efficiency and robustness of all methods, we employ the performance
profile developed in [41], which is a helpful process of standardizing the comparison of methods.
Suppose that we have ns solvers and nl problems and we are interested in using either number of
Iterations, CPU time or number of function evaluations as our measure of performance; so we let kl,s
to be the number of iterations, CPU time or number of function evaluations required to solve problem
by solver s. To compare the performance on problem l by a solver s with the best performance by any
other solver on this problem, we use the performance ratio rl,s defined as

rl,s =
kl,s

min{kl,s : s ∈ S} ,

where S is the set of solvers.
The overall performance of the solver is obtained using the (cumulative) distribution function for

the performance ratio P. So if we let

P(t) =
1
nl

size{l ∈ L : rl,s ≤ t},
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then P(t) is the probability for solver s ∈ S that a performance ratio rl,s is within a factor t ∈ R of the
best possible ratio. If the set of problems L is large enough, then the solvers with the large probability
P(t) are considered as the best.

Table 1. Numerical results for modified Fletcher–Reeves (MFRM), accelerated conjugate gradient
descent (ACGD) and projected Dai-Yuan (PDY) for problem 1 with given initial points and dimensions.

MFRM ACGD PDY

Dimension Initial Point Iter Fval Time Norm Iter Fval Time Norm Iter Fval Time Norm

1000

x1 23 98 0.42639 9.01 × 10−6 8 34 0.21556 9.26 × 10−6 12 49 0.19349 9.18 × 10−6

x2 7 35 0.019885 8.82 × 10−6 9 39 0.086582 3.01 × 10−6 13 53 0.07318 6.35 × 10−6

x3 8 40 0.011238 9.74 × 10−6 9 38 0.034359 4.02 × 10−6 14 57 0.01405 5.59 × 10−6

x4 15 70 0.066659 6.01 × 10−6 16 67 0.017188 9.22 × 10−6 15 61 0.01421 4.07 × 10−6

x5 5 31 0.16103 0 18 75 0.11646 4.46 × 10−6 14 57 0.08690 9.91 × 10−6

x6 31 134 0.03232 7.65 × 10−6 25 104 0.042967 6.74 × 10−6 40 162 0.04060 9.70 × 10−6

5000

x1 8 38 0.053865 5.63 × 10−6 9 38 0.023729 3.89 × 10−6 13 53 0.02775 6.87 × 10−6

x2 8 40 0.036653 2.59 × 10−6 9 38 0.021951 6.65 × 10−6 14 57 0.02974 4.62 × 10−6

x3 8 40 0.030089 6.41 × 10−6 9 39 0.019317 8.01 × 10−6 15 61 0.04353 4.18 × 10−6

x4 16 74 0.081741 4.71 × 10−6 17 71 0.05235 8.12 × 10−6 15 61 0.03288 9.08 × 10−6

x5 5 31 0.030748 0 18 75 0.038894 8.14 × 10−6 15 61 0.03556 7.30 × 10−6

x6 31 134 0.087531 8.1 × 10−6 26 108 0.053473 7.96 × 10−6 39 158 0.10419 9.86 × 10−6

10,000

x1 5 26 0.03829 3.7 × 10−6 9 39 0.044961 5.5 × 10−6 13 53 0.05544 9.70 × 10−6

x2 8 40 0.055099 3.64 × 10−6 9 39 0.0358 9.39 × 10−6 14 57 0.06201 6.53 × 10−6

x3 8 40 0.049974 5.44 × 10−6 10 43 0.04176 2.12 × 10−6 15 61 0.08704 5.90 × 10−6

x4 16 74 0.125 6.61 × 10−6 18 75 0.066316 4.58 × 10−6 16 65 0.07797 4.28 × 10−6

x5 5 31 0.048751 0 18 75 0.11807 7.86 × 10−6 39 158 0.20751 7.97 × 10−6

x6 28 122 0.13649 7.18 × 10−6 27 112 0.10593 6.22 × 10−6 87 351 0.36678 9.93 × 10−6

50,000

x1 5 26 0.1584 3.58 × 10−6 10 43 0.15918 2.33 × 10−6 14 57 0.23129 7.12 × 10−6

x2 8 40 0.18044 8.1 × 10−6 10 43 0.16252 3.97 × 10−6 15 61 0.23975 4.91 × 10−6

x3 8 40 0.186 4.54 × 10−6 10 43 0.15707 4.67 × 10−6 16 65 0.24735 4.37 × 10−6

x4 17 78 0.31567 5.47 × 10−6 19 79 0.27474 4.1 × 10−6 38 154 0.55277 7.54 × 10−6

x5 5 31 0.18586 0 18 75 0.27118 5.06 × 10−6 177 712 2.29950 9.44 × 10−6

x6 20 90 0.39237 6.44 × 10−6 28 116 0.35197 7.69 × 10−6 361 1449 4.63780 9.74 × 10−6

100,000

x1 5 26 0.26116 4.59 × 10−6 10 42 0.28038 3.29 × 10−6 15 61 0.50090 3.39 × 10−6

x2 9 43 0.35288 1.59 × 10−6 10 42 0.28999 5.62 × 10−6 15 61 0.45876 6.94 × 10−6

x3 8 40 0.35809 4.96 × 10−6 10 42 0.29255 6.59 × 10−6 16 65 0.51380 6.18 × 10−6

x4 17 78 0.59347 7.73 × 10−6 19 79 0.51261 5.79 × 10−6 175 704 4.48920 9.47 × 10−6

x5 32 138 0.98463 7.09 × 10−6 18 75 0.46086 4.05 × 10−6 176 708 4.49410 9.91 × 10−6

x6 17 78 0.57701 9.31 × 10−6 29 120 0.71678 6.05 × 10−6 360 1445 9.10170 9.99 × 10−6

Table 2. Numerical results for MFRM, ACGD and PDY for problem 2 with given initial points
and dimensions.

MFRM ACGD PDY

Dimension Initial Point Iter Fval Time Norm Iter Fval Time Norm Iter Fval Time Norm

1000

x1 3 8 0.007092 5.17 × 10−7 3 8 0.036061 5.17 × 10−7 10 39 0.01053 6.96 × 10−6

x2 3 8 0.012401 6.04 × 10−6 3 8 0.006143 6.04 × 10−6 11 43 0.00937 9.23 × 10−6

x3 4 11 0.003993 4.37 × 10−7 4 11 0.006476 4.37 × 10−7 13 51 0.01111 6.26 × 10−6

x4 5 14 0.010363 1.52 × 10−7 5 14 0.005968 1.52 × 10−7 14 55 0.02154 9.46 × 10−6

x5 5 14 0.007234 1.1 × 10−6 5 14 0.02349 1.1 × 10−6 15 59 0.01850 4.60 × 10−6

x6 6 17 0.006496 1.74 × 10−8 6 17 0.00677 1.74 × 10−8 15 59 0.01938 7.71 × 10−6

5000

x1 3 8 0.011561 1.75 × 10−7 3 8 0.009794 1.75 × 10−7 11 43 0.03528 4.86 × 10−6

x2 3 8 0.010452 3.13 × 10−6 3 8 0.009591 3.13 × 10−6 12 47 0.04032 6.89 × 10−6

x3 4 11 0.01516 1.42 × 10−7 4 11 0.013767 1.42 × 10−7 14 55 0.04889 4.61 × 10−6

x4 5 14 0.019733 3.94 × 10−8 5 14 0.014274 3.94 × 10−8 15 59 0.04826 6.96 × 10−6

x5 5 14 0.018462 4.05 × 10−7 5 14 0.011728 4.05 × 10−7 16 63 0.05969 3.37 × 10−6

x6 6 17 0.028536 2.36 × 10−9 6 17 0.016345 2.36 × 10−9 16 63 0.06253 5.64 × 10−6

10,000

x1 3 8 0.019053 1.21 × 10−7 3 8 0.0135 1.21 × 10−7 11 43 0.06732 6.85 × 10−6

x2 3 8 0.01791 2.79 × 10−6 3 8 0.015807 2.79 × 10−6 12 47 0.12232 9.72 × 10−6

x3 4 11 0.033042 9.73 × 10−8 4 11 0.020752 9.73 × 10−8 14 55 0.08288 6.51 × 10−6

x4 5 14 0.031576 2.56 × 10−8 5 14 0.04483 2.56 × 10−8 15 59 0.08413 9.82 × 10−6

x5 5 14 0.032747 2.93 × 10−7 5 14 0.026975 2.93 × 10−7 16 63 0.09589 4.75 × 10−6

x6 6 17 0.036002 1.24 × 10−9 6 17 0.032445 1.24 × 10−9 16 64 0.11499 8.55 × 10−6

50,000

x1 3 8 0.0737 6.32 × 10−8 7 26 0.16925 2.94 × 10−6 12 47 0.27826 5.23 × 10−6

x2 3 8 0.06964 3.37 × 10−6 9 34 0.18801 2.78 × 10−6 13 51 0.29642 7.11 × 10−6

x3 4 11 0.093027 4.87 × 10−8 7 25 0.15375 9.11 × 10−6 15 59 0.35602 4.82 × 10−6

x4 5 14 0.11219 1.11 × 10−8 7 24 0.15382 9.18 × 10−6 35 141 0.69470 6.69 × 10−6

x5 5 14 0.1173 1.84 × 10−7 9 32 0.18164 6.71 × 10−6 35 141 0.68488 9.12 × 10−6

x6 6 17 0.13794 4.01 × 10−10 6 19 0.11216 5.2 × 10−6 35 141 0.70973 9.91 × 10−6

100,000

x1 3 8 0.13021 5.4 × 10−8 7 26 0.2609 4.14 × 10−6 12 47 0.44541 7.39 × 10−6

x2 3 8 0.13267 4.27 × 10−6 9 34 0.32666 3.93 × 10−6 14 55 0.53299 3.39 × 10−6

x3 4 11 0.17338 4.05 × 10−8 8 29 0.3113 3.33 × 10−6 15 60 0.58603 8.71 × 10−6

x4 5 14 0.20036 8.15 × 10−9 8 28 0.2997 3.34 × 10−6 72 290 2.70630 8.31 × 10−6

x5 5 14 0.25274 1.8 × 10−7 9 32 0.32098 9.46 × 10−6 72 290 2.72220 8.68 × 10−6

x6 6 17 0.24952 2.71 × 10−10 6 19 0.21972 7.01 × 10−6 72 290 2.75850 8.96 × 10−6
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Table 3. Numerical results for MFRM, ACGD and PDY for problem 3 with given initial points
and dimensions.

MFRM ACGD PDY

Dimension Initial Point Iter Fval Time Norm Iter Fval Time Norm Iter Fval Time Norm

1000

x1 6 24 0.024062 3.11 × 10−6 6 40 0.02951 4.44 × 10−6 12 48 0.01255 4.45 × 10−6

x2 6 24 0.005345 5.94 × 10−6 6 40 0.0077681 8.75 × 10−6 12 48 0.01311 9.02 × 10−6

x3 6 24 0.006109 9.94 × 10−6 6 44 0.0067049 5.09 × 10−6 13 52 0.01486 8.34 × 10−6

x4 8 33 0.006127 3.1 × 10−6 8 44 0.007142 5.04 × 10−6 14 56 0.01698 8.04 × 10−6

x5 11 46 0.010427 2.71 × 10−6 11 40 0.010411 3.12 × 10−6 14 56 0.01551 9.72 × 10−6

x6 16 68 0.010682 8.38 × 10−6 16 77 0.014759 5.98 × 10−6 14 56 0.01534 9.42 × 10−6

5000

x1 6 24 0.020455 6.96 × 10−6 6 40 0.020368 9.93 × 10−6 12 48 0.03660 9.94 × 10−6

x2 7 28 0.021552 1.33 × 10−6 7 44 0.029622 5.09 × 10−6 13 52 0.03616 6.85 × 10−6

x3 7 28 0.023056 2.22 × 10−6 7 48 0.030044 2.96 × 10−6 14 56 0.04594 6.14 × 10−6

x4 8 33 0.022984 6.92 × 10−6 8 48 0.022777 2.93 × 10−6 15 60 0.04342 6.01 × 10−6

x5 11 46 0.031466 6.06 × 10−6 11 40 0.019226 6.97 × 10−6 15 60 0.04296 7.25 × 10−6

x6 17 72 0.049308 7.67 × 10−6 17 81 0.036095 6.05 × 10−6 32 129 0.10081 8.85 × 10−6

10,000

x1 6 24 0.03064 9.85 × 10−6 6 44 0.03997 3.65 × 10−6 13 52 0.06192 4.77 × 10−6

x2 7 28 0.035806 1.88 × 10−6 7 44 0.037221 7.19 × 10−6 13 52 0.06442 9.68 × 10−6

x3 7 28 0.035795 3.14 × 10−6 7 48 0.053226 4.18 × 10−6 14 56 0.09499 8.69 × 10−6

x4 8 33 0.041017 9.79 × 10−6 8 48 0.057984 4.15 × 10−6 15 60 0.07696 8.5 × 10−6

x5 11 46 0.06448 8.58 × 10−6 11 40 0.047413 9.85 × 10−6 33 133 0.18625 6.45 × 10−6

x6 18 76 0.09651 4.44 × 10−6 18 81 0.085238 8.56 × 10−6 33 133 0.15548 7.51 × 10−6

50,000

x1 7 28 0.14323 2.2 × 10−6 7 44 0.17175 8.17 × 10−6 14 56 0.23642 3.51 × 10−6

x2 7 28 0.13625 4.2 × 10−6 7 48 0.18484 4.18 × 10−6 14 56 0.24813 7.12 × 10−6

x3 7 28 0.13246 7.03 × 10−6 7 48 0.1827 9.36 × 10−6 15 60 0.27049 6.53 × 10−6

x4 9 37 0.18261 4.16 × 10−6 9 48 0.18993 9.27 × 10−6 34 137 0.54545 7.13 × 10−6

x5 12 50 0.21743 5.2 × 10−6 12 44 0.17043 5.73 × 10−6 68 274 1.02330 9.99 × 10−6

x6 18 76 0.34645 9.93 × 10−6 18 85 0.32938 8.66 × 10−6 69 278 1.03810 8.05 × 10−6

100,000

x1 7 28 0.27078 3.11 × 10−6 7 48 0.36144 3 × 10−6 14 56 0.45475 4.96 × 10−6

x2 7 28 0.26974 5.94 × 10−6 7 48 0.37515 5.91 × 10−6 15 60 0.49018 3.39 × 10−6

x3 7 28 0.25475 9.94 × 10−6 7 52 0.39071 3.44 × 10−6 15 60 0.49016 9.24 × 10−6

x4 9 37 0.3089 5.88 × 10−6 9 52 0.35961 3.41 × 10−6 139 559 4.03110 9.01 × 10−6

x5 12 50 0.41839 7.35 × 10−6 12 44 0.33105 8.1 × 10−6 70 282 2.07100 8.54 × 10−6

x6 19 80 0.64773 5.75 × 10−6 19 89 0.61329 5.54 × 10−6 139 559 4.02440 9.38 × 10−6

Table 4. Numerical results for MFRM, ACGD and PDY for problem 4 with given initial points
and dimensions.

MFRM ACGD PDY

Dimension Initial Point Iter Fval Time Norm Iter Fval Time Norm Iter Fval Time Norm

1000

x1 6 24 0.00855 1.65 × 10−6 10 40 0.014662 3.65 × 10−6 12 48 0.00989 4.60 × 10−6

x2 5 20 0.004234 2.32 × 10−6 10 40 0.0064115 5.79 × 10−6 12 48 0.00966 9.57 × 10−6

x3 10 42 0.007426 6.42 × 10−6 10 40 0.0054818 3.29 × 10−6 13 52 0.00887 8.49 × 10−6

x4 21 90 0.011603 5.84 × 10−6 27 110 0.012854 8.97 × 10−6 12 48 0.01207 5.83 × 10−6

x5 16 71 0.010735 8.48 × 10−6 26 106 0.015603 5.97 × 10−6 29 117 0.05371 9.43 × 10−6

x6 1 15 0.005932 0 36 147 0.025039 9.56 × 10−6 29 117 0.02396 6.65 × 10−6

5000

x1 6 24 0.019995 3.68 × 10−6 10 40 0.018283 8.15 × 10−6 13 52 0.02503 3.49 × 10−6

x2 5 20 0.00934 5.2 × 10−6 11 44 0.016733 3.36 × 10−6 13 52 0.02626 7.24 × 10−6

x3 11 46 0.02156 3.89 × 10−6 10 40 0.017073 7.37 × 10−6 14 56 0.03349 6.29 × 10−6

x4 22 94 0.043325 6.81 × 10−6 29 118 0.047436 7.09 × 10−6 13 52 0.02258 4.25 × 10−6

x5 18 79 0.096692 6.15 × 10−6 27 110 0.058405 7.95 × 10−6 31 125 0.05471 7.59 × 10−6

x6 1 15 0.012199 0 39 159 0.059448 7.33 × 10−6 63 254 0.10064 8.54 × 10−6

10,000

x1 6 24 0.019264 5.2 × 10−6 11 44 0.026877 3 × 10−6 13 52 0.03761 4.93 × 10−6

x2 5 20 0.017891 7.35 × 10−6 11 44 0.03118 4.76 × 10−6 14 56 0.04100 3.37 × 10−6

x3 11 46 0.036079 5.5 × 10−6 11 44 0.034673 2.71 × 10−6 14 56 0.03919 8.90 × 10−6

x4 22 94 0.069778 9.63 × 10−6 30 122 0.069971 5.97 × 10−6 32 129 0.09613 6.02 × 10−6

x5 18 79 0.062821 8.69 × 10−6 28 114 0.066866 6.68 × 10−6 32 129 0.09177 6.44 × 10−6

x6 1 15 0.017237 0 40 163 0.093749 7.26 × 10−6 64 258 0.20791 9.39 × 10−6

50,000

x1 7 28 0.093473 1.16 × 10−6 11 44 0.16749 6.7 × 10−6 14 56 0.17193 3.63 × 10−6

x2 6 24 0.072206 1.64 × 10−6 12 48 0.11391 2.77 × 10−6 14 56 0.15237 7.54 × 10−6

x3 12 50 0.14285 3.33 × 10−6 11 44 0.11036 6.06 × 10−6 15 60 0.16549 6.66 × 10−6

x4 24 102 0.30313 5.86 × 10−6 31 126 0.30903 7.94 × 10−6 67 270 0.76283 7.81 × 10−6

x5 20 87 0.28955 6.31 × 10−6 29 118 0.30266 8.89 × 10−6 67 270 0.76157 8.80 × 10−6

x6 1 15 0.061327 0 42 171 0.41158 7.96 × 10−6 269 1080 2.92510 9.41 × 10−6

100,000

x1 7 28 0.15038 1.65 × 10−6 11 44 0.2434 9.48 × 10−6 14 56 0.30229 5.13 × 10−6

x2 6 24 0.13126 2.32 × 10−6 12 48 0.2614 3.91 × 10−6 15 60 0.31648 3.59 × 10−6

x3 12 50 0.31585 4.71 × 10−6 11 44 0.2161 8.57 × 10−6 32 129 0.72838 9.99 × 10−6

x4 24 102 0.58023 8.29 × 10−6 32 130 0.65289 6.68 × 10−6 135 543 2.86780 9.73 × 10−6

x5 20 87 0.5122 8.92 × 10−6 30 122 0.61637 7.48 × 10−6 272 1092 5.74140 9.91 × 10−6

x6 1 15 0.11696 0 43 175 0.82759 7.88 × 10−6 548 2197 11.44130 9.87 × 10−6
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Table 5. Numerical results for MFRM, ACGD and PDY for problem 5 with given initial points
and dimensions.

MFRM ACGD PDY

Dimension Initial Point Iter Fval Time Norm Iter Fval Time Norm Iter Fval Time Norm

1000

x1 26 98 0.023555 3.51 × 10−6 39 154 0.022285 9.7 × 10−6 16 63 0.07575 6.03 × 10−6

x2 40 154 0.024539 5.9 × 10−6 22 85 0.015671 5.03 × 10−6 16 63 0.01470 5.42 × 10−6

x3 37 144 0.021659 7.11 × 10−6 43 173 0.029569 7.96 × 10−6 33 132 0.02208 6.75 × 10−6

x4 49 206 0.030696 9.52 × 10−6 30 122 0.014942 6.05 × 10−6 30 121 0.01835 8.39 × 10−6

x5 46 194 0.11589 7.06 × 10−6 29 118 0.040406 6.5 × 10−6 32 129 0.02700 8.47 × 10−6

x6 43 182 0.027471 8.7 × 10−6 40 163 0.0311 9.83 × 10−6 30 121 0.01712 6.95 × 10−6

5000

x1 38 147 0.073315 4.96 × 10−6 30 117 0.060877 9.56 × 10−6 17 67 0.04394 5.64 × 10−6

x2 20 77 0.056225 4.98 × 10−6 16 60 0.027911 5.91 × 10−6 17 67 0.04635 5.07 × 10−6

x3 41 157 0.082151 8.92 × 10−6 78 315 0.12774 9.7 × 10−6 35 140 0.08311 9.74 × 10−6

x4 48 202 0.10166 9.19 × 10−6 31 126 0.067911 8.39 × 10−6 33 133 0.08075 6.02 × 10−6

x6 147 562 3.308158 8.44 × 10−7 31 126 0.067856 7.81 × 10−6 35 141 0.10091 7.51 × 10−6

x7 45 190 0.090276 7.14 × 10−6 44 179 0.09371 7.37 × 10−6 32 129 0.08054 8.55 × 10−6

10,000

x1 37 143 0.12665 9.28 × 10−6 77 308 0.28678 9.85 × 10−6 17 67 0.06816 8.81 × 10−6

x2 22 84 0.077288 9.78 × 10−6 16 60 0.071657 7.52 × 10−6 17 67 0.08833 7.80 × 10−6

x3 39 149 0.1297 6.74 × 10−6 105 424 0.34212 9.08 × 10−6 37 148 0.14732 6.36 × 10−6

x4 60 250 0.2175 7.56 × 10−6 32 130 0.11937 7.17 × 10−6 37 149 0.14293 8.25 × 10−6

x5 44 186 0.1727 7.68 × 10−6 32 130 0.11921 8.26 × 10−6 36 145 0.14719 8.23 × 10−6

x6 46 194 0.1728 8.62 × 10−6 45 183 0.15634 9.01 × 10−6 74 298 0.26456 7.79 × 10−6

50,000

x1 44 170 0.62202 1 × 10−5 90 539 31.75299 2.56 × 10−7 42 169 0.58113 7.78 × 10−6

x2 69 280 0.9662 6.87 × 10−6 31 122 0.33817 7.09 × 10−6 42 169 0.58456 7.13 × 10−6

x3 119 464 25.87657 9.34 × 10−7 260 1047 2.8824 9.67 × 10−6 41 165 0.58717 8.87 × 10−6

x4 50 210 0.71599 8.38 × 10−6 33 134 0.39039 9.98 × 10−6 40 161 0.56431 7.17 × 10−6

x5 46 194 0.65538 8.47 × 10−6 35 142 0.40807 7.19 × 10−6 82 330 1.08920 8.44 × 10−6

x6 50 210 0.69117 8.12 × 10−6 49 199 0.57702 8.97 × 10−6 80 322 1.06670 7.82 × 10−6

100,000

x1 31 121 0.84183 4.48 × 10−6 88 530 61.97806 5.53 × 10−7 43 173 1.09620 8.47 × 10−6

x2 135 518 59.19294 8.37 × 10−7 110 442 2.2661 9.55 × 10−6 43 173 1.10040 7.77 × 10−6

x3 46 178 1.1322 6.99 × 10−6 345 1388 7.1938 9.76 × 10−6 42 169 1.08330 9.66 × 10−6

x4 50 210 1.3737 8.85 × 10−6 34 138 0.74362 8.65 × 10−6 85 342 2.11880 9.22 × 10−6

x5 47 198 1.3879 8.31 × 10−6 36 146 0.79012 8.09 × 10−6 84 338 2.10640 9.78 × 10−6

x6 52 218 1.4318 7.37 × 10−6 51 207 1.1601 8.42 × 10−6 167 671 4.06200 9.90 × 10−6

Table 6. Numerical Results for MFRM, ACGD and PDY for problem 6 with given initial points
and dimensions.

MFRM ACGD PDY

Dimension Initial Point Iter Fval Time Norm Iter Fval Time Norm Iter Fval Time Norm

1000

x1 11 44 0.011156 8.32 × 10−6 12 48 0.02786 7.88 × 10−6 15 60 0.01671 4.35 × 10−6

x2 11 44 0.016092 7.32 × 10−6 12 48 0.01042 7.58 × 10−6 15 60 0.01346 4.18 × 10−6

x3 11 44 0.010446 8.83 × 10−6 12 48 0.0092 6.68 × 10−6 15 60 0.01630 3.68 × 10−6

x4 10 40 0.011233 7.38 × 10−6 12 48 0.013617 4.57 × 10−6 14 56 0.01339 7.48 × 10−6

x5 9 36 0.011325 8.29 × 10−6 12 48 0.011492 3.67 × 10−6 14 56 0.01267 6.01 × 10−6

x6 7 28 0.009452 8.25 × 10−6 11 44 0.016351 8.32 × 10−6 14 56 0.01685 3.54 × 10−6

5000

x1 8 32 0.026924 1.87 × 10−6 13 52 0.036025 4.59 × 10−6 15 60 0.05038 9.73 × 10−6

x2 8 32 0.043488 1.8 × 10−6 13 52 0.040897 4.42 × 10−6 15 60 0.04775 9.36 × 10−6

x3 8 32 0.02709 1.59 × 10−6 13 52 0.039937 3.89 × 10−6 15 60 0.04923 8.25 × 10−6

x4 8 32 0.026351 1.1 × 10−6 13 52 0.033013 2.66 × 10−6 15 60 0.05793 5.64 × 10−6

x5 7 28 0.023442 8.62 × 10−6 12 48 0.030462 8.22 × 10−6 15 60 0.04597 4.53 × 10−6

x6 7 28 0.022952 5.08 × 10−6 12 48 0.028786 4.85 × 10−6 14 56 0.05070 7.93 × 10−6

10,000

x1 8 32 0.061374 2.62 × 10−6 13 52 0.092372 6.5 × 10−6 68 274 0.40724 9.06 × 10−6

x2 8 32 0.06285 2.52 × 10−6 13 52 0.059778 6.25 × 10−6 68 274 0.41818 8.72 × 10−6

x3 8 32 0.059913 2.22 × 10−6 13 52 0.077326 5.5 × 10−6 34 137 0.21905 6.22 × 10−6

x4 8 32 0.057003 1.52 × 10−6 13 52 0.087745 3.77 × 10−6 15 60 0.10076 7.98 × 10−6

x5 8 32 0.070377 1.22 × 10−6 13 52 0.077217 3.02 × 10−6 15 60 0.12680 6.40 × 10−6

x6 7 28 0.052718 7.18 × 10−6 12 48 0.067375 6.85 × 10−6 15 60 0.11984 3.78 × 10−6

50,000

x1 8 32 0.21258 5.85 × 10−6 14 56 0.32965 3.78 × 10−6 143 575 3.09120 9.42 × 10−6

x2 8 32 0.21203 5.63 × 10−6 14 56 0.31297 3.63 × 10−6 143 575 3.06200 9.06 × 10−6

x3 8 32 0.20885 4.96 × 10−6 14 56 0.30089 3.2 × 10−6 142 571 3.04950 9.04 × 10−6

x4 8 32 0.20483 3.4 × 10−6 13 52 0.26855 8.42 × 10−6 69 278 1.53920 9.14 × 10−6

x5 8 32 0.21467 2.72 × 10−6 13 52 0.26304 6.76 × 10−6 68 274 1.49490 9.43 × 10−6

x6 8 32 0.20933 1.61 × 10−6 13 52 0.26143 3.99 × 10−6 15 60 0.38177 8.44 × 10−6

100,000

x1 8 32 0.41701 8.28 × 10−6 14 56 0.58853 5.34 × 10−6 292 1172 13.59530 9.53 × 10−6

x2 8 32 0.41511 7.96 × 10−6 14 56 0.58897 5.14 × 10−6 290 1164 13.30930 9.75 × 10−6

x3 8 32 0.44061 7.01 × 10−6 14 56 0.57318 4.53 × 10−6 144 579 6.68150 9.96 × 10−6

x4 8 32 0.43805 4.8 × 10−6 14 56 0.58712 3.1 × 10−6 141 567 6.50800 9.92 × 10−6

x5 8 32 0.41147 3.85 × 10−6 13 52 0.56384 9.56 × 10−6 70 282 3.30510 8.07 × 10−6

x6 8 32 0.43925 2.27 × 10−6 13 52 0.53343 5.64 × 10−6 34 137 1.64510 6.37 × 10−6



Mathematics 2019, 7, 745 13 of 25

Table 7. Numerical Results for MFRM, ACGD and PDY for problem 7 with given initial points
and dimensions.

MFRM ACGD PDY

Dimension Initial Point Iter Fval Time Norm Iter Fval Time Norm Iter Fval Time Norm

1000

x1 4 21 0.011834 3.24 × 10−7 10 42 0.008528 2.46 × 10−6 14 57 0.00953 5.28 × 10−6

x2 4 21 0.006228 1.43 × 10−7 9 38 0.008289 3.91 × 10−6 13 53 0.00896 9.05 × 10−6

x3 3 17 0.004096 5.81 × 10−8 8 34 0.006702 7.43 × 10−6 3 12 0.00426 8.47 × 10−6

x4 7 34 0.00585 3.89 × 10−6 11 46 0.009579 5.94 × 10−6 15 61 0.01169 6.73 × 10−6

x5 7 34 0.006133 6.36 × 10−6 11 46 0.015328 8.97 × 10−6 31 126 0.03646 9.03 × 10−6

x6 8 37 0.006106 1.9 × 10−6 12 49 0.01426 2.87 × 10−6 15 60 0.01082 3.99 × 10−6

5000

x1 4 21 0.015836 7.25 × 10−7 10 42 0.023953 5.49 × 10−6 15 61 0.03215 4.25 × 10−6

x2 4 21 0.014521 3.2 × 10−7 9 38 0.021065 8.74 × 10−6 14 57 0.02942 7.40 × 10−6

x3 3 17 0.014517 1.3 × 10−7 9 38 0.025437 4.01 × 10−6 4 16 0.01107 1.01 × 10−7

x4 7 34 0.028388 8.71 × 10−6 12 50 0.028607 3.21 × 10−6 16 65 0.04331 5.43 × 10−6

x5 8 38 0.02787 1.49 × 10−6 12 50 0.037806 4.84 × 10−6 33 134 0.09379 7.78 × 10−6

x6 8 37 0.027898 4.26 × 10−6 12 49 0.029226 6.43 × 10−6 15 60 0.04077 8.92 × 10−6

10,000

x1 4 21 0.028528 1.02 × 10−6 10 42 0.045585 7.77 × 10−6 15 61 0.06484 6.01 × 10−6

x2 4 21 0.033782 4.52 × 10−7 10 42 0.041715 2.98 × 10−6 15 61 0.07734 3.77 × 10−6

x3 3 17 0.029265 1.84 × 10−7 9 38 0.036422 5.67 × 10−6 4 16 0.02707 1.42 × 10−7

x4 8 38 0.043301 1.29 × 10−6 12 50 0.063527 4.53 × 10−6 16 65 0.07941 7.69 × 10−6

x5 8 38 0.043741 2.1 × 10−6 12 50 0.049604 6.85 × 10−6 34 138 0.14942 6.83 × 10−6

x6 8 37 0.053666 6.02 × 10−6 12 49 0.050153 9.09 × 10−6 34 138 0.15224 8.81 × 10−6

50,000

x1 4 21 0.10816 2.29 × 10−6 11 46 0.20624 4.19 × 10−6 16 65 0.25995 4.89 × 10−6

x2 4 21 0.11969 1.01 × 10−6 10 42 0.16364 6.67 × 10−6 15 61 0.24674 8.42 × 10−6

x3 3 17 0.068644 4.11 × 10−7 10 42 0.1539 3.06 × 10−6 4 16 0.09405 3.18 × 10−7

x4 8 38 0.16067 2.88 × 10−6 13 54 0.20728 2.45 × 10−6 36 146 0.55207 6.39 × 10−6

x5 8 38 0.14484 4.7 × 10−6 13 54 0.19421 3.69 × 10−6 35 142 0.54679 9.05 × 10−6

x6 9 41 0.161 1.41 × 10−6 13 53 0.19386 4.9 × 10−6 36 146 0.55764 7.59 × 10−6

100,000

x1 4 21 0.21825 3.24 × 10−6 11 46 0.32512 5.93 × 10−6 17 69 0.52595 5.68 × 10−6

x2 4 21 0.16435 1.43 × 10−6 10 42 0.30949 9.43 × 10−6 16 65 0.52102 4.34 × 10−6

x3 3 17 0.13072 5.81 × 10−7 10 42 0.31031 4.32 × 10−6 4 16 0.14864 4.50 × 10−7

x4 8 38 0.29012 4.07 × 10−6 13 54 0.38833 3.46 × 10−6 36 146 1.05360 9.04 × 10−6

x5 8 38 0.32821 6.65 × 10−6 13 54 0.3522 5.22 × 10−6 74 299 2.10730 8.55 × 10−6

x6 9 41 0.43649 1.99 × 10−6 13 53 0.3561 6.94 × 10−6 37 150 1.08240 6.66 × 10−6

Table 8. Numerical results for MFRM, ACGD and PDY for problem 8 with given initial points
and dimensions.

MFRM ACGD PDY

Dimension Initial Point Iter Fval Time Norm Iter Fval Time Norm Iter Fval Time Norm

1000

x1 8 27 0.1502 1.52 × 10−6 8 26 0.049826 6.09 × 10−6 69 279 0.05538 8.95 × 10−6

x2 8 27 0.042248 1.52 × 10−6 8 26 0.017594 6.09 × 10−6 270 1085 0.18798 9.72 × 10−6

x3 26 114 0.03877 7.85 × 10−6 8 26 0.010888 6.09 × 10−6 24 52 0.02439 6.57 × 10−6

x4 26 114 0.017542 7.85 × 10−6 8 26 0.007873 6.09 × 10−6 27 58 0.01520 7.59 × 10−6

x5 26 114 0.067692 7.85 × 10−6 8 26 0.060733 6.09 × 10−6 28 61 0.04330 9.21 × 10−6

x6 26 114 0.045173 7.85 × 10−6 8 26 0.006889 6.09 × 10−6 40 85 0.02116 8.45 × 10−6

5000

x1 6 28 0.023925 8.77 × 10−6 4 13 0.011005 5.76 × 10−6 658 2639 1.13030 9.98 × 10−6

x2 15 70 0.043512 7.94 × 10−6 4 13 0.009131 5.76 × 10−6 27 58 0.05101 7.59 × 10−6

x3 15 70 0.046458 7.94 × 10−6 4 13 0.011311 5.76 × 10−6 49 104 0.08035 8.11 × 10−6

x4 15 70 0.044788 7.94 × 10−6 4 13 0.010475 5.75 × 10−6 40 85 0.07979 8.45 × 10−6

x5 15 70 0.044639 7.94 × 10−6 4 13 0.011034 5.77 × 10−6 18 40 0.09128 9.14 × 10−6

x6 15 70 0.043974 7.94 × 10−6 4 13 0.00785 5.76 × 10−6 17 38 0.18528 8.98 × 10−6

10,000

x1 11 54 0.06595 6.15 × 10−6 5 20 0.024232 2.19 × 10−6 49 104 0.20443 7.62 × 10−6

x2 11 54 0.068125 6.15 × 10−6 5 20 0.023511 2.19 × 10−6 40 85 0.15801 8.45 × 10−6

x3 11 54 0.065486 6.15 × 10−6 5 20 0.023004 2.19 × 10−6 19 42 0.37880 7.66 × 10−6

x4 11 54 0.064515 6.15 × 10−6 5 20 0.030435 2.19 × 10−6 90 187 1.25802 9.7 × 10−6

x5 11 54 0.056261 6.15 × 10−6 5 20 0.021963 2.19 × 10−6 988 1988 12.68259 9.93 × 10−6

x6 11 54 0.067785 6.15 × 10−6 5 20 0.021889 2.21 × 10−6 27 58 0.32859 7.59 × 10−6

50,000

x1 7 38 0.17856 4.5 × 10−6 5 23 0.087544 2.45 × 10−6 19 42 0.52291 6.42 × 10−6

x2 7 38 0.17862 4.5 × 10−6 5 23 0.093227 2.45 × 10−6 148 304 3.93063 9.92 × 10−6

x3 7 38 0.17746 4.5 × 10−6 5 23 0.087484 2.45 × 10−6 937 1886 22.97097 9.87 × 10−6

x4 7 38 0.17392 4.5 × 10−6 5 23 0.086329 2.4 × 10−6 27 58 0.68467 7.59 × 10−6

x5 7 38 0.18035 4.5 × 10−6 5 23 0.08954 2.4 × 10−6 346 702 8.45043 9.79 × 10−6

x6 7 38 0.17504 4.5 × 10−6 5 23 0.093203 2.5 × 10−6 40 85 0.99230 8.45 × 10−6

100,000

x1 28 122 0.91448 8.61 × 10−6 4 20 0.14743 2.71 × 10−6 - - - -
x2 28 122 0.93662 8.61 × 10−6 4 20 0.14823 2.7 × 10−6 - - - -
x3 28 122 0.90604 8.61 × 10−6 4 20 0.1497 2.79 × 10−6 - - - -
x4 28 122 0.92351 8.61 × 10−6 4 20 0.14844 2.37 × 10−6 - - - -
x5 28 122 0.91896 8.61 × 10−6 4 20 0.12346 1.66 × 10−6 - - - -
x6 28 122 0.91294 8.61 × 10−6 4 20 0.12522 2.11 × 10−6 - - - -

Figure 1 reveals that MFRM performed better in terms of number of Iterations, as it solves and
wins over 70 percent of the problems with less number of Iterations, while ACGD and PDY solve and
win over 40 and almost 10 percent respectively. The story is a little bit different in Figure 2 as ACGD
method was very competitive. However, MFRM method performed a little bit better by solving and
winning over 50 percent of the problems with less CPU time as against ACGD method which solves
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and wins less than 50 percent of the problems considered. The PDY method had the least performance
with just 10 percent success. The interpretation of Figure 3 was similar to that of Figure 1. Finally,
in Table 11 we report numerical results for MFRM, ACGD and PDY for problem 2 with given initial
points and dimensions with double float (10−16) accuracy.
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Figure 1. Performance profiles for the number of iterations.
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Figure 2. Performance profiles for the CPU time (in seconds).
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Figure 3. Performance profiles for the number of function evaluations.

4.1. Experiments on Solving Sparse Signal Problems

There were many problems in signal processing and statistical inference involving finding sparse
solutions to ill-conditioned linear systems of equations. Among popular approaches was minimizing
an objective function which contains quadratic (`2) error term and a sparse `1−regularization term, i.e.,

min
x

1
2
‖y− Bx‖2

2 + η‖x‖1, (25)

where x ∈ Rn, y ∈ Rk is an observation, B ∈ Rk×n (k << n) is a linear operator, η is a non-negative
parameter, ‖x‖2 denotes the Euclidean norm of x and ‖x‖1 = ∑n

i=1 |xi| is the `1−norm of x. It is easy
to see that problem (25) is a convex unconstrained minimization problem. Due to the fact that if the
original signal is sparse or approximately sparse in some orthogonal basis, problem (25) frequently
appears in compressive sensing, and hence an exact restoration can be produced by solving (25).

Iterative methods for solving (25) have been presented in many papers (see [42–45]). The most
popular method among these methods is the gradient-based method and the earliest gradient projection
method for sparse reconstruction (GPRS) was proposed by Figueiredo et al. [44]. The first step of
the GPRS method is to express (25) as a quadratic problem using the following process. Consider
a point x ∈ Rn such that x = u − v, where u, v ≥ 0. u and v are chosen in such a way that x is
splitted into its positive and negative parts as follows ui = (xi)+, vi = (−xi)+ for all i = 1, 2, ..., n,
and (.)+ = max{0, .}. By definition of `1-norm, we have ‖x‖1 = eT

n u + eT
n v, where en = (1, 1, ..., 1)T ∈

Rn. Now (25) can be written as

min
u,v

1
2
‖y− B(u− v)‖2

2 + ηeT
n u + ηeT

n v, u ≥ 0, v ≥ 0, (26)

which is a bound-constrained quadratic program. However, from [44], Equation (26) can be written in
standard form as

min
z

1
2

zT Dz + cTz, such that z ≥ 0, (27)
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where z =

(
u
v

)
, c = ωe2n +

(
−b
b

)
, b = BTy, D =

(
BT B −BT B
−BT B BT B

)
. Clearly, D is a positive

semi-definite matrix, which implies that Equation (27) is a convex quadratic problem.
Xiao et al. [20] translated (27) into a linear variable inequality problem which is equivalent to a

linear complementarity problem. Moreover, z is a solution of the linear complementarity problem if
and only if it is a solution of the following nonlinear equation:

F(z) = min{z, Dz + c} = 0. (28)

The function F is a vector-valued function and the “min” was interpreted as component wise
minimum. Furthermore, F was proved to be continuous and monotone in [46]. Therefore problem (25)
can be translated into problem (1) and thus MFRM method can be applied to solve it.

In this experiment, we consider a simple compressive sensing possible situation, where our goal
is to reconstruct a sparse signal of length n from k observations. The quality of recovery is assessed by
mean of squared error (MSE) to the original signal x̃,

MSE =
1
n
‖x̃− x∗‖2,

where x∗ is the recovered signal. The signal size is chosen as n = 211, k = 29 and the original signal
contains 26 randomly nonzero elements. In addition, the measurement y is distributed with noise,
that is, y = Bx̃ + $, where B is a randomly generated Gaussian matrix and $ is the Gaussian noise
distributed normally with mean 0 and variance 10−4.

To demonstrate the performance of the MFRM method in signal recovery problems, we
compare it with the conjugate gradient descent CGD [20] and projected conjugate gradient
PCG [23] methods. The parameters in PCG and CGD methods are chosen as γ = 10, σ = 10−4,
ρ = 0.5. However, we chose γ = 1, σ = 10−4, ρ = 0.9 and µ = 0.01 in MFRM method.
For fairness in comparison, each code was run from the same initial point, same continuation
technique on the parameter η, and observed only the behavior of the convergence of each method
to have a similar accurate solution. The experiment was initialized with x0 = BTy and terminates when

‖ f (xk)− f (xk−1)‖
‖ f (xk−1)‖

< 10−5,

where f (xk) =
1
2‖y− Bxk‖2

2 + η‖xk‖1.
In Figures 4 and 5, MFRM, CGD and PCG methods recovered the disturbed signal almost exactly.

The experiment was repeated for 20 different noise samples (see Table 9). It can be observed that
the MFRM is more efficient in terms of the number of Iterations and CPU time than CGD and PCG
methods in most cases. Furthermore, MFRM was able to achieve the least MSE in nine (9) out of the
twenty (20) experiments. To reveal visually the performance of both methods, two figures were plotted
to demonstrate their convergence behavior based on MSE, objective function values, the number
of Iterations and CPU time (see Figures 6 and 7). It can also be observed that MFRM requires less
computing time to achieve similar quality resolution. This can be seen graphically in Figures 6 and 7
which illustrate that the objective function values obtained by MFRM decrease faster throughout the
entire Iteration process.
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Figure 4. (top) to (bottom) The original image, the measurement, and the recovered signals by projected
conjugate gradient PCG and modified descent Fletcher–Reeves CG method (MFRM) methods.
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Figure 5. (top) to (bottom) The original image, the measurement, and the recovered signals by
conjugate gradient descent (CGD) and MFRM methods.
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Figure 6. Comparison result of PCG and MFRM. The x-axis represent the number of Iterations
((top left) and (bottom left)) and CPU time in seconds ((top right) and (bottom right)). The y-axis
represent the MSE ((top left) and (top right)) and the objective function values ((bottom left) and
(bottom right)).

Table 9. Twenty experiment results of `1−norm regularization problem for CGD, PCG and
MFRM methods.

S/N Iter Time MSE

CGD PCG MFRM CGD PCG MFRM CGD PCG MFRM

1 248 138 98 2.28 1.28 1.33 6.16 × 10−5 6.32 × 10−5 1.97 × 10−5

2 234 138 117 3.37 1.26 1.19 4.08 × 10−5 3.36 × 10−5 5.40 × 10−5

3 224 152 104 1.90 1.29 0.97 2.78 × 10−5 1.78 × 10−5 1.02 × 10−5

4 230 143 117 3.21 2.48 1.17 4.08 × 10−5 3.36 × 10−5 5.40 × 10−5

5 152 119 114 1.65 1.03 1.15 1.23 × 10−5 2.07 × 10−5 5.49 × 10−5

6 223 127 110 1.89 2.56 1.83 3.33 × 10−5 6.08 × 10−5 6.50 × 10−6

7 156 120 125 1.37 1.01 1.20 4.25 × 10−5 3.26 × 10−5 1.46 × 10−5

8 213 89 10 1.90 0.78 1.12 1.86 × 10−5 3.77 × 10−4 1.31 × 10−5

9 227 152 118 2.14 1.53 1.45 2.75 × 10−5 1.54 × 10−5 8.11 × 10−6

10 201 142 101 2.22 1.64 1.01 6.75 × 10−5 1.86 × 10−5 1.17 × 10−5

11 200 151 90 1.70 1.42 0.90 2.36 × 10−5 1.29 × 10−5 3.81 × 10−5

12 202 153 91 1.75 1.34 0.84 6.94 × 10−5 2.99 × 10−5 9.21 × 10−5

13 208 128 125 1.89 1.12 1.26 1.71 × 10−5 1.42 × 10−5 9.20 × 10−6

14 161 145 122 1.47 1.28 1.26 1.15 × 10−5 8.75 × 10−6 4.36 × 10−6

15 227 160 100 1.97 1.42 1.00 3.41 × 10−5 2.40 × 10−5 1.54 × 10−5

16 269 172 88 2.51 1.67 0.98 3.90 × 10−5 6.59 × 10−5 2.08 × 10−4

17 210 129 105 1.84 1.19 1.11 2.11 × 10−5 1.89 × 10−5 6.22 × 10−5

18 225 132 96 1.93 1.15 1.00 3.87 × 10−5 7.78 × 10−5 9.49 × 10−5

19 152 120 92 1.37 1.09 0.87 2.12 × 10−5 1.32 × 10−5 4.03 × 10−5

20 151 128 113 1.31 1.15 1.06 4.48 × 10−5 1.85 × 10−5 1.71 × 10−5
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Figure 7. Comparison result of PCG and MFRM. The x-axis represent the number of Iterations
((top left) and (bottom left)) and CPU time in seconds ((top right) and (bottom right)). The y-axis
represent the MSE ((top left) and (top right)) and the objective function values ((bottom left) and
(bottom right)).

4.2. Experiments on Blurred Image Restoration

In this subsection, we test the performance of MFRM in restoring a blurred image. We use the
following well-known gray test images; (P1) Cameraman, (P2) Lena, (P3) House and (P4) Peppers for
the experiments. We use 4 different Gaussian blur kernels with a standard deviation υ to compare the
robustness of MFRM method with CGD method proposed in [20].

To assess the performance of each algorithm tested with respect to the metrics that indicate better
quality of restoration, in Table 10 we reported the objective function (ObjFun) at the approximate
solution, the MSE, the signal-to-noise-ratio (SNR) which is defined as

SNR = 20× log10
( ‖x̄‖
‖x− x̄‖

)
,

and the structural similarity (SSIM) index that measure the similarity between the original image and
the restored image [47] for each of the 16 experiments. The MATLAB implementation of the SSIM
index can be obtained at http://www.cns.nyu.edu/~lcv/ssim/.

The original, blurred and restored images by each of the algorithm are given in Figures 8–11.
The figures demonstrate that both the two algorithms can restore the blurred images. In contrast to
the CGD, the quality of the restored image by MFRM is superior in most cases. Table 11 reported
numerical results for MFRM, ACGD and PDY for problem 2.

http://www.cns.nyu.edu/~lcv/ssim/
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Table 10. Efficiency comparison based on the value of the objective function (ObjFun)
mean-square-error (MSE), SNR and the SSIM index under different Pi(υ).

Image ObjFun MSE SNR SSIM

MFRM CGD MFRM CGD MFRM CGD MFRM CGD

P1(1 × 10−4) 1.43 × 106 1.47 × 106 133.90 177.57 21.28 20.05 0.86 0.83
P1(1 × 10−1) 1.43 × 106 1.48 × 106 130.60 177.69 21.39 20.5 0.86 0.83

P1(0.25) 1.47 × 106 1.48 × 106 145.27 177.72 20.93 20.05 0.85 0.83
P1(6.25) 1.58 × 106 1.65 × 106 146.06 183.96 20.9 19.9 0.75 0.79

P2(1 × 10−4) 1.61 × 106 1.65 × 106 36.88 57.55 27.59 25.65 0.88 0.86
P2(1 × 10−1) 1.61 × 106 1.65 × 106 36.85 57.61 27.59 25.65 0.88 0.86

P2(0.25) 1.62 × 106 1.66 × 106 37.78 57.68 27.48 25.64 0.88 0.86
P2(6.25) 1.77 × 106 1.82 × 106 56.65 58.96 25.72 25.55 0.76 0.83

P3(1 × 10−4) 5.74 × 106 5.89 × 106 41.63 44.48 26.26 25.97 0.9 0.88
P3(1 × 10−1) 5.75 × 106 5.90 × 106 42.42 44.54 26.17 25.96 0.89 0.88

P3(0.25) 5.76 × 106 5.91 × 106 43.33 44.65 26.08 25.95 0.88 0.88
P3(6.25) 6.35 × 106 6.60 × 106 106.79 48.47 22.16 25.6 0.63 0.85

P4(1 × 10−4) 1.40 × 106 1.48 × 106 88.81 122.44 22.9 21.5 0.87 0.84
P4(1 × 10−1) 1.41 × 106 1.48 × 106 89.22 122.56 22.88 21.5 0.87 0.84

P4(0.25) 1.41 × 106 1.49 × 106 89.86 122.56 22.85 21.5 0.87 0.84
P4(6.25) 1.56 × 106 1.69 × 106 116.79 138.97 21.71 20.95 0.76 0.82

Table 11. Numerical results for modified Fletcher-Reeves method MFRM, accelerated conjugate
gradient descent (ACGD) and projected Dai-Yuan (PDY) methods for problem 2 with given initial
points and dimensions with double float (10−16) accuracy.

MFRM ACGD PDY

Dimension Initial Point Iter Fval Time Norm Iter Fval Time Norm Iter Fval Time Norm

1000

x1 8 27 0.14061 9.47 × 10−19 12 53 0.030479 3.32 × 10−18 30 119 0.04027 4.76 × 10−19

x2 8 36 0.010782 1.49 × 10−18 7 20 0.013503 1.08 × 10−18 36 153 0.034454 3.51 × 10−18

x3 7 20 0.008263 1.21 × 10−18 13 56 0.021302 3.26 × 10−18 38 161 0.038168 3.51 × 10−18

x4 8 23 0.015654 1.80 × 10−19 12 51 0.02056 3.31 × 10−18 39 165 0.057793 3.51 × 10−18

x5 11 38 0.018461 1.59 × 10−18 14 59 0.088858 3.34 × 10−18 41 173 0.069756 3.51 × 10−18

x6 10 34 0.016788 1.07 × 10−18 10 32 0.012069 5.83 × 10−19 40 169 0.03311 3.50 × 10−18

5000

x1 9 33 0.028658 7.22 × 10−19 12 54 0.041685 1.52 × 10−18 35 149 0.10692 1.57 × 10−18

x2 7 23 0.024046 2.18 × 10−19 9 41 0.049194 1.55 × 10−18 37 157 0.12219 1.57 × 10−18

x3 6 17 0.03436 3.89 × 10−19 14 61 0.094129 1.47 × 10−18 33 131 0.10635 1.06 × 10−19

x4 8 26 0.03133 7.17 × 10−19 14 60 0.065147 1.47 × 10−18 39 165 0.18361 1.57 × 10−18

x5 9 31 0.036727 5.84 × 10−19 10 43 0.1165 1.47 × 10−18 36 144 0.2178 7.43 × 10−20

x6 10 34 0.030168 6.41 × 10−19 12 51 0.038218 1.51 × 10−18 38 161 0.13144 1.57 × 10−18

10,000

x1 8 28 0.064617 1.89 × 10−19 11 50 0.068567 1.03 × 10−18 35 149 0.2253 1.11 × 10−18

x2 6 19 0.044204 1.90 × 10−19 14 62 0.15949 1.09 × 10−18 32 128 0.34325 8.21 × 10−20

x3 6 17 0.045192 1.45 × 10−19 18 78 0.10766 1.04 × 10−18 39 165 0.23899 1.11 × 10−18

x4 10 35 0.055408 4.99 × 10−19 12 52 0.061589 1.06 × 10−18 39 165 0.23162 1.11 × 10−18

x5 7 20 0.038439 2.06 × 10−19 14 60 0.087394 1.05 × 10−18 40 169 0.28998 1.11 × 10−18

x6 9 29 0.065318 5.27 × 10−19 16 68 0.09917 1.03 × 10−18 40 170 0.22564 1.11 × 10−18

50,000

x1 7 26 0.21017 1.93 × 10−19 23 100 0.51879 4.79 × 10−19 34 145 0.92896 4.96 × 10−19

x2 6 21 0.24752 2.09 × 10−19 25 108 0.64677 4.90 × 10−19 36 153 0.9954 4.96 × 10−19

x3 6 17 0.11243 6.27 × 10−20 23 99 0.50402 4.93 × 10−19 38 161 0.96768 4.96 × 10−19

x4 7 20 0.13442 1.02 × 10−19 24 102 0.63664 4.75 × 10−19 79 326 1.7542 4.96 × 10−19

x5 9 30 0.20288 7.25 × 10−20 25 106 0.51116 4.78 × 10−19 78 322 1.7246 4.96 × 10−19

x6 12 52 0.36526 2.28 × 10−19 23 97 0.56342 4.76 × 10−19 80 330 1.6812 4.96 × 10−19

100,000

x1 7 27 0.36065 6.53 × 10−20 23 100 0.88236 3.26 × 10−19 30 119 1.2102 9.26 × 10−21

x2 5 14 0.20041 3.91 × 10−20 25 108 0.90777 3.27 × 10−19 35 149 1.5699 3.51 × 10−19

x3 7 24 0.34075 1.47 × 10−19 25 107 0.95898 3.26 × 10−19 40 170 1.7126 3.51 × 10−19

x4 8 31 0.40444 2.09 × 10−20 24 102 0.83332 3.38 × 10−19 151 614 5.8306 3.51 × 10−19

x5 8 26 0.52598 5.03 × 10−20 25 106 1.0223 3.47 × 10−19 151 614 5.6777 3.50 × 10−19

x6 7 20 0.33434 1.45 × 10−19 23 97 0.87438 3.33 × 10−19 153 622 5.7906 3.51 × 10−19
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Original Cameraman Blurred Cameraman

CGD MFRM

Figure 8. The original image (top left), the blurred image (top right), the restored image by CGD
(bottom left) with time = 3.70, signal-to-noise-ratio (SNR) = 20.05 and structural similarity (SSIM)
= 0.83, and by MFRM (bottom right) with time = 1.97, SNR = 21.28 and SSIM = 0.86.

Original House Blurred House

CGD MFRM

Figure 9. The original image (top left), the blurred image (top right), the restored image by CGD
(bottom left) with Time = 1.95, SNR = 25.65 and SSIM = 0.86, and by MFRM (bottom right) with
Time = 3.59, SNR = 27.59 and SSIM = 0.88.
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Original Lena Blurred Lena

CGD MFRM

Figure 10. The original image (top left), the blurred image (top right), the restored image by CGD
(bottom left) with time = 5.38, SNR = 25.97 and SSIM = 0.88, and by MFRM (bottom right) with time
= 38.77, SNR = 26.26 and SSIM = 0.90.

Original Peppers Blurred Peppers

CGD MFRM

Figure 11. The original image (top left), the blurred image (top right), the restored image by CGD
(bottom left) with Time = 2.48, SNR = 21.50 and SSIM = 0.84, and by MFRM (bottom right) with
Time = 4.93, SNR = 22.90 and SSIM = 0.87.
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5. Conclusions

In this paper, a modified conjugate gradient method for solving monotone nonlinear equations
with convex constraints was presented which is similar to that in [3]. The proposed method is suitable
for non-smooth equations. Under some suitable assumptions, the global convergence of the proposed
method was demonstrated. Numerical results were presented to show the effectiveness of the MFRM
method compared to the ACGD and PDY methods for the given constrained monotone equation
problems. Finally, the MFRM was also shown to be effective in decoding sparse signals and restoration
of blurred images.
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