
mathematics

Article

A Modified Fletcher–Reeves Conjugate Gradient
Method for Monotone Nonlinear Equations with
Some Applications

Auwal Bala Abubakar 1,2 , Poom Kumam 1,3,4,* , Hassan Mohammad 2 ,
Aliyu Muhammed Awwal 1,5 and Kanokwan Sitthithakerngkiet 6

1 KMUTTFixed Point Research Laboratory, SCL 802 Fixed Point Laboratory, Science Laboratory Building,
Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi
(KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand

2 Department of Mathematical Sciences, Faculty of Physical Sciences, Bayero University, Kano 700241, Nigeria
3 Center of Excellence in Theoretical and Computational Science (TaCS-CoE), Science Laboratory Building,

King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod,
Thrung Khru, Bangkok 10140, Thailand

4 Department of Medical Research, China Medical University Hospital, China Medical University,
Taichung 40402, Taiwan

5 Department of Mathematics, Faculty of Science, Gombe State University, Gombe 760214, Nigeria
6 Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North

Bangkok, 1518 Pracharat 1 Road, Wongsawang, Bangsue, Bangkok 10800, Thailand
* Correspondence: poom.kum@kmutt.ac.th

Received: 24 June 2019; Accepted: 5 August 2019; Published: 15 August 2019
����������
�������

Abstract: One of the fastest growing and efficient methods for solving the unconstrained
minimization problem is the conjugate gradient method (CG). Recently, considerable efforts have
been made to extend the CG method for solving monotone nonlinear equations. In this research
article, we present a modification of the Fletcher–Reeves (FR) conjugate gradient projection method
for constrained monotone nonlinear equations. The method possesses sufficient descent property
and its global convergence was proved using some appropriate assumptions. Two sets of numerical
experiments were carried out to show the good performance of the proposed method compared with
some existing ones. The first experiment was for solving monotone constrained nonlinear equations
using some benchmark test problem while the second experiment was applying the method in signal
and image recovery problems arising from compressive sensing.

Keywords: nonlinear equations; conjugate gradient method; projection method; convex constraints;
signal and image processing

MSC: 65K05; 90C52; 90C56; 94A08

1. Introduction

In this paper, we are considering a system of nonlinear monotone equations of the form

F(x) = 0, subject to x ∈ E, (1)

where E ⊆ Rn is closed and convex, F : Rn → Rm, (m ≥ n) is continuous and monotone, which means

〈F(x)− F(y), (x− y)〉 ≥ 0, ∀x, y ∈ Rn.

Mathematics 2019, 7, 745; doi:10.3390/math7080745 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-6142-3694
https://orcid.org/0000-0002-5463-4581
https://orcid.org/0000-0003-1145-1651
https://orcid.org/0000-0002-1040-3626
https://orcid.org/0000-0002-8496-7803
http://dx.doi.org/10.3390/math7080745
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/7/8/745?type=check_update&version=2

Mathematics 2019, 7, 745 2 of 25

A well-known fact is that under the above assumption, the solution set of (1) is convex unless
is empty. It is important to mention that nonlinear monotone equations arise in many practical
applications. These and other reasons motivate researchers to develop a large number of class
of Iterative methods for solving such systems, for example, see [1–7] among others. In addition,
convex constrained equations have application in many scientific fields, some of which are the
economic equilibrium problems [8], the chemical equilibrium systems [9], etc. Several algorithms
were developed to solve (1), among them, are the trust-region [10] and the Levenberg-Marquardt
method [11]. Moreover, the requirement to compute and store the matrix in every iteration makes
them ineffective for large-scale nonlinear equations.

Conjugate gradient (CG) methods are efficient for solving large-scale optimization and nonlinear
systems because of their low memory requirements. This forms part of the reason several Iterative
methods with CG-like directions are proposed in recent years [12,13]. Initially, CG methods and
their modified versions are proposed for unconstrained optimization problems [14–19]. Inspired by
them, in the last decade, many authors used the CG direction to solve nonlinear monotone equations
for both constrained and unconstrained cases. Since in this article, we are interested in solving
nonlinear monotone equations with convex constraints, we will only discuss existing methods with
such properties.

Many methods for solving nonlinear monotone equations with convex constraints have been
presented in the last decade. For examples, Xiao and Zhu [20] presented a CG method, which
combines the well-known CG-DESCENT method in [17] and the projection method by Solodov
and Svaiter [21]. Liu et al. [22] proposed two CG methods with projection strategy for solving (1).
In [23], a modification of the method in [20] was presented by Liu and Li. One of the reasons for the
modification was to improve the numerical performance of the method in [20]. Also, Sun and Liu [24]
presented derivative-free projection methods for solving nonlinear equations with convex constraints.
These methods are the combination of some existing CG methods and the well-known projection
method. In addition, a hybrid CG projection method for convex constrained equations was developed
in [25]. Ou and Li [26] proposed a combination of a scaled CG method and the projection strategy to
solve (1). Furthermore, Ding et al. [27] extended the Dai and Kou (DK) CG method to solve (1) by
also combining it with the projection method. Just recently, to popularize the Dai-Yuan (DY) method,
Liu and Feng [28] proposed a modified DY method for solving convex constraints monotone equation.
The global convergence was also obtained under certain assumptions and finally, some numerical
results were reported to show its efficiency.

Inspired by some the above proposals, we present a simple modification of the Fletcher–Reeves
(FR) conjugate gradient method [19] considered in [12] to solve nonlinear monotone equations with
convex constraints. The modification ensures that the direction is automatically descent, improves its
numerical performance and still inherits the nice convergence properties of the method. Under suitable
assumptions, we establish the global convergence of the proposed algorithm. Numerical experiments
presented show the good performance and competitiveness of the method. In addition, the proposed
method has the advantages of the direct methods [29] such as boundary control method by Belishev
and Kuryiev [30], the globally convergent method proposed by Beilina and Klibanov [31] and method
based on the multidimensional analogs of Gelfand–Levitan–Krein equations [32,33]. The proposed
method can be seen as a local method that looks for the closest root. However, there are several global
nonlinear solvers that guarantee finding all roots inside a domain and within a very fine double-float
accuracy. In some cases a combination of subdivision-based polynomial solver with a decomposition
algorithm are employed in order to handle large and complex systems (see for examples [34–36] and
references therein).

The remaining part of this article is organized as follows. In Section 2, we mention some
preliminaries and present the proposed method. The global convergence of the method is established
in Section 3. Finally, Section 4 reports some numerical results to show the performance of the method

Mathematics 2019, 7, 745 3 of 25

in solving monotone nonlinear equations with convex constraints, and also apply it to recover a noisy
signal and a blurred image.

2. Algorithm

In this section, we define the projection map together with its well-known properties, give some
useful assumptions and finally present the proposed algorithm. Throughout this article, ‖ · ‖ denotes
the Euclidean norm.

Definition 1. Let E ⊂ Rn be nonempty closed and convex set. Then for any x ∈ Rn, its projection onto E is
defined as

PE(x) = arg min{‖x− y‖ : y ∈ E.}

The following lemma gives some properties of the projection map.

Lemma 1 ([37]). Suppose E ⊂ Rn is nonempty, closed and convex set. Then the following statements are true:

1. 〈x− PE(x), PE(x)− z〉 ≥ 0, ∀x, z ∈ Rn.
2. ‖PE(x)− PE(y)‖ ≤ ‖x− y‖, ∀x, y ∈ Rn.
3. ‖PE(x)− z‖2 ≤ ‖x− z‖2 − ‖x− PE(x)‖2, ∀x, z ∈ Rn.

Throughout, we suppose the followings

(C1) The solution set of (1), denoted by E
′
, is nonempty.

(C2) The mapping F is monotone.
(C3) The mapping F is Lipschitz continuous, that is there exists a positive constant L such that

‖F(x)− F(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rn.

Our algorithm is motivated by the work of Papp and Rapajić in [12]. In the paper, they
modified the well known Fletcher–Reeves conjugate gradient method to solve unconstrained
nonlinear monotone equation. The modification was adding the term −θkF(xk) to the direction
of Fletcher–Reeves. The parameter θk was then determined in three different ways and three different
directions were proposed, namely, M3TFR1, M3TFR2 and M3TFR3. The direction we are interested in
is M3TFR1 and is defined as:

dk =

{
−F(xk), if k = 0,

−F(xk) + βFR
k wk−1 + θkF(xk), if k ≥ 1,

(2)

where,

βFR
k =

‖F(xk)‖2

‖F(xk−1)‖2 , θk = −
F(xk)

Twk−1

‖F(xk−1)‖2 , wk−1 = zk−1 − xk−1, zk−1 = xk−1 + αk−1dk−1.

It follows that
F(xk)

Tdk = −‖F(xk)‖2.

Using same modification proposed in [3], we modify the direction (2) as follows

dk =

−F(xk), if k = 0,

−F(xk) +
‖F(xk)‖2wk−1−F(xk)

Twk−1F(xk)
max{µ‖wk−1‖‖F(xk)‖,‖F(xk−1)‖2} , if k ≥ 1,

(3)

where µ > 0 is a positive constant. The difference between the M3TFR1 direction and the
direction proposed in this paper is the scaling term appearing in the denominator of Equation (3)

Mathematics 2019, 7, 745 4 of 25

i.e., max{µ‖wk−1‖‖F(xk)‖, ‖F(xk−1)‖2}. This modification was shown to have a very good numerical
performance in [3] and also helps in obtaining the boundedness of the direction easily.

Remark 1. Note the the parameter µ is chosen to be strictly positive because if µ ≤ 0 then

max{µ‖wk−1‖‖F(xk)‖, ‖F(xk−1)‖2} = ‖F(xk−1)‖2.

This means that the direction dk will always be M3TFR1 given by (2).

3. Convergence Analysis

To prove the global convergence of Algorithm 1, the following results are needed.

Algorithm 1: A modified descent Fletcher–Reeves CG method (MFRM).

Step 0. Select the initial point x0 ∈ Rn, parameters µ > 0, σ > 0, 0 < ρ < 1, Tol > 0, and set
k := 0.

Step 1. If ‖F(xk)‖ ≤ Tol, stop, otherwise go to Step 2.
Step 2. Find dk using (3).
Step 3. Find the step length αk = γρmk where mk is the smallest non-negative integer m such
that

− 〈F(xk + αkdk), dk〉 ≥ σαk‖F(xk + αkdk)‖‖dk‖2. (4)

Step 4. Set zk = xk + αkdk. If zk ∈ E and ‖F(zk)‖ ≤ Tol, stop. Else compute

xk+1 = PE[xk − ζkF(zk)]

where

ζk =
F(zk)

T(xk − zk)

‖F(zk)‖2 .

Step 5. Let k = k + 1 and go to Step 1.

Lemma 2. Let dk be defined by Equation (3), then

dT
k F(xk) = −‖F(xk)‖2 (5)

and

‖F(xk)‖ ≤ ‖dk‖ ≤
(

1 +
2
µ

)
‖F(xk)‖. (6)

Proof. By Equation (3), suppose k = 0,

dT
k F(xk) = −F(xk)

T F(xk) = −‖F(xk)‖2.

Now suppose k > 0,

dT
k F(xk) = −F(xk)

T F(xk) +
(‖F(xk)‖2wk−1)

T F(xk)− (F(xk)
Twk−1F(xk))

T F(xk)

max{µ‖wk−1‖‖F(xk)‖, ‖F(xk−1)‖2}

= −‖F(xk)‖2 +
‖F(xk)‖2wT

k−1F(xk)− F(xk)
T(wT

k−1F(xk))F(xk)

max{µ‖wk−1‖‖F(xk)‖, ‖F(xk−1)‖2}

= −‖F(xk)‖2 +
‖F(xk)‖2wT

k−1F(xk)− ‖F(xk)‖2wT
k−1F(xk)

max{µ‖wk−1‖‖F(xk)‖, ‖F(xk−1)‖2}
= −‖F(xk)‖2.

(7)

Mathematics 2019, 7, 745 5 of 25

Using Cauchy–Schwartz inequality, we get

‖F(xk)‖ ≤ ‖dk‖. (8)

Furthermore, since max{µ‖wk−1‖‖F(xk)‖, ‖F(xk−1)‖2} ≥ µ‖wk−1‖‖F(xk)‖, then,

‖dk‖ =
∥∥∥∥−F(xk) +

‖F(xk)‖2wk−1 − (F(xk)
Twk−1)F(xk)

max{µ‖wk−1‖‖F(xk)‖, ‖F(xk−1)‖2}

∥∥∥∥
≤ ‖− F(xk)‖+

‖‖F(xk)‖2wk−1 − (F(xk)
Twk−1)F(xk)‖

max{µ‖wk−1‖‖F(xk)‖, ‖F(xk−1)‖2}

≤ ‖F(xk)‖+
‖F(xk)‖2‖wk−1‖
µ‖wk−1‖‖F(xk)‖

+
‖F(xk)

Twk−1F(xk)‖
µ‖wk−1‖‖F(xk)‖

≤ ‖F(xk)‖+
‖F(xk)‖2‖wk−1‖
µ‖wk−1‖‖F(xk)‖

+
‖F(xk)‖2‖wk−1‖
µ‖wk−1‖‖F(xk)‖

= ‖F(xk)‖+
2‖F(xk)‖

µ

=

(
1 +

2
µ

)
‖F(xk)‖.

(9)

Combining (8) and (9), we get the desired result.

Lemma 3. Suppose that assumptions (C1)–(C3) hold and the sequences {xk} and {zk} are generated by
Algorithm 1. Then we have

αk ≥ ρ min

{
1,

‖F(xk)‖2

(L + σ)‖F(xk +
αk
ρ dk)‖‖dk‖2

}

Proof. Suppose αk 6= ρ, then αk
ρ does not satisfy Equation (4), that is

− F
(

xk +
αk
ρ

dk

)
< σ

αk
ρ
‖F(xk +

αk
ρ

dk)‖‖dk‖2.

This combined with (7) and the fact that F is Lipschitz continuous yields

‖F(xk)‖2 = −F(xk)
Tdk

=

(
F(xk +

αk
ρ

dk)− F(xk)

)T
dk − FT

(
xk +

αk
ρ

dk

)
dk

≤ L
αk
ρ
‖F(xk +

αk
ρ

dk)‖‖dk‖2 + σ
αk
ρ
‖F(xk +

αk
ρ

dk)‖‖dk‖2

=
L + σ

ρ
αk‖F(xk +

αk
ρ

dk)‖‖dk‖2.

(10)

The above equation implies

αk ≥ ρ min
‖F(xk)‖2

(L + σ)‖F(xk +
αk
ρ dk)‖‖dk‖2 ,

which completes the proof.

Mathematics 2019, 7, 745 6 of 25

Lemma 4. Suppose that assumptions (C1)–(C3) holds, then the sequences {xk} and {zk} generated by
Algorithm 1 are bounded. Moreover, we have

lim
k→∞
‖xk − zk‖ = 0 (11)

and
lim
k→∞
‖xk+1 − xk‖ = 0. (12)

Proof. We will start by showing that the sequences {xk} and {zk} are bounded. Suppose x̄ ∈ E
′
,

then by monotonicity of F, we get

〈F(zk), xk − x̄〉 ≥ 〈F(zk), xk − zk〉. (13)

Also by definition of zk and the line search (4), we have

〈F(zk), xk − zk〉 ≥ σα2
k‖F(zk)‖‖dk‖2 ≥ 0. (14)

So, we have

‖xk+1 − x̄‖2 = ‖PE[xk − ζkF(zk)]− x̄‖2 ≤ ‖xk − ζkF(zk)− x̄‖2

= ‖xk − x̄‖2 − 2ζ〈F(zk), xk − x̄〉+ ‖ζF(zk)‖2

≤ ‖xk − x̄‖2 − 2ζk〈F(zk), xk − zk〉+ ‖ζF(zk)‖2

= ‖xk − x̄‖2 −
(
〈F(zk), xk − zk〉
‖F(zk)‖

)2

≤ ‖xk − x̄‖2.

(15)

Thus the sequence {‖xk − x̄‖} is non increasing and convergent, and hence {xk} is bounded.
Furthermore, from Equation (15), we have

‖xk+1 − x̄‖2 ≤ ‖xk − x̄‖2, (16)

and we can deduce recursively that

‖xk − x̄‖2 ≤ ‖x0 − x̄‖2, ∀k ≥ 0.

Then from assumption (C3), we obtain

‖F(xk)‖ = ‖F(xk)− F(x̄)‖ ≤ L‖xk − x̄‖ ≤ L‖x0 − x̄‖.

If we let L‖x0 − x̄‖ = κ, then the sequence {F(xk)} is bounded, that is,

‖F(xk)‖ ≤ κ, ∀k ≥ 0. (17)

By the definition of zk, Equation (14), monotonicity of F and the Cauchy–Schwatz inequality,
we get

σ‖xk − zk‖ =
σ‖αkdk‖2

‖xk − zk‖
≤ 〈F(zk), xk − zk〉

‖xk − zk‖
≤ 〈F(xk), xk − zk〉

‖xk − zk‖
≤ ‖F(xk)‖. (18)

Mathematics 2019, 7, 745 7 of 25

The boundedness of the sequence {xk} together with Equations (17) and (18), implies the sequence
{zk} is bounded.

Now, as {zk} is bounded, then for any x̄ ∈ E
′
, the sequence {zk − x̄} is also bounded, that is,

there exists a positive constant ν > 0 such that

‖zk − x̄‖ ≤ ν.

This together with assumption (C3), this yields

‖F(zk)‖ = ‖F(zk)− F(x̄)‖ ≤ L‖zk − x̄‖ ≤ Lν.

Therefore, using Equation (15), we have

σ2

(Lν)2 ‖xk − zk‖4 ≤ ‖xk − x̄‖2 − ‖xk+1 − x̄‖2,

which implies

σ2

(Lν)2

∞

∑
k=0
‖xk − zk‖4 ≤

∞

∑
k=0

(‖xk − x̄‖2 − ‖xk+1 − x̄‖2) ≤ ‖x0 − x̄‖ < ∞. (19)

Equation (19) implies
lim
k→∞
‖xk − zk‖ = 0.

However, using statement 2 of Lemma 1, the definition of ζk and the Cauchy-Schwartz inequality,
we have

‖xk+1 − xk‖ = ‖PE[xk − ζkF(zk)]− xk‖

≤ ‖xk − ζkF(zk)− xk‖

= ‖ζkF(zk)‖

= ‖xk − zk‖,

(20)

which yields
lim
k→∞
‖xk+1 − xk‖ = 0.

Remark 2. By Equation (11) and definition of zk, then

lim
k→∞

αk‖dk‖ = 0. (21)

Theorem 1. Suppose that assumption (C1)–(C3) holds and let the sequence {xk} be generated by
Algorithm 1, then

lim inf
k→∞

‖F(xk)‖ = 0. (22)

Proof. Assume that Equation (22) is not true, then there exists a constant ε > 0 such that

‖F(xk)‖ ≥ ε, ∀k ≥ 0. (23)

Mathematics 2019, 7, 745 8 of 25

Combining (8) and (23), we have

‖dk‖ ≥ ‖F(xk)‖ ≥ ε, ∀k ≥ 0.

As wk = xk + αkdk and limk→∞ ‖xk − zk‖ = 0, we get limk→∞ αk‖dk‖ = 0 and

lim
k→∞

αk = 0. (24)

On the other side, if M =
(

1 + 2
µ

)
κ, Lemma 3 and Equation (9) implies αk‖dk‖ ≥ ρ ε2

(L+σ)MLν
,

which contradicts with (24). Therefore, (22) must hold.

4. Numerical Experiments

To test the performance of the proposed method, we compare it with accelerated conjugate
gradient descent (ACGD) and projected Dai-Yuan (PDY) methods in [27,28], respectively. In addition,
MFRM method is applied to solve signal and image recovery problems arising in compressive sensing.
All codes were written in MATLAB R2018b and run on a PC with intel COREi5 processor with 4GB of
RAM and CPU 2.3GHZ. All runs were stopped whenever ‖F(xk)‖ < 10−5. The parameters chosen for
each method are as follows:

MFRM method: γ = 1, ρ = 0.9, µ = 0.01, σ = 0.0001.
ACGD method: all parameters are chosen as in [27].
PDY method: all parameters are chosen as in [28].

We tested eight problems with dimensions of n = 1000, 5000, 10,000, 50,000, 100,000 and 6
initial points: x1 = (0.1, 0.1, · · · , 1)T , x2 = (0.2, 0.2, · · · , 0.2)T , x3 = (0.5, 0.5, · · · , 0.5)T , x4 =

(1.2, 1.2, · · · , 1.2)T , x5 = (1.5, 1.5, · · · , 1.5)T , x6 = (2, 2, · · · , 2)T . In Tables 1–8, the number of
Iterations (Iter), number of function evaluations (Fval), CPU time in seconds (time) and the norm at the
approximate solution (NORM) were reported. The symbol ‘−’ is used when the number of Iterations
exceeds 1000 and/or the number of function evaluations exceeds 2000.

The test problems are listed below, where the function F is taken as F(x) =

(f1(x), f2(x), . . . , fn(x))T .
Problem 1 [38] Exponential Function.

f1(x) = ex1 − 1,

fi(x) = exi + xi − 1, for i = 2, 3, ..., n,

and E = Rn
+.

Problem 2 [38] Modified Logarithmic Function.

fi(x) = ln(xi + 1)− xi
n

, for i = 2, 3, ..., n,

and E = {x ∈ Rn :
n

∑
i=1

xi ≤ n, xi > −1, i = 1, 2, . . . , n}.

Problem 3 [6] Nonsmooth Function.

fi(x) = 2xi − sin |xi|, i = 1, 2, 3, ..., n,

and E = {x ∈ Rn :
n

∑
i=1

xi ≤ n, xi ≥ 0, i = 1, 2, . . . , n}.

It is clear that problem 3 is nonsmooth at x = 0.

Mathematics 2019, 7, 745 9 of 25

Problem 4 [38] Strictly Convex Function I.

fi(x) = exi − 1, for i = 1, 2, ..., n,

and E = Rn
+.

Problem 5 [38] Strictly Convex Function II.

fi(x) =
i
n

exi − 1, for i = 1, 2, ..., n,

and E = Rn
+.

Problem 6 [39] Tridiagonal Exponential Function

f1(x) = x1 − ecos(h(x1+x2)),

fi(x) = xi − ecos(h(xi−1+xi+xi+1)), for i = 2, ..., n− 1,

fn(x) = xn − ecos(h(xn−1+xn)),

h =
1

n + 1
and E = Rn

+.

Problem 7 [40] Nonsmooth Function

fi(x) = xi − sin |xi − 1|, i = 1, 2, 3, ..., n.

and E = {x ∈ Rn :
n

∑
i=1

xi ≤ n, xi ≥ −1, i = 1, 2, . . . , n}.

Problem 8 [27] Penalty 1

ti =
n

∑
i=1

x2
i , c = 10−5

fi(x) = 2c(xi − 1) + 4(ti − 0.25)xi, i = 1, 2, 3, ..., n.

and E = Rn
+.

To show in detail the efficiency and robustness of all methods, we employ the performance
profile developed in [41], which is a helpful process of standardizing the comparison of methods.
Suppose that we have ns solvers and nl problems and we are interested in using either number of
Iterations, CPU time or number of function evaluations as our measure of performance; so we let kl,s
to be the number of iterations, CPU time or number of function evaluations required to solve problem
by solver s. To compare the performance on problem l by a solver s with the best performance by any
other solver on this problem, we use the performance ratio rl,s defined as

rl,s =
kl,s

min{kl,s : s ∈ S} ,

where S is the set of solvers.
The overall performance of the solver is obtained using the (cumulative) distribution function for

the performance ratio P. So if we let

P(t) =
1
nl

size{l ∈ L : rl,s ≤ t},

Mathematics 2019, 7, 745 10 of 25

then P(t) is the probability for solver s ∈ S that a performance ratio rl,s is within a factor t ∈ R of the
best possible ratio. If the set of problems L is large enough, then the solvers with the large probability
P(t) are considered as the best.

Table 1. Numerical results for modified Fletcher–Reeves (MFRM), accelerated conjugate gradient
descent (ACGD) and projected Dai-Yuan (PDY) for problem 1 with given initial points and dimensions.

MFRM ACGD PDY

Dimension Initial Point Iter Fval Time Norm Iter Fval Time Norm Iter Fval Time Norm

1000

x1 23 98 0.42639 9.01 × 10−6 8 34 0.21556 9.26 × 10−6 12 49 0.19349 9.18 × 10−6

x2 7 35 0.019885 8.82 × 10−6 9 39 0.086582 3.01 × 10−6 13 53 0.07318 6.35 × 10−6

x3 8 40 0.011238 9.74 × 10−6 9 38 0.034359 4.02 × 10−6 14 57 0.01405 5.59 × 10−6

x4 15 70 0.066659 6.01 × 10−6 16 67 0.017188 9.22 × 10−6 15 61 0.01421 4.07 × 10−6

x5 5 31 0.16103 0 18 75 0.11646 4.46 × 10−6 14 57 0.08690 9.91 × 10−6

x6 31 134 0.03232 7.65 × 10−6 25 104 0.042967 6.74 × 10−6 40 162 0.04060 9.70 × 10−6

5000

x1 8 38 0.053865 5.63 × 10−6 9 38 0.023729 3.89 × 10−6 13 53 0.02775 6.87 × 10−6

x2 8 40 0.036653 2.59 × 10−6 9 38 0.021951 6.65 × 10−6 14 57 0.02974 4.62 × 10−6

x3 8 40 0.030089 6.41 × 10−6 9 39 0.019317 8.01 × 10−6 15 61 0.04353 4.18 × 10−6

x4 16 74 0.081741 4.71 × 10−6 17 71 0.05235 8.12 × 10−6 15 61 0.03288 9.08 × 10−6

x5 5 31 0.030748 0 18 75 0.038894 8.14 × 10−6 15 61 0.03556 7.30 × 10−6

x6 31 134 0.087531 8.1 × 10−6 26 108 0.053473 7.96 × 10−6 39 158 0.10419 9.86 × 10−6

10,000

x1 5 26 0.03829 3.7 × 10−6 9 39 0.044961 5.5 × 10−6 13 53 0.05544 9.70 × 10−6

x2 8 40 0.055099 3.64 × 10−6 9 39 0.0358 9.39 × 10−6 14 57 0.06201 6.53 × 10−6

x3 8 40 0.049974 5.44 × 10−6 10 43 0.04176 2.12 × 10−6 15 61 0.08704 5.90 × 10−6

x4 16 74 0.125 6.61 × 10−6 18 75 0.066316 4.58 × 10−6 16 65 0.07797 4.28 × 10−6

x5 5 31 0.048751 0 18 75 0.11807 7.86 × 10−6 39 158 0.20751 7.97 × 10−6

x6 28 122 0.13649 7.18 × 10−6 27 112 0.10593 6.22 × 10−6 87 351 0.36678 9.93 × 10−6

50,000

x1 5 26 0.1584 3.58 × 10−6 10 43 0.15918 2.33 × 10−6 14 57 0.23129 7.12 × 10−6

x2 8 40 0.18044 8.1 × 10−6 10 43 0.16252 3.97 × 10−6 15 61 0.23975 4.91 × 10−6

x3 8 40 0.186 4.54 × 10−6 10 43 0.15707 4.67 × 10−6 16 65 0.24735 4.37 × 10−6

x4 17 78 0.31567 5.47 × 10−6 19 79 0.27474 4.1 × 10−6 38 154 0.55277 7.54 × 10−6

x5 5 31 0.18586 0 18 75 0.27118 5.06 × 10−6 177 712 2.29950 9.44 × 10−6

x6 20 90 0.39237 6.44 × 10−6 28 116 0.35197 7.69 × 10−6 361 1449 4.63780 9.74 × 10−6

100,000

x1 5 26 0.26116 4.59 × 10−6 10 42 0.28038 3.29 × 10−6 15 61 0.50090 3.39 × 10−6

x2 9 43 0.35288 1.59 × 10−6 10 42 0.28999 5.62 × 10−6 15 61 0.45876 6.94 × 10−6

x3 8 40 0.35809 4.96 × 10−6 10 42 0.29255 6.59 × 10−6 16 65 0.51380 6.18 × 10−6

x4 17 78 0.59347 7.73 × 10−6 19 79 0.51261 5.79 × 10−6 175 704 4.48920 9.47 × 10−6

x5 32 138 0.98463 7.09 × 10−6 18 75 0.46086 4.05 × 10−6 176 708 4.49410 9.91 × 10−6

x6 17 78 0.57701 9.31 × 10−6 29 120 0.71678 6.05 × 10−6 360 1445 9.10170 9.99 × 10−6

Table 2. Numerical results for MFRM, ACGD and PDY for problem 2 with given initial points
and dimensions.

MFRM ACGD PDY

Dimension Initial Point Iter Fval Time Norm Iter Fval Time Norm Iter Fval Time Norm

1000

x1 3 8 0.007092 5.17 × 10−7 3 8 0.036061 5.17 × 10−7 10 39 0.01053 6.96 × 10−6

x2 3 8 0.012401 6.04 × 10−6 3 8 0.006143 6.04 × 10−6 11 43 0.00937 9.23 × 10−6

x3 4 11 0.003993 4.37 × 10−7 4 11 0.006476 4.37 × 10−7 13 51 0.01111 6.26 × 10−6

x4 5 14 0.010363 1.52 × 10−7 5 14 0.005968 1.52 × 10−7 14 55 0.02154 9.46 × 10−6

x5 5 14 0.007234 1.1 × 10−6 5 14 0.02349 1.1 × 10−6 15 59 0.01850 4.60 × 10−6

x6 6 17 0.006496 1.74 × 10−8 6 17 0.00677 1.74 × 10−8 15 59 0.01938 7.71 × 10−6

5000

x1 3 8 0.011561 1.75 × 10−7 3 8 0.009794 1.75 × 10−7 11 43 0.03528 4.86 × 10−6

x2 3 8 0.010452 3.13 × 10−6 3 8 0.009591 3.13 × 10−6 12 47 0.04032 6.89 × 10−6

x3 4 11 0.01516 1.42 × 10−7 4 11 0.013767 1.42 × 10−7 14 55 0.04889 4.61 × 10−6

x4 5 14 0.019733 3.94 × 10−8 5 14 0.014274 3.94 × 10−8 15 59 0.04826 6.96 × 10−6

x5 5 14 0.018462 4.05 × 10−7 5 14 0.011728 4.05 × 10−7 16 63 0.05969 3.37 × 10−6

x6 6 17 0.028536 2.36 × 10−9 6 17 0.016345 2.36 × 10−9 16 63 0.06253 5.64 × 10−6

10,000

x1 3 8 0.019053 1.21 × 10−7 3 8 0.0135 1.21 × 10−7 11 43 0.06732 6.85 × 10−6

x2 3 8 0.01791 2.79 × 10−6 3 8 0.015807 2.79 × 10−6 12 47 0.12232 9.72 × 10−6

x3 4 11 0.033042 9.73 × 10−8 4 11 0.020752 9.73 × 10−8 14 55 0.08288 6.51 × 10−6

x4 5 14 0.031576 2.56 × 10−8 5 14 0.04483 2.56 × 10−8 15 59 0.08413 9.82 × 10−6

x5 5 14 0.032747 2.93 × 10−7 5 14 0.026975 2.93 × 10−7 16 63 0.09589 4.75 × 10−6

x6 6 17 0.036002 1.24 × 10−9 6 17 0.032445 1.24 × 10−9 16 64 0.11499 8.55 × 10−6

50,000

x1 3 8 0.0737 6.32 × 10−8 7 26 0.16925 2.94 × 10−6 12 47 0.27826 5.23 × 10−6

x2 3 8 0.06964 3.37 × 10−6 9 34 0.18801 2.78 × 10−6 13 51 0.29642 7.11 × 10−6

x3 4 11 0.093027 4.87 × 10−8 7 25 0.15375 9.11 × 10−6 15 59 0.35602 4.82 × 10−6

x4 5 14 0.11219 1.11 × 10−8 7 24 0.15382 9.18 × 10−6 35 141 0.69470 6.69 × 10−6

x5 5 14 0.1173 1.84 × 10−7 9 32 0.18164 6.71 × 10−6 35 141 0.68488 9.12 × 10−6

x6 6 17 0.13794 4.01 × 10−10 6 19 0.11216 5.2 × 10−6 35 141 0.70973 9.91 × 10−6

100,000

x1 3 8 0.13021 5.4 × 10−8 7 26 0.2609 4.14 × 10−6 12 47 0.44541 7.39 × 10−6

x2 3 8 0.13267 4.27 × 10−6 9 34 0.32666 3.93 × 10−6 14 55 0.53299 3.39 × 10−6

x3 4 11 0.17338 4.05 × 10−8 8 29 0.3113 3.33 × 10−6 15 60 0.58603 8.71 × 10−6

x4 5 14 0.20036 8.15 × 10−9 8 28 0.2997 3.34 × 10−6 72 290 2.70630 8.31 × 10−6

x5 5 14 0.25274 1.8 × 10−7 9 32 0.32098 9.46 × 10−6 72 290 2.72220 8.68 × 10−6

x6 6 17 0.24952 2.71 × 10−10 6 19 0.21972 7.01 × 10−6 72 290 2.75850 8.96 × 10−6

Mathematics 2019, 7, 745 11 of 25

Table 3. Numerical results for MFRM, ACGD and PDY for problem 3 with given initial points
and dimensions.

MFRM ACGD PDY

Dimension Initial Point Iter Fval Time Norm Iter Fval Time Norm Iter Fval Time Norm

1000

x1 6 24 0.024062 3.11 × 10−6 6 40 0.02951 4.44 × 10−6 12 48 0.01255 4.45 × 10−6

x2 6 24 0.005345 5.94 × 10−6 6 40 0.0077681 8.75 × 10−6 12 48 0.01311 9.02 × 10−6

x3 6 24 0.006109 9.94 × 10−6 6 44 0.0067049 5.09 × 10−6 13 52 0.01486 8.34 × 10−6

x4 8 33 0.006127 3.1 × 10−6 8 44 0.007142 5.04 × 10−6 14 56 0.01698 8.04 × 10−6

x5 11 46 0.010427 2.71 × 10−6 11 40 0.010411 3.12 × 10−6 14 56 0.01551 9.72 × 10−6

x6 16 68 0.010682 8.38 × 10−6 16 77 0.014759 5.98 × 10−6 14 56 0.01534 9.42 × 10−6

5000

x1 6 24 0.020455 6.96 × 10−6 6 40 0.020368 9.93 × 10−6 12 48 0.03660 9.94 × 10−6

x2 7 28 0.021552 1.33 × 10−6 7 44 0.029622 5.09 × 10−6 13 52 0.03616 6.85 × 10−6

x3 7 28 0.023056 2.22 × 10−6 7 48 0.030044 2.96 × 10−6 14 56 0.04594 6.14 × 10−6

x4 8 33 0.022984 6.92 × 10−6 8 48 0.022777 2.93 × 10−6 15 60 0.04342 6.01 × 10−6

x5 11 46 0.031466 6.06 × 10−6 11 40 0.019226 6.97 × 10−6 15 60 0.04296 7.25 × 10−6

x6 17 72 0.049308 7.67 × 10−6 17 81 0.036095 6.05 × 10−6 32 129 0.10081 8.85 × 10−6

10,000

x1 6 24 0.03064 9.85 × 10−6 6 44 0.03997 3.65 × 10−6 13 52 0.06192 4.77 × 10−6

x2 7 28 0.035806 1.88 × 10−6 7 44 0.037221 7.19 × 10−6 13 52 0.06442 9.68 × 10−6

x3 7 28 0.035795 3.14 × 10−6 7 48 0.053226 4.18 × 10−6 14 56 0.09499 8.69 × 10−6

x4 8 33 0.041017 9.79 × 10−6 8 48 0.057984 4.15 × 10−6 15 60 0.07696 8.5 × 10−6

x5 11 46 0.06448 8.58 × 10−6 11 40 0.047413 9.85 × 10−6 33 133 0.18625 6.45 × 10−6

x6 18 76 0.09651 4.44 × 10−6 18 81 0.085238 8.56 × 10−6 33 133 0.15548 7.51 × 10−6

50,000

x1 7 28 0.14323 2.2 × 10−6 7 44 0.17175 8.17 × 10−6 14 56 0.23642 3.51 × 10−6

x2 7 28 0.13625 4.2 × 10−6 7 48 0.18484 4.18 × 10−6 14 56 0.24813 7.12 × 10−6

x3 7 28 0.13246 7.03 × 10−6 7 48 0.1827 9.36 × 10−6 15 60 0.27049 6.53 × 10−6

x4 9 37 0.18261 4.16 × 10−6 9 48 0.18993 9.27 × 10−6 34 137 0.54545 7.13 × 10−6

x5 12 50 0.21743 5.2 × 10−6 12 44 0.17043 5.73 × 10−6 68 274 1.02330 9.99 × 10−6

x6 18 76 0.34645 9.93 × 10−6 18 85 0.32938 8.66 × 10−6 69 278 1.03810 8.05 × 10−6

100,000

x1 7 28 0.27078 3.11 × 10−6 7 48 0.36144 3 × 10−6 14 56 0.45475 4.96 × 10−6

x2 7 28 0.26974 5.94 × 10−6 7 48 0.37515 5.91 × 10−6 15 60 0.49018 3.39 × 10−6

x3 7 28 0.25475 9.94 × 10−6 7 52 0.39071 3.44 × 10−6 15 60 0.49016 9.24 × 10−6

x4 9 37 0.3089 5.88 × 10−6 9 52 0.35961 3.41 × 10−6 139 559 4.03110 9.01 × 10−6

x5 12 50 0.41839 7.35 × 10−6 12 44 0.33105 8.1 × 10−6 70 282 2.07100 8.54 × 10−6

x6 19 80 0.64773 5.75 × 10−6 19 89 0.61329 5.54 × 10−6 139 559 4.02440 9.38 × 10−6

Table 4. Numerical results for MFRM, ACGD and PDY for problem 4 with given initial points
and dimensions.

MFRM ACGD PDY

Dimension Initial Point Iter Fval Time Norm Iter Fval Time Norm Iter Fval Time Norm

1000

x1 6 24 0.00855 1.65 × 10−6 10 40 0.014662 3.65 × 10−6 12 48 0.00989 4.60 × 10−6

x2 5 20 0.004234 2.32 × 10−6 10 40 0.0064115 5.79 × 10−6 12 48 0.00966 9.57 × 10−6

x3 10 42 0.007426 6.42 × 10−6 10 40 0.0054818 3.29 × 10−6 13 52 0.00887 8.49 × 10−6

x4 21 90 0.011603 5.84 × 10−6 27 110 0.012854 8.97 × 10−6 12 48 0.01207 5.83 × 10−6

x5 16 71 0.010735 8.48 × 10−6 26 106 0.015603 5.97 × 10−6 29 117 0.05371 9.43 × 10−6

x6 1 15 0.005932 0 36 147 0.025039 9.56 × 10−6 29 117 0.02396 6.65 × 10−6

5000

x1 6 24 0.019995 3.68 × 10−6 10 40 0.018283 8.15 × 10−6 13 52 0.02503 3.49 × 10−6

x2 5 20 0.00934 5.2 × 10−6 11 44 0.016733 3.36 × 10−6 13 52 0.02626 7.24 × 10−6

x3 11 46 0.02156 3.89 × 10−6 10 40 0.017073 7.37 × 10−6 14 56 0.03349 6.29 × 10−6

x4 22 94 0.043325 6.81 × 10−6 29 118 0.047436 7.09 × 10−6 13 52 0.02258 4.25 × 10−6

x5 18 79 0.096692 6.15 × 10−6 27 110 0.058405 7.95 × 10−6 31 125 0.05471 7.59 × 10−6

x6 1 15 0.012199 0 39 159 0.059448 7.33 × 10−6 63 254 0.10064 8.54 × 10−6

10,000

x1 6 24 0.019264 5.2 × 10−6 11 44 0.026877 3 × 10−6 13 52 0.03761 4.93 × 10−6

x2 5 20 0.017891 7.35 × 10−6 11 44 0.03118 4.76 × 10−6 14 56 0.04100 3.37 × 10−6

x3 11 46 0.036079 5.5 × 10−6 11 44 0.034673 2.71 × 10−6 14 56 0.03919 8.90 × 10−6

x4 22 94 0.069778 9.63 × 10−6 30 122 0.069971 5.97 × 10−6 32 129 0.09613 6.02 × 10−6

x5 18 79 0.062821 8.69 × 10−6 28 114 0.066866 6.68 × 10−6 32 129 0.09177 6.44 × 10−6

x6 1 15 0.017237 0 40 163 0.093749 7.26 × 10−6 64 258 0.20791 9.39 × 10−6

50,000

x1 7 28 0.093473 1.16 × 10−6 11 44 0.16749 6.7 × 10−6 14 56 0.17193 3.63 × 10−6

x2 6 24 0.072206 1.64 × 10−6 12 48 0.11391 2.77 × 10−6 14 56 0.15237 7.54 × 10−6

x3 12 50 0.14285 3.33 × 10−6 11 44 0.11036 6.06 × 10−6 15 60 0.16549 6.66 × 10−6

x4 24 102 0.30313 5.86 × 10−6 31 126 0.30903 7.94 × 10−6 67 270 0.76283 7.81 × 10−6

x5 20 87 0.28955 6.31 × 10−6 29 118 0.30266 8.89 × 10−6 67 270 0.76157 8.80 × 10−6

x6 1 15 0.061327 0 42 171 0.41158 7.96 × 10−6 269 1080 2.92510 9.41 × 10−6

100,000

x1 7 28 0.15038 1.65 × 10−6 11 44 0.2434 9.48 × 10−6 14 56 0.30229 5.13 × 10−6

x2 6 24 0.13126 2.32 × 10−6 12 48 0.2614 3.91 × 10−6 15 60 0.31648 3.59 × 10−6

x3 12 50 0.31585 4.71 × 10−6 11 44 0.2161 8.57 × 10−6 32 129 0.72838 9.99 × 10−6

x4 24 102 0.58023 8.29 × 10−6 32 130 0.65289 6.68 × 10−6 135 543 2.86780 9.73 × 10−6

x5 20 87 0.5122 8.92 × 10−6 30 122 0.61637 7.48 × 10−6 272 1092 5.74140 9.91 × 10−6

x6 1 15 0.11696 0 43 175 0.82759 7.88 × 10−6 548 2197 11.44130 9.87 × 10−6

Mathematics 2019, 7, 745 12 of 25

Table 5. Numerical results for MFRM, ACGD and PDY for problem 5 with given initial points
and dimensions.

MFRM ACGD PDY

Dimension Initial Point Iter Fval Time Norm Iter Fval Time Norm Iter Fval Time Norm

1000

x1 26 98 0.023555 3.51 × 10−6 39 154 0.022285 9.7 × 10−6 16 63 0.07575 6.03 × 10−6

x2 40 154 0.024539 5.9 × 10−6 22 85 0.015671 5.03 × 10−6 16 63 0.01470 5.42 × 10−6

x3 37 144 0.021659 7.11 × 10−6 43 173 0.029569 7.96 × 10−6 33 132 0.02208 6.75 × 10−6

x4 49 206 0.030696 9.52 × 10−6 30 122 0.014942 6.05 × 10−6 30 121 0.01835 8.39 × 10−6

x5 46 194 0.11589 7.06 × 10−6 29 118 0.040406 6.5 × 10−6 32 129 0.02700 8.47 × 10−6

x6 43 182 0.027471 8.7 × 10−6 40 163 0.0311 9.83 × 10−6 30 121 0.01712 6.95 × 10−6

5000

x1 38 147 0.073315 4.96 × 10−6 30 117 0.060877 9.56 × 10−6 17 67 0.04394 5.64 × 10−6

x2 20 77 0.056225 4.98 × 10−6 16 60 0.027911 5.91 × 10−6 17 67 0.04635 5.07 × 10−6

x3 41 157 0.082151 8.92 × 10−6 78 315 0.12774 9.7 × 10−6 35 140 0.08311 9.74 × 10−6

x4 48 202 0.10166 9.19 × 10−6 31 126 0.067911 8.39 × 10−6 33 133 0.08075 6.02 × 10−6

x6 147 562 3.308158 8.44 × 10−7 31 126 0.067856 7.81 × 10−6 35 141 0.10091 7.51 × 10−6

x7 45 190 0.090276 7.14 × 10−6 44 179 0.09371 7.37 × 10−6 32 129 0.08054 8.55 × 10−6

10,000

x1 37 143 0.12665 9.28 × 10−6 77 308 0.28678 9.85 × 10−6 17 67 0.06816 8.81 × 10−6

x2 22 84 0.077288 9.78 × 10−6 16 60 0.071657 7.52 × 10−6 17 67 0.08833 7.80 × 10−6

x3 39 149 0.1297 6.74 × 10−6 105 424 0.34212 9.08 × 10−6 37 148 0.14732 6.36 × 10−6

x4 60 250 0.2175 7.56 × 10−6 32 130 0.11937 7.17 × 10−6 37 149 0.14293 8.25 × 10−6

x5 44 186 0.1727 7.68 × 10−6 32 130 0.11921 8.26 × 10−6 36 145 0.14719 8.23 × 10−6

x6 46 194 0.1728 8.62 × 10−6 45 183 0.15634 9.01 × 10−6 74 298 0.26456 7.79 × 10−6

50,000

x1 44 170 0.62202 1 × 10−5 90 539 31.75299 2.56 × 10−7 42 169 0.58113 7.78 × 10−6

x2 69 280 0.9662 6.87 × 10−6 31 122 0.33817 7.09 × 10−6 42 169 0.58456 7.13 × 10−6

x3 119 464 25.87657 9.34 × 10−7 260 1047 2.8824 9.67 × 10−6 41 165 0.58717 8.87 × 10−6

x4 50 210 0.71599 8.38 × 10−6 33 134 0.39039 9.98 × 10−6 40 161 0.56431 7.17 × 10−6

x5 46 194 0.65538 8.47 × 10−6 35 142 0.40807 7.19 × 10−6 82 330 1.08920 8.44 × 10−6

x6 50 210 0.69117 8.12 × 10−6 49 199 0.57702 8.97 × 10−6 80 322 1.06670 7.82 × 10−6

100,000

x1 31 121 0.84183 4.48 × 10−6 88 530 61.97806 5.53 × 10−7 43 173 1.09620 8.47 × 10−6

x2 135 518 59.19294 8.37 × 10−7 110 442 2.2661 9.55 × 10−6 43 173 1.10040 7.77 × 10−6

x3 46 178 1.1322 6.99 × 10−6 345 1388 7.1938 9.76 × 10−6 42 169 1.08330 9.66 × 10−6

x4 50 210 1.3737 8.85 × 10−6 34 138 0.74362 8.65 × 10−6 85 342 2.11880 9.22 × 10−6

x5 47 198 1.3879 8.31 × 10−6 36 146 0.79012 8.09 × 10−6 84 338 2.10640 9.78 × 10−6

x6 52 218 1.4318 7.37 × 10−6 51 207 1.1601 8.42 × 10−6 167 671 4.06200 9.90 × 10−6

Table 6. Numerical Results for MFRM, ACGD and PDY for problem 6 with given initial points
and dimensions.

MFRM ACGD PDY

Dimension Initial Point Iter Fval Time Norm Iter Fval Time Norm Iter Fval Time Norm

1000

x1 11 44 0.011156 8.32 × 10−6 12 48 0.02786 7.88 × 10−6 15 60 0.01671 4.35 × 10−6

x2 11 44 0.016092 7.32 × 10−6 12 48 0.01042 7.58 × 10−6 15 60 0.01346 4.18 × 10−6

x3 11 44 0.010446 8.83 × 10−6 12 48 0.0092 6.68 × 10−6 15 60 0.01630 3.68 × 10−6

x4 10 40 0.011233 7.38 × 10−6 12 48 0.013617 4.57 × 10−6 14 56 0.01339 7.48 × 10−6

x5 9 36 0.011325 8.29 × 10−6 12 48 0.011492 3.67 × 10−6 14 56 0.01267 6.01 × 10−6

x6 7 28 0.009452 8.25 × 10−6 11 44 0.016351 8.32 × 10−6 14 56 0.01685 3.54 × 10−6

5000

x1 8 32 0.026924 1.87 × 10−6 13 52 0.036025 4.59 × 10−6 15 60 0.05038 9.73 × 10−6

x2 8 32 0.043488 1.8 × 10−6 13 52 0.040897 4.42 × 10−6 15 60 0.04775 9.36 × 10−6

x3 8 32 0.02709 1.59 × 10−6 13 52 0.039937 3.89 × 10−6 15 60 0.04923 8.25 × 10−6

x4 8 32 0.026351 1.1 × 10−6 13 52 0.033013 2.66 × 10−6 15 60 0.05793 5.64 × 10−6

x5 7 28 0.023442 8.62 × 10−6 12 48 0.030462 8.22 × 10−6 15 60 0.04597 4.53 × 10−6

x6 7 28 0.022952 5.08 × 10−6 12 48 0.028786 4.85 × 10−6 14 56 0.05070 7.93 × 10−6

10,000

x1 8 32 0.061374 2.62 × 10−6 13 52 0.092372 6.5 × 10−6 68 274 0.40724 9.06 × 10−6

x2 8 32 0.06285 2.52 × 10−6 13 52 0.059778 6.25 × 10−6 68 274 0.41818 8.72 × 10−6

x3 8 32 0.059913 2.22 × 10−6 13 52 0.077326 5.5 × 10−6 34 137 0.21905 6.22 × 10−6

x4 8 32 0.057003 1.52 × 10−6 13 52 0.087745 3.77 × 10−6 15 60 0.10076 7.98 × 10−6

x5 8 32 0.070377 1.22 × 10−6 13 52 0.077217 3.02 × 10−6 15 60 0.12680 6.40 × 10−6

x6 7 28 0.052718 7.18 × 10−6 12 48 0.067375 6.85 × 10−6 15 60 0.11984 3.78 × 10−6

50,000

x1 8 32 0.21258 5.85 × 10−6 14 56 0.32965 3.78 × 10−6 143 575 3.09120 9.42 × 10−6

x2 8 32 0.21203 5.63 × 10−6 14 56 0.31297 3.63 × 10−6 143 575 3.06200 9.06 × 10−6

x3 8 32 0.20885 4.96 × 10−6 14 56 0.30089 3.2 × 10−6 142 571 3.04950 9.04 × 10−6

x4 8 32 0.20483 3.4 × 10−6 13 52 0.26855 8.42 × 10−6 69 278 1.53920 9.14 × 10−6

x5 8 32 0.21467 2.72 × 10−6 13 52 0.26304 6.76 × 10−6 68 274 1.49490 9.43 × 10−6

x6 8 32 0.20933 1.61 × 10−6 13 52 0.26143 3.99 × 10−6 15 60 0.38177 8.44 × 10−6

100,000

x1 8 32 0.41701 8.28 × 10−6 14 56 0.58853 5.34 × 10−6 292 1172 13.59530 9.53 × 10−6

x2 8 32 0.41511 7.96 × 10−6 14 56 0.58897 5.14 × 10−6 290 1164 13.30930 9.75 × 10−6

x3 8 32 0.44061 7.01 × 10−6 14 56 0.57318 4.53 × 10−6 144 579 6.68150 9.96 × 10−6

x4 8 32 0.43805 4.8 × 10−6 14 56 0.58712 3.1 × 10−6 141 567 6.50800 9.92 × 10−6

x5 8 32 0.41147 3.85 × 10−6 13 52 0.56384 9.56 × 10−6 70 282 3.30510 8.07 × 10−6

x6 8 32 0.43925 2.27 × 10−6 13 52 0.53343 5.64 × 10−6 34 137 1.64510 6.37 × 10−6

Mathematics 2019, 7, 745 13 of 25

Table 7. Numerical Results for MFRM, ACGD and PDY for problem 7 with given initial points
and dimensions.

MFRM ACGD PDY

Dimension Initial Point Iter Fval Time Norm Iter Fval Time Norm Iter Fval Time Norm

1000

x1 4 21 0.011834 3.24 × 10−7 10 42 0.008528 2.46 × 10−6 14 57 0.00953 5.28 × 10−6

x2 4 21 0.006228 1.43 × 10−7 9 38 0.008289 3.91 × 10−6 13 53 0.00896 9.05 × 10−6

x3 3 17 0.004096 5.81 × 10−8 8 34 0.006702 7.43 × 10−6 3 12 0.00426 8.47 × 10−6

x4 7 34 0.00585 3.89 × 10−6 11 46 0.009579 5.94 × 10−6 15 61 0.01169 6.73 × 10−6

x5 7 34 0.006133 6.36 × 10−6 11 46 0.015328 8.97 × 10−6 31 126 0.03646 9.03 × 10−6

x6 8 37 0.006106 1.9 × 10−6 12 49 0.01426 2.87 × 10−6 15 60 0.01082 3.99 × 10−6

5000

x1 4 21 0.015836 7.25 × 10−7 10 42 0.023953 5.49 × 10−6 15 61 0.03215 4.25 × 10−6

x2 4 21 0.014521 3.2 × 10−7 9 38 0.021065 8.74 × 10−6 14 57 0.02942 7.40 × 10−6

x3 3 17 0.014517 1.3 × 10−7 9 38 0.025437 4.01 × 10−6 4 16 0.01107 1.01 × 10−7

x4 7 34 0.028388 8.71 × 10−6 12 50 0.028607 3.21 × 10−6 16 65 0.04331 5.43 × 10−6

x5 8 38 0.02787 1.49 × 10−6 12 50 0.037806 4.84 × 10−6 33 134 0.09379 7.78 × 10−6

x6 8 37 0.027898 4.26 × 10−6 12 49 0.029226 6.43 × 10−6 15 60 0.04077 8.92 × 10−6

10,000

x1 4 21 0.028528 1.02 × 10−6 10 42 0.045585 7.77 × 10−6 15 61 0.06484 6.01 × 10−6

x2 4 21 0.033782 4.52 × 10−7 10 42 0.041715 2.98 × 10−6 15 61 0.07734 3.77 × 10−6

x3 3 17 0.029265 1.84 × 10−7 9 38 0.036422 5.67 × 10−6 4 16 0.02707 1.42 × 10−7

x4 8 38 0.043301 1.29 × 10−6 12 50 0.063527 4.53 × 10−6 16 65 0.07941 7.69 × 10−6

x5 8 38 0.043741 2.1 × 10−6 12 50 0.049604 6.85 × 10−6 34 138 0.14942 6.83 × 10−6

x6 8 37 0.053666 6.02 × 10−6 12 49 0.050153 9.09 × 10−6 34 138 0.15224 8.81 × 10−6

50,000

x1 4 21 0.10816 2.29 × 10−6 11 46 0.20624 4.19 × 10−6 16 65 0.25995 4.89 × 10−6

x2 4 21 0.11969 1.01 × 10−6 10 42 0.16364 6.67 × 10−6 15 61 0.24674 8.42 × 10−6

x3 3 17 0.068644 4.11 × 10−7 10 42 0.1539 3.06 × 10−6 4 16 0.09405 3.18 × 10−7

x4 8 38 0.16067 2.88 × 10−6 13 54 0.20728 2.45 × 10−6 36 146 0.55207 6.39 × 10−6

x5 8 38 0.14484 4.7 × 10−6 13 54 0.19421 3.69 × 10−6 35 142 0.54679 9.05 × 10−6

x6 9 41 0.161 1.41 × 10−6 13 53 0.19386 4.9 × 10−6 36 146 0.55764 7.59 × 10−6

100,000

x1 4 21 0.21825 3.24 × 10−6 11 46 0.32512 5.93 × 10−6 17 69 0.52595 5.68 × 10−6

x2 4 21 0.16435 1.43 × 10−6 10 42 0.30949 9.43 × 10−6 16 65 0.52102 4.34 × 10−6

x3 3 17 0.13072 5.81 × 10−7 10 42 0.31031 4.32 × 10−6 4 16 0.14864 4.50 × 10−7

x4 8 38 0.29012 4.07 × 10−6 13 54 0.38833 3.46 × 10−6 36 146 1.05360 9.04 × 10−6

x5 8 38 0.32821 6.65 × 10−6 13 54 0.3522 5.22 × 10−6 74 299 2.10730 8.55 × 10−6

x6 9 41 0.43649 1.99 × 10−6 13 53 0.3561 6.94 × 10−6 37 150 1.08240 6.66 × 10−6

Table 8. Numerical results for MFRM, ACGD and PDY for problem 8 with given initial points
and dimensions.

MFRM ACGD PDY

Dimension Initial Point Iter Fval Time Norm Iter Fval Time Norm Iter Fval Time Norm

1000

x1 8 27 0.1502 1.52 × 10−6 8 26 0.049826 6.09 × 10−6 69 279 0.05538 8.95 × 10−6

x2 8 27 0.042248 1.52 × 10−6 8 26 0.017594 6.09 × 10−6 270 1085 0.18798 9.72 × 10−6

x3 26 114 0.03877 7.85 × 10−6 8 26 0.010888 6.09 × 10−6 24 52 0.02439 6.57 × 10−6

x4 26 114 0.017542 7.85 × 10−6 8 26 0.007873 6.09 × 10−6 27 58 0.01520 7.59 × 10−6

x5 26 114 0.067692 7.85 × 10−6 8 26 0.060733 6.09 × 10−6 28 61 0.04330 9.21 × 10−6

x6 26 114 0.045173 7.85 × 10−6 8 26 0.006889 6.09 × 10−6 40 85 0.02116 8.45 × 10−6

5000

x1 6 28 0.023925 8.77 × 10−6 4 13 0.011005 5.76 × 10−6 658 2639 1.13030 9.98 × 10−6

x2 15 70 0.043512 7.94 × 10−6 4 13 0.009131 5.76 × 10−6 27 58 0.05101 7.59 × 10−6

x3 15 70 0.046458 7.94 × 10−6 4 13 0.011311 5.76 × 10−6 49 104 0.08035 8.11 × 10−6

x4 15 70 0.044788 7.94 × 10−6 4 13 0.010475 5.75 × 10−6 40 85 0.07979 8.45 × 10−6

x5 15 70 0.044639 7.94 × 10−6 4 13 0.011034 5.77 × 10−6 18 40 0.09128 9.14 × 10−6

x6 15 70 0.043974 7.94 × 10−6 4 13 0.00785 5.76 × 10−6 17 38 0.18528 8.98 × 10−6

10,000

x1 11 54 0.06595 6.15 × 10−6 5 20 0.024232 2.19 × 10−6 49 104 0.20443 7.62 × 10−6

x2 11 54 0.068125 6.15 × 10−6 5 20 0.023511 2.19 × 10−6 40 85 0.15801 8.45 × 10−6

x3 11 54 0.065486 6.15 × 10−6 5 20 0.023004 2.19 × 10−6 19 42 0.37880 7.66 × 10−6

x4 11 54 0.064515 6.15 × 10−6 5 20 0.030435 2.19 × 10−6 90 187 1.25802 9.7 × 10−6

x5 11 54 0.056261 6.15 × 10−6 5 20 0.021963 2.19 × 10−6 988 1988 12.68259 9.93 × 10−6

x6 11 54 0.067785 6.15 × 10−6 5 20 0.021889 2.21 × 10−6 27 58 0.32859 7.59 × 10−6

50,000

x1 7 38 0.17856 4.5 × 10−6 5 23 0.087544 2.45 × 10−6 19 42 0.52291 6.42 × 10−6

x2 7 38 0.17862 4.5 × 10−6 5 23 0.093227 2.45 × 10−6 148 304 3.93063 9.92 × 10−6

x3 7 38 0.17746 4.5 × 10−6 5 23 0.087484 2.45 × 10−6 937 1886 22.97097 9.87 × 10−6

x4 7 38 0.17392 4.5 × 10−6 5 23 0.086329 2.4 × 10−6 27 58 0.68467 7.59 × 10−6

x5 7 38 0.18035 4.5 × 10−6 5 23 0.08954 2.4 × 10−6 346 702 8.45043 9.79 × 10−6

x6 7 38 0.17504 4.5 × 10−6 5 23 0.093203 2.5 × 10−6 40 85 0.99230 8.45 × 10−6

100,000

x1 28 122 0.91448 8.61 × 10−6 4 20 0.14743 2.71 × 10−6 - - - -
x2 28 122 0.93662 8.61 × 10−6 4 20 0.14823 2.7 × 10−6 - - - -
x3 28 122 0.90604 8.61 × 10−6 4 20 0.1497 2.79 × 10−6 - - - -
x4 28 122 0.92351 8.61 × 10−6 4 20 0.14844 2.37 × 10−6 - - - -
x5 28 122 0.91896 8.61 × 10−6 4 20 0.12346 1.66 × 10−6 - - - -
x6 28 122 0.91294 8.61 × 10−6 4 20 0.12522 2.11 × 10−6 - - - -

Figure 1 reveals that MFRM performed better in terms of number of Iterations, as it solves and
wins over 70 percent of the problems with less number of Iterations, while ACGD and PDY solve and
win over 40 and almost 10 percent respectively. The story is a little bit different in Figure 2 as ACGD
method was very competitive. However, MFRM method performed a little bit better by solving and
winning over 50 percent of the problems with less CPU time as against ACGD method which solves

Mathematics 2019, 7, 745 14 of 25

and wins less than 50 percent of the problems considered. The PDY method had the least performance
with just 10 percent success. The interpretation of Figure 3 was similar to that of Figure 1. Finally,
in Table 11 we report numerical results for MFRM, ACGD and PDY for problem 2 with given initial
points and dimensions with double float (10−16) accuracy.

0 1 2 3 4 5 6 7 8 9 10

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(t

)

PDY

ACGD

MFRM

Figure 1. Performance profiles for the number of iterations.

0 1 2 3 4 5 6 7 8 9 10

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(t

)

PDY

ACGD

MFRM

Figure 2. Performance profiles for the CPU time (in seconds).

Mathematics 2019, 7, 745 15 of 25

0 1 2 3 4 5 6 7 8

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(t

)
PDY

ACGD

MFRM

Figure 3. Performance profiles for the number of function evaluations.

4.1. Experiments on Solving Sparse Signal Problems

There were many problems in signal processing and statistical inference involving finding sparse
solutions to ill-conditioned linear systems of equations. Among popular approaches was minimizing
an objective function which contains quadratic (`2) error term and a sparse `1−regularization term, i.e.,

min
x

1
2
‖y− Bx‖2

2 + η‖x‖1, (25)

where x ∈ Rn, y ∈ Rk is an observation, B ∈ Rk×n (k << n) is a linear operator, η is a non-negative
parameter, ‖x‖2 denotes the Euclidean norm of x and ‖x‖1 = ∑n

i=1 |xi| is the `1−norm of x. It is easy
to see that problem (25) is a convex unconstrained minimization problem. Due to the fact that if the
original signal is sparse or approximately sparse in some orthogonal basis, problem (25) frequently
appears in compressive sensing, and hence an exact restoration can be produced by solving (25).

Iterative methods for solving (25) have been presented in many papers (see [42–45]). The most
popular method among these methods is the gradient-based method and the earliest gradient projection
method for sparse reconstruction (GPRS) was proposed by Figueiredo et al. [44]. The first step of
the GPRS method is to express (25) as a quadratic problem using the following process. Consider
a point x ∈ Rn such that x = u − v, where u, v ≥ 0. u and v are chosen in such a way that x is
splitted into its positive and negative parts as follows ui = (xi)+, vi = (−xi)+ for all i = 1, 2, ..., n,
and (.)+ = max{0, .}. By definition of `1-norm, we have ‖x‖1 = eT

n u + eT
n v, where en = (1, 1, ..., 1)T ∈

Rn. Now (25) can be written as

min
u,v

1
2
‖y− B(u− v)‖2

2 + ηeT
n u + ηeT

n v, u ≥ 0, v ≥ 0, (26)

which is a bound-constrained quadratic program. However, from [44], Equation (26) can be written in
standard form as

min
z

1
2

zT Dz + cTz, such that z ≥ 0, (27)

Mathematics 2019, 7, 745 16 of 25

where z =

(
u
v

)
, c = ωe2n +

(
−b
b

)
, b = BTy, D =

(
BT B −BT B
−BT B BT B

)
. Clearly, D is a positive

semi-definite matrix, which implies that Equation (27) is a convex quadratic problem.
Xiao et al. [20] translated (27) into a linear variable inequality problem which is equivalent to a

linear complementarity problem. Moreover, z is a solution of the linear complementarity problem if
and only if it is a solution of the following nonlinear equation:

F(z) = min{z, Dz + c} = 0. (28)

The function F is a vector-valued function and the “min” was interpreted as component wise
minimum. Furthermore, F was proved to be continuous and monotone in [46]. Therefore problem (25)
can be translated into problem (1) and thus MFRM method can be applied to solve it.

In this experiment, we consider a simple compressive sensing possible situation, where our goal
is to reconstruct a sparse signal of length n from k observations. The quality of recovery is assessed by
mean of squared error (MSE) to the original signal x̃,

MSE =
1
n
‖x̃− x∗‖2,

where x∗ is the recovered signal. The signal size is chosen as n = 211, k = 29 and the original signal
contains 26 randomly nonzero elements. In addition, the measurement y is distributed with noise,
that is, y = Bx̃ + $, where B is a randomly generated Gaussian matrix and $ is the Gaussian noise
distributed normally with mean 0 and variance 10−4.

To demonstrate the performance of the MFRM method in signal recovery problems, we
compare it with the conjugate gradient descent CGD [20] and projected conjugate gradient
PCG [23] methods. The parameters in PCG and CGD methods are chosen as γ = 10, σ = 10−4,
ρ = 0.5. However, we chose γ = 1, σ = 10−4, ρ = 0.9 and µ = 0.01 in MFRM method.
For fairness in comparison, each code was run from the same initial point, same continuation
technique on the parameter η, and observed only the behavior of the convergence of each method
to have a similar accurate solution. The experiment was initialized with x0 = BTy and terminates when

‖ f (xk)− f (xk−1)‖
‖ f (xk−1)‖

< 10−5,

where f (xk) =
1
2‖y− Bxk‖2

2 + η‖xk‖1.
In Figures 4 and 5, MFRM, CGD and PCG methods recovered the disturbed signal almost exactly.

The experiment was repeated for 20 different noise samples (see Table 9). It can be observed that
the MFRM is more efficient in terms of the number of Iterations and CPU time than CGD and PCG
methods in most cases. Furthermore, MFRM was able to achieve the least MSE in nine (9) out of the
twenty (20) experiments. To reveal visually the performance of both methods, two figures were plotted
to demonstrate their convergence behavior based on MSE, objective function values, the number
of Iterations and CPU time (see Figures 6 and 7). It can also be observed that MFRM requires less
computing time to achieve similar quality resolution. This can be seen graphically in Figures 6 and 7
which illustrate that the objective function values obtained by MFRM decrease faster throughout the
entire Iteration process.

Mathematics 2019, 7, 745 17 of 25

0 500 1000 1500 2000
-2
0
2

Original (n = 2048, number of nonzeros = 64)

0 100 200 300 400 500
-0.5

0
0.5

Measurement

0 500 1000 1500 2000
-2
0
2

PCG (MSE = 6.32e-05, Iter=138, Time=1.28s)

0 500 1000 1500 2000
-2
0
2

MFRM (MSE = 1.97e-05,Iter=98, Time=1.33s)

Figure 4. (top) to (bottom) The original image, the measurement, and the recovered signals by projected
conjugate gradient PCG and modified descent Fletcher–Reeves CG method (MFRM) methods.

0 500 1000 1500 2000
-2
0
2

Original (n = 2048, number of nonzeros = 64)

0 100 200 300 400 500
-0.5

0
0.5

Measurement

0 500 1000 1500 2000
-2
0
2

CGD (MSE = 6.16e-05, Iter=248, Time=2.28s)

0 500 1000 1500 2000
-2
0
2

MFRM (MSE = 1.97e-05,Iter=98, Time=1.33s)

Figure 5. (top) to (bottom) The original image, the measurement, and the recovered signals by
conjugate gradient descent (CGD) and MFRM methods.

Mathematics 2019, 7, 745 18 of 25

0 50 100 150
Iterations

0

20

40

60

80

100

M
SE

PCG
MFRM

0 0.5 1 1.5
CPU time (seconds)

0

20

40

60

80

100

M
SE

PCG
MFRM

0 50 100 150 200 250
Iterations

0

2

4

6

8

10

12

O
bj

Fu
n

PCG
MFRM

0 0.5 1 1.5 2 2.5
CPU time (seconds)

0

2

4

6

8

10

12

O
bj

Fu
n

PCG
MFRM

Figure 6. Comparison result of PCG and MFRM. The x-axis represent the number of Iterations
((top left) and (bottom left)) and CPU time in seconds ((top right) and (bottom right)). The y-axis
represent the MSE ((top left) and (top right)) and the objective function values ((bottom left) and
(bottom right)).

Table 9. Twenty experiment results of `1−norm regularization problem for CGD, PCG and
MFRM methods.

S/N Iter Time MSE

CGD PCG MFRM CGD PCG MFRM CGD PCG MFRM

1 248 138 98 2.28 1.28 1.33 6.16 × 10−5 6.32 × 10−5 1.97 × 10−5

2 234 138 117 3.37 1.26 1.19 4.08 × 10−5 3.36 × 10−5 5.40 × 10−5

3 224 152 104 1.90 1.29 0.97 2.78 × 10−5 1.78 × 10−5 1.02 × 10−5

4 230 143 117 3.21 2.48 1.17 4.08 × 10−5 3.36 × 10−5 5.40 × 10−5

5 152 119 114 1.65 1.03 1.15 1.23 × 10−5 2.07 × 10−5 5.49 × 10−5

6 223 127 110 1.89 2.56 1.83 3.33 × 10−5 6.08 × 10−5 6.50 × 10−6

7 156 120 125 1.37 1.01 1.20 4.25 × 10−5 3.26 × 10−5 1.46 × 10−5

8 213 89 10 1.90 0.78 1.12 1.86 × 10−5 3.77 × 10−4 1.31 × 10−5

9 227 152 118 2.14 1.53 1.45 2.75 × 10−5 1.54 × 10−5 8.11 × 10−6

10 201 142 101 2.22 1.64 1.01 6.75 × 10−5 1.86 × 10−5 1.17 × 10−5

11 200 151 90 1.70 1.42 0.90 2.36 × 10−5 1.29 × 10−5 3.81 × 10−5

12 202 153 91 1.75 1.34 0.84 6.94 × 10−5 2.99 × 10−5 9.21 × 10−5

13 208 128 125 1.89 1.12 1.26 1.71 × 10−5 1.42 × 10−5 9.20 × 10−6

14 161 145 122 1.47 1.28 1.26 1.15 × 10−5 8.75 × 10−6 4.36 × 10−6

15 227 160 100 1.97 1.42 1.00 3.41 × 10−5 2.40 × 10−5 1.54 × 10−5

16 269 172 88 2.51 1.67 0.98 3.90 × 10−5 6.59 × 10−5 2.08 × 10−4

17 210 129 105 1.84 1.19 1.11 2.11 × 10−5 1.89 × 10−5 6.22 × 10−5

18 225 132 96 1.93 1.15 1.00 3.87 × 10−5 7.78 × 10−5 9.49 × 10−5

19 152 120 92 1.37 1.09 0.87 2.12 × 10−5 1.32 × 10−5 4.03 × 10−5

20 151 128 113 1.31 1.15 1.06 4.48 × 10−5 1.85 × 10−5 1.71 × 10−5

Mathematics 2019, 7, 745 19 of 25

0 50 100 150 200 250
Iterations

0

20

40

60

80

100
M

SE

CGD
MFRM

0 0.5 1 1.5 2 2.5
CPU time (seconds)

0

20

40

60

80

100

M
SE

CGD
MFRM

0 50 100 150 200 250
Iterations

0

2

4

6

8

10

12

O
bj

Fu
n

CGD
MFRM

0 0.5 1 1.5 2 2.5
CPU time (seconds)

0

2

4

6

8

10

12

O
bj

Fu
n

CGD
MFRM

Figure 7. Comparison result of PCG and MFRM. The x-axis represent the number of Iterations
((top left) and (bottom left)) and CPU time in seconds ((top right) and (bottom right)). The y-axis
represent the MSE ((top left) and (top right)) and the objective function values ((bottom left) and
(bottom right)).

4.2. Experiments on Blurred Image Restoration

In this subsection, we test the performance of MFRM in restoring a blurred image. We use the
following well-known gray test images; (P1) Cameraman, (P2) Lena, (P3) House and (P4) Peppers for
the experiments. We use 4 different Gaussian blur kernels with a standard deviation υ to compare the
robustness of MFRM method with CGD method proposed in [20].

To assess the performance of each algorithm tested with respect to the metrics that indicate better
quality of restoration, in Table 10 we reported the objective function (ObjFun) at the approximate
solution, the MSE, the signal-to-noise-ratio (SNR) which is defined as

SNR = 20× log10
(‖x̄‖
‖x− x̄‖

)
,

and the structural similarity (SSIM) index that measure the similarity between the original image and
the restored image [47] for each of the 16 experiments. The MATLAB implementation of the SSIM
index can be obtained at http://www.cns.nyu.edu/~lcv/ssim/.

The original, blurred and restored images by each of the algorithm are given in Figures 8–11.
The figures demonstrate that both the two algorithms can restore the blurred images. In contrast to
the CGD, the quality of the restored image by MFRM is superior in most cases. Table 11 reported
numerical results for MFRM, ACGD and PDY for problem 2.

http://www.cns.nyu.edu/~lcv/ssim/

Mathematics 2019, 7, 745 20 of 25

Table 10. Efficiency comparison based on the value of the objective function (ObjFun)
mean-square-error (MSE), SNR and the SSIM index under different Pi(υ).

Image ObjFun MSE SNR SSIM

MFRM CGD MFRM CGD MFRM CGD MFRM CGD

P1(1 × 10−4) 1.43 × 106 1.47 × 106 133.90 177.57 21.28 20.05 0.86 0.83
P1(1 × 10−1) 1.43 × 106 1.48 × 106 130.60 177.69 21.39 20.5 0.86 0.83

P1(0.25) 1.47 × 106 1.48 × 106 145.27 177.72 20.93 20.05 0.85 0.83
P1(6.25) 1.58 × 106 1.65 × 106 146.06 183.96 20.9 19.9 0.75 0.79

P2(1 × 10−4) 1.61 × 106 1.65 × 106 36.88 57.55 27.59 25.65 0.88 0.86
P2(1 × 10−1) 1.61 × 106 1.65 × 106 36.85 57.61 27.59 25.65 0.88 0.86

P2(0.25) 1.62 × 106 1.66 × 106 37.78 57.68 27.48 25.64 0.88 0.86
P2(6.25) 1.77 × 106 1.82 × 106 56.65 58.96 25.72 25.55 0.76 0.83

P3(1 × 10−4) 5.74 × 106 5.89 × 106 41.63 44.48 26.26 25.97 0.9 0.88
P3(1 × 10−1) 5.75 × 106 5.90 × 106 42.42 44.54 26.17 25.96 0.89 0.88

P3(0.25) 5.76 × 106 5.91 × 106 43.33 44.65 26.08 25.95 0.88 0.88
P3(6.25) 6.35 × 106 6.60 × 106 106.79 48.47 22.16 25.6 0.63 0.85

P4(1 × 10−4) 1.40 × 106 1.48 × 106 88.81 122.44 22.9 21.5 0.87 0.84
P4(1 × 10−1) 1.41 × 106 1.48 × 106 89.22 122.56 22.88 21.5 0.87 0.84

P4(0.25) 1.41 × 106 1.49 × 106 89.86 122.56 22.85 21.5 0.87 0.84
P4(6.25) 1.56 × 106 1.69 × 106 116.79 138.97 21.71 20.95 0.76 0.82

Table 11. Numerical results for modified Fletcher-Reeves method MFRM, accelerated conjugate
gradient descent (ACGD) and projected Dai-Yuan (PDY) methods for problem 2 with given initial
points and dimensions with double float (10−16) accuracy.

MFRM ACGD PDY

Dimension Initial Point Iter Fval Time Norm Iter Fval Time Norm Iter Fval Time Norm

1000

x1 8 27 0.14061 9.47 × 10−19 12 53 0.030479 3.32 × 10−18 30 119 0.04027 4.76 × 10−19

x2 8 36 0.010782 1.49 × 10−18 7 20 0.013503 1.08 × 10−18 36 153 0.034454 3.51 × 10−18

x3 7 20 0.008263 1.21 × 10−18 13 56 0.021302 3.26 × 10−18 38 161 0.038168 3.51 × 10−18

x4 8 23 0.015654 1.80 × 10−19 12 51 0.02056 3.31 × 10−18 39 165 0.057793 3.51 × 10−18

x5 11 38 0.018461 1.59 × 10−18 14 59 0.088858 3.34 × 10−18 41 173 0.069756 3.51 × 10−18

x6 10 34 0.016788 1.07 × 10−18 10 32 0.012069 5.83 × 10−19 40 169 0.03311 3.50 × 10−18

5000

x1 9 33 0.028658 7.22 × 10−19 12 54 0.041685 1.52 × 10−18 35 149 0.10692 1.57 × 10−18

x2 7 23 0.024046 2.18 × 10−19 9 41 0.049194 1.55 × 10−18 37 157 0.12219 1.57 × 10−18

x3 6 17 0.03436 3.89 × 10−19 14 61 0.094129 1.47 × 10−18 33 131 0.10635 1.06 × 10−19

x4 8 26 0.03133 7.17 × 10−19 14 60 0.065147 1.47 × 10−18 39 165 0.18361 1.57 × 10−18

x5 9 31 0.036727 5.84 × 10−19 10 43 0.1165 1.47 × 10−18 36 144 0.2178 7.43 × 10−20

x6 10 34 0.030168 6.41 × 10−19 12 51 0.038218 1.51 × 10−18 38 161 0.13144 1.57 × 10−18

10,000

x1 8 28 0.064617 1.89 × 10−19 11 50 0.068567 1.03 × 10−18 35 149 0.2253 1.11 × 10−18

x2 6 19 0.044204 1.90 × 10−19 14 62 0.15949 1.09 × 10−18 32 128 0.34325 8.21 × 10−20

x3 6 17 0.045192 1.45 × 10−19 18 78 0.10766 1.04 × 10−18 39 165 0.23899 1.11 × 10−18

x4 10 35 0.055408 4.99 × 10−19 12 52 0.061589 1.06 × 10−18 39 165 0.23162 1.11 × 10−18

x5 7 20 0.038439 2.06 × 10−19 14 60 0.087394 1.05 × 10−18 40 169 0.28998 1.11 × 10−18

x6 9 29 0.065318 5.27 × 10−19 16 68 0.09917 1.03 × 10−18 40 170 0.22564 1.11 × 10−18

50,000

x1 7 26 0.21017 1.93 × 10−19 23 100 0.51879 4.79 × 10−19 34 145 0.92896 4.96 × 10−19

x2 6 21 0.24752 2.09 × 10−19 25 108 0.64677 4.90 × 10−19 36 153 0.9954 4.96 × 10−19

x3 6 17 0.11243 6.27 × 10−20 23 99 0.50402 4.93 × 10−19 38 161 0.96768 4.96 × 10−19

x4 7 20 0.13442 1.02 × 10−19 24 102 0.63664 4.75 × 10−19 79 326 1.7542 4.96 × 10−19

x5 9 30 0.20288 7.25 × 10−20 25 106 0.51116 4.78 × 10−19 78 322 1.7246 4.96 × 10−19

x6 12 52 0.36526 2.28 × 10−19 23 97 0.56342 4.76 × 10−19 80 330 1.6812 4.96 × 10−19

100,000

x1 7 27 0.36065 6.53 × 10−20 23 100 0.88236 3.26 × 10−19 30 119 1.2102 9.26 × 10−21

x2 5 14 0.20041 3.91 × 10−20 25 108 0.90777 3.27 × 10−19 35 149 1.5699 3.51 × 10−19

x3 7 24 0.34075 1.47 × 10−19 25 107 0.95898 3.26 × 10−19 40 170 1.7126 3.51 × 10−19

x4 8 31 0.40444 2.09 × 10−20 24 102 0.83332 3.38 × 10−19 151 614 5.8306 3.51 × 10−19

x5 8 26 0.52598 5.03 × 10−20 25 106 1.0223 3.47 × 10−19 151 614 5.6777 3.50 × 10−19

x6 7 20 0.33434 1.45 × 10−19 23 97 0.87438 3.33 × 10−19 153 622 5.7906 3.51 × 10−19

Mathematics 2019, 7, 745 21 of 25

Original Cameraman Blurred Cameraman

CGD MFRM

Figure 8. The original image (top left), the blurred image (top right), the restored image by CGD
(bottom left) with time = 3.70, signal-to-noise-ratio (SNR) = 20.05 and structural similarity (SSIM)
= 0.83, and by MFRM (bottom right) with time = 1.97, SNR = 21.28 and SSIM = 0.86.

Original House Blurred House

CGD MFRM

Figure 9. The original image (top left), the blurred image (top right), the restored image by CGD
(bottom left) with Time = 1.95, SNR = 25.65 and SSIM = 0.86, and by MFRM (bottom right) with
Time = 3.59, SNR = 27.59 and SSIM = 0.88.

Mathematics 2019, 7, 745 22 of 25

Original Lena Blurred Lena

CGD MFRM

Figure 10. The original image (top left), the blurred image (top right), the restored image by CGD
(bottom left) with time = 5.38, SNR = 25.97 and SSIM = 0.88, and by MFRM (bottom right) with time
= 38.77, SNR = 26.26 and SSIM = 0.90.

Original Peppers Blurred Peppers

CGD MFRM

Figure 11. The original image (top left), the blurred image (top right), the restored image by CGD
(bottom left) with Time = 2.48, SNR = 21.50 and SSIM = 0.84, and by MFRM (bottom right) with
Time = 4.93, SNR = 22.90 and SSIM = 0.87.

Mathematics 2019, 7, 745 23 of 25

5. Conclusions

In this paper, a modified conjugate gradient method for solving monotone nonlinear equations
with convex constraints was presented which is similar to that in [3]. The proposed method is suitable
for non-smooth equations. Under some suitable assumptions, the global convergence of the proposed
method was demonstrated. Numerical results were presented to show the effectiveness of the MFRM
method compared to the ACGD and PDY methods for the given constrained monotone equation
problems. Finally, the MFRM was also shown to be effective in decoding sparse signals and restoration
of blurred images.

Author Contributions: conceptualization, A.B.A.; methodology, A.B.A.; software, H.M.; validation, P.K., A.M.A.
and K.S.; formal analysis, P.K. and K.S.; investigation, P.K. and H.M.; resources, P.K. and K.S.; data curation, H.M.
and A.M.A.; writing–original draft preparation, A.B.A.; writing–review and editing, H.M.; visualization, A.M.A.
and K.S.; supervision, P.K.; project administration, P.K. and K.S.; funding acquisition, P.K. and K.S.

Funding: Petchra Pra Jom Klao Doctoral Scholarship for Ph.D. program of King Mongkut’s University of
Technology Thonburi (KMUTT). This project was partially supported by the Thailand Research Fund (TRF) and
the King Mongkut’s University of Technology Thonburi (KMUTT) under the TRF Research Scholar Award (Grant
No. RSA6080047). Moreover, Kanokwan Sitthithakerngkiet was supported by Faculty of Applied Science, King
Mongkuts University of Technology North Bangkok. Contract no. 6242104.

Acknowledgments: We thank Associate Professor Jin Kiu Liu for providing us with the access of the CGD-CS
MATLAB codes. The authors acknowledge the financial support provided by King Mongkut’s University
of Technology Thonburi through the “KMUTT 55th Anniversary Commemorative Fund”. The first author
was supported by the “Petchra Pra Jom Klao Ph.D. Research Scholarship from King Mongkut’s University of
Technology Thonburi”.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Abubakar, A.B.; Kumam, P.; Awwal, A.M. A Descent Dai-Liao Projection Method for Convex Constrained
Nonlinear Monotone Equations with Applications. Thai J. Math. 2018, 17, 128–152.

2. Abubakar, A.B.; Kumam, P. A descent Dai-Liao conjugate gradient method for nonlinear equations.
Numer. Algorithms 2019, 81, 197–210. [CrossRef]

3. Abubakar, A.B.; Kumam, P. An improved three-term derivative-free method for solving nonlinear equations.
Comput. Appl. Math. 2018, 37, 6760–6773. [CrossRef]

4. Mohammad, H.; Abubakar, A.B. A positive spectral gradient-like method for nonlinear monotone equations.
Bull. Comput. Appl. Math. 2017, 5, 99–115.

5. Muhammed, A.A.; Kumam, P.; Abubakar, A.B.; Wakili, A.; Pakkaranang, N. A New Hybrid Spectral Gradient
Projection Method for Monotone System of Nonlinear Equations with Convex Constraints. Thai J. Math.
2018, 16, 125–147.

6. Zhou, W.J.; Li, D.H. A globally convergent BFGS method for nonlinear monotone equations without any
merit functions. Math. Comput. 2008, 77, 2231–2240. [CrossRef]

7. Yan, Q.R.; Peng, X.Z.; Li, D.H. A globally convergent derivative-free method for solving large-scale nonlinear
monotone equations. J. Comput. Appl. Math. 2010, 234, 649–657. [CrossRef]

8. DiRksEandM, S.P.; FERRis, C. A collection of nonlinear mixed complementarity problems. Optim. Methods
Softw. 1995, 5, 319–345.

9. Meintjes, K.; Morgan, A.P. A methodology for solving chemical equilibrium systems. Appl. Math. Comput.
1987, 22, 333–361. [CrossRef]

10. Bellavia, S.; Macconi, M.; Morini, B. STRSCNE: A Scaled Trust-Region Solver for Constrained Nonlinear
Equations. Comput. Optim. Appl. 2004, 28, 31–50. [CrossRef]

11. Kanzow, C.; Yamashita, N.; Fukushima, M. Levenberg–Marquardt methods with strong local convergence
properties for solving nonlinear equations with convex constraints. J. Comput. Appl. Math. 2004, 172, 375–397.
[CrossRef]

12. Papp, Z.; Rapajić, S. FR type methods for systems of large-scale nonlinear monotone equations. Appl. Math.
Comput. 2015, 269, 816–823. [CrossRef]

http://dx.doi.org/10.1007/s11075-018-0541-z
http://dx.doi.org/10.1007/s40314-018-0712-5
http://dx.doi.org/10.1090/S0025-5718-08-02121-2
http://dx.doi.org/10.1016/j.cam.2010.01.001
http://dx.doi.org/10.1016/0096-3003(87)90076-2
http://dx.doi.org/10.1023/B:COAP.0000018878.95983.4e
http://dx.doi.org/10.1016/j.cam.2004.02.013
http://dx.doi.org/10.1016/j.amc.2015.08.002

Mathematics 2019, 7, 745 24 of 25

13. Zhou, W.; Wang, F. A PRP-based residual method for large-scale monotone nonlinear equations. Appl. Math.
Comput. 2015, 261, 1–7. [CrossRef]

14. Dai, Y.H.; Yuan, Y. A nonlinear conjugate gradient method with a strong global convergence property.
SIAM J. Optim. 1999, 10, 177–182. [CrossRef]

15. Polak, E.; Ribiere, G. Note sur la convergence de méthodes de directions conjuguées. Revue Française
D’informatique et de Recherche Opérationnelle Série Rouge 1969, 3, 35–43. [CrossRef]

16. Polyak, B.T. The conjugate gradient method in extremal problems. USSR Comput. Math. Math. Phys. 1969,
9, 94–112. [CrossRef]

17. Hager, W.W.; Zhang, H. A new conjugate gradient method with guaranteed descent and an efficient line
search. SIAM J. Optim. 2005, 16, 170–192. [CrossRef]

18. Dai, Y.H.; Liao, L.Z. New conjugacy conditions and related nonlinear conjugate gradient methods. Appl. Math.
Optim. 2001, 43, 87–101. [CrossRef]

19. Fletcher, R.; Reeves, C.M. Function minimization by conjugate gradients. Comput. J. 1964, 7, 149–154.
[CrossRef]

20. Xiao, Y.; Zhu, H. A conjugate gradient method to solve convex constrained monotone equations with
applications in compressive sensing. J. Math. Anal. Appl. 2013, 405, 310–319. [CrossRef]

21. Solodov, M.V.; Svaiter, B.F. A globally convergent inexact Newton method for systems of monotone equations.
In Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods; Springer: Boston, MA,
USA, 1998; pp. 355–369.

22. Liu, S.Y.; Huang, Y.Y.; Jiao, H.W. Sufficient descent conjugate gradient methods for solving convex
constrained nonlinear monotone equations. In Abstract and Applied Analysis; Hindawi: New York, NY,
USA, 2014; Volume 2014.

23. Liu, J.; Li, S. A projection method for convex constrained monotone nonlinear equations with applications.
Comput. Math. Appl. 2015, 70, 2442–2453. [CrossRef]

24. Sun, M.; Liu, J. Three derivative-free projection methods for nonlinear equations with convex constraints.
J. Appl. Math. Comput. 2015, 47, 265–276. [CrossRef]

25. Sun, M.; Liu, J. New hybrid conjugate gradient projection method for the convex constrained equations.
Calcolo 2016, 53, 399–411. [CrossRef]

26. Ou, Y.; Li, J. A new derivative-free SCG-type projection method for nonlinear monotone equations with
convex constraints. J. Appl. Math. Comput. 2018, 56, 195–216. [CrossRef]

27. Ding, Y.; Xiao, Y.; Li, J. A class of conjugate gradient methods for convex constrained monotone equations.
Optimization 2017, 66, 2309–2328. [CrossRef]

28. Liu, J.; Feng, Y. A derivative-free iterative method for nonlinear monotone equations with convex constraints.
Numer. Algorithms 2018, 1–18. [CrossRef]

29. Kabanikhin, S.I. Definitions and examples of inverse and ill-posed problems. J. Inverse Ill-Posed Probl. 2008,
16, 317–357. [CrossRef]

30. Belishev, M.I.; Kurylev, Y.V. Boundary control, wave field continuation and inverse problems for the wave
equation. Comput. Math. Appl. 1991, 22, 27–52. [CrossRef]

31. Beilina, L.; Klibanov, M.V. A Globally Convergent Numerical Method for a Coefficient Inverse Problem.
SIAM J. Sci. Comput. 2008, 31, 478–509. [CrossRef]

32. Kabanikhin, S.; Shishlenin, M. Boundary control and Gel’fand–Levitan–Krein methods in inverse acoustic
problem. J. Inverse Ill-Posed Probl. 2004, 12, 125–144. [CrossRef]

33. Lukyanenko, D.; Grigorev, V.; Volkov, V.; Shishlenin, M. Solving of the coefficient inverse problem for
a nonlinear singularly perturbed two dimensional reaction diffusion equation with the location of moving
front data. Comput. Math. Appl. 2019, 77, 1245–1254. [CrossRef]

34. Van, S.B.; Elber, G. Solving piecewise polynomial constraint systems with decomposition and a
subdivision-based solver. Computer-Aided Design 2017, 90, 37–47.

35. Aizenshtein, M.; Bartoň, M.; Elber, G. Global solutions of well-constrained transcendental systems using
expression trees and a single solution test. Computer Aided Geometric Design 2012, 29, 265–279.

36. Bartoň, M. Solving polynomial systems using no-root elimination blending schemes. Computer-Aided Design
2011, 43, 1870–1878.

37. Wang, X.Y.; Li, S.J.; Kou, X.P. A self-adaptive three-term conjugate gradient method for monotone nonlinear
equations with convex constraints. Calcolo 2016, 53, 133–145. [CrossRef]

http://dx.doi.org/10.1016/j.amc.2015.03.069
http://dx.doi.org/10.1137/S1052623497318992
http://dx.doi.org/10.1051/m2an/196903R100351
http://dx.doi.org/10.1016/0041-5553(69)90035-4
http://dx.doi.org/10.1137/030601880
http://dx.doi.org/10.1007/s002450010019
http://dx.doi.org/10.1093/comjnl/7.2.149
http://dx.doi.org/10.1016/j.jmaa.2013.04.017
http://dx.doi.org/10.1016/j.camwa.2015.09.014
http://dx.doi.org/10.1007/s12190-014-0774-5
http://dx.doi.org/10.1007/s10092-015-0154-z
http://dx.doi.org/10.1007/s12190-016-1068-x
http://dx.doi.org/10.1080/02331934.2017.1372438
http://dx.doi.org/10.1007/s11075-018-0603-2
http://dx.doi.org/10.1515/JIIP.2008.019
http://dx.doi.org/10.1016/0898-1221(91)90130-V
http://dx.doi.org/10.1137/070711414
http://dx.doi.org/10.1515/1569394042530900
http://dx.doi.org/10.1016/j.camwa.2018.11.005
http://dx.doi.org/10.1007/s10092-015-0140-5

Mathematics 2019, 7, 745 25 of 25

38. La Cruz, W.; Martínez, J.; Raydan, M. Spectral residual method without gradient information for solving
large-scale nonlinear systems of equations. Math. Comput. 2006, 75, 1429–1448. [CrossRef]

39. Bing, Y.; Lin, G. An Efficient Implementation of Merrills Method for Sparse or Partially Separable Systems of
Nonlinear Equations. SIAM J. Optim. 1991, 1, 206–221, doi:10.1137/0801015. [CrossRef]

40. Yu, Z.; Lin, J.; Sun, J.; Xiao, Y.H.; Liu, L.Y.; Li, Z.H. Spectral gradient projection method for monotone
nonlinear equations with convex constraints. Appl. Numer. Math. 2009, 59, 2416–2423. [CrossRef]

41. Dolan, E.D.; Moré, J.J. Benchmarking optimization software with performance profiles. Math. Program. 2002,
91, 201–213. [CrossRef]

42. Hale, E.T.; Yin, W.; Zhang, Y. A fixed-point continuation method for `1-regularized minimization with
applications to compressed sensing. CAAM TR07-07 Rice Univ. 2007, 43, 44.

43. Beck, A.; Teboulle, M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J.
Imaging Sci. 2009, 2, 183–202. [CrossRef]

44. Figueiredo, M.A.; Nowak, R.D.; Wright, S.J. Gradient projection for sparse reconstruction: Application to
compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 2007, 1, 586–597. [CrossRef]

45. Birgin, E.G.; Martínez, J.M.; Raydan, M. Nonmonotone spectral projected gradient methods on convex sets.
SIAM J. Optim. 2000, 10, 1196–1211. [CrossRef]

46. Xiao, Y.; Wang, Q.; Hu, Q. Non-smooth equations based method for `1-norm problems with applications to
compressed sensing. Nonlinear Anal. Theory Methods Appl. 2011, 74, 3570–3577. [CrossRef]

47. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to
structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [CrossRef] [PubMed]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1090/S0025-5718-06-01840-0
https://doi.org/10.1137/0801015
http://dx.doi.org/10.1137/0801015
http://dx.doi.org/10.1016/j.apnum.2009.04.004
http://dx.doi.org/10.1007/s101070100263
http://dx.doi.org/10.1137/080716542
http://dx.doi.org/10.1109/JSTSP.2007.910281
http://dx.doi.org/10.1137/S1052623497330963
http://dx.doi.org/10.1016/j.na.2011.02.040
http://dx.doi.org/10.1109/TIP.2003.819861
http://www.ncbi.nlm.nih.gov/pubmed/15376593
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Algorithm
	Convergence Analysis
	Numerical Experiments
	Experiments on Solving Sparse Signal Problems
	Experiments on Blurred Image Restoration

	Conclusions
	References

