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Abstract: Based on the graph theory and stability theory of dynamical system, this paper studies
the stability of the trivial solution of a coupled fractional-order system. Some sufficient conditions
are obtained to guarantee the global stability of the trivial solution. Finally, a comparison between
fractional-order system and integer-order system ends the paper.
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1. Introduction

Due to the great significance in applied science (e.g., signal and image processing, artificial
intelligence, pattern classification), the neural networks have attracted many scholars’ attention.
There are a large amount of scientific research results on the stability and synchronization of both
integer-order and fractional-order differential equations. For examples, one can refer to [1–15]. Besides,
there are many results about fractional equations such as [16–22]. However, in the real world, at certain
moments, many behaviors in neural networks may experience a sudden change. They are affected
by short-term perturbations whose duration is particularly short comparing to the process with
no change. We can use impulsive differential equations to describe the phenomena. Some works
considered the impulsive effects on the neural networks (e.g., see [23–28]). It is worthwhile to mention
that the fractional-order impulsive differential equations were studied recently (see e.g., [29–36]).
Among them, Stamov and Stamova [31–34] studied the almost periodicity of the fractional-order
impulsive differential equations. It is difficult to get less conservative conditions to guarantee the global
stability of a system. Recently, a new powerful tool is to apply graph theory to study the stability
and synchronization of neural networks (see e.g., [37–42]. Inspired by the previous works, we consider
the global stability of fractional-order coupled systems with impulses on digraph G.

Dµxp = −wpxp + ∑n
q=1 apq fq(xq(t)) + ∑n

q=1 apq(xp(t)− xq(t)), t ≥ 0, t 6= tk,

∆xp(tk) = Ik(xp(tk)),

x(t−k ) = x(tk), k = 1, 2, · · · ,

where ∆xp(tk) = xp(t+k )− xp(t−k ) are the impulses at moments tk and 0 < t1 < t2 < · · · < tk < · · · ,
tk → ∞ as k → ∞ (see e.g., [30–32,43–46]). Ik : R → R is assumed to be continuous and Ik = 0
when the impulses are absent. For the fractional order systems, the criteria to determine the stability
for the integer order differential systems may not be applicable because fractional derivative may
not maintain the properties of the integer derivative. (e.g., see [47,48]). The difficulty comes from
the following facts.
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1. For the integer derivative, the sign of the first order derivative implies the monotonicity of
a function. However, this is not valid for the fractional derivative (see [47]). This difference results
in great difficulties to deal with the impulses at moment tk.

2. For the integer-order system dx
dt = f (x, t), the first derivative dV(x)

dt ≤ −ω(x) < 0 implies
the asymptotically stability in the sense of Lyapunov. However, this classical Lyapunov stability
result is not valid for fractional-order system. The derivative DαV(x) ≤ −ω(x) < 0 does
not imply the asymptotically stability (see Lemma 2 in next section). It can only guarantee
the stability.

This paper is organized as follows. In Section 2, we give some preliminaries. In Section 3, main
results of this paper is presented by employing graph theory. In Section 4, an example and its
simulations are presented to verify the feasibility of the obtained results. Finally, Conclusions
and Discussion end the paper.

2. Preliminaries

There are a lot of different definitions of fractional derivative (e.g., Riemann-Liouville, Caputo,
the conformable fractional derivative, [49–51]). In this paper, we employ Caputo fractional integral
and derivative.

Definition 1. [50] The fractional integral with noninteger order µ > 0 for a function x(t) is defined as

Iµx(t) =
1

Γ(µ)

∫ t

t0

(t− τ)µ−1x(τ) dτ,

where t ≥ t0, t0 is the initial time, Γ(·) is the gamma function, given by Γ(s) =
∫ ∞

0 ts−1e−t dt.

Definition 2. [50] The Caputo fractional derivative of order µ for a function x(t) is defined as

Dµx(t) =
1

Γ(n− µ)

∫ t

t0

(t− τ)n−µ−1x(n)(τ) dτ,

in which t ≥ t0, t0 is the initial time, n− 1 < µ < n ∈ Z+.

Lemma 1. [52] Suppose that x(t) ∈ R is a continuous and differentiable vector-value function. Then for any
time instant t ≥ t0, we have

1
2

Dαx2(t) ≤ x(t)Dαx(t)

when 0 < α < 1.

Lemma 2. [47] Consider system Dαx = f (x, t), where 0 < α ≤ 1, f : (D ⊂ Rn)×R+ → Rn. Let V(x, t)
be a continuously differentiable and positive definite function. Let ω(x) be a positive definite function continuous
at x = 0 such that in the ball B(r) ⊆ D around x = 0 with x0 ∈ B(r) we have

DαV(x, t) ≤ −ω(x) ≤ 0.

Then lim inft→∞ ‖x‖ = 0 and x = 0 is stable at t = 0. In particular, x = 0 ∈ ⋂
x∈B(r) Ω(x). For α = 1,

limt→∞ ‖x‖ = 0 (x = 0 is asymptotically stable at t = 0).

Then in what follows, we recall some basic knowledge of graph theory [40,53].
A directed graph or digraph G = (V, E) contains a vertex set V = {1, 2, . . . , n} and a set E of arcs

(p, q) from p to q. H ⊆ G is said to be spanning if the vertex set ofH is the same as G. If each (p, q) is
assigned a positive weight apq, then we say graph G is weighted. In our convention, apq > 0 if and only
if there is an arc from p to q. The weight of a subgraphH is the product of the weight of each arc.
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A directed path P in G is a subgraph with vertices {p1, p2, . . . , pm} such that its set of arcs is
{(pk, pk+1) : k = 1, 2, . . . , m− 1}. If the arc (pm, p1) exists, then we call P a directed cycle. If there
does not exist any cycle in the connected subgraph T , then we call T a tree. For a tree T , if there does
not exist any arc to vertex p, then T is rooted at vertex p. If a subgraph Q is a disjoint union of some
rooted trees and the roots of these trees can form a directed cycle, then we say Q is unicyclic.

For a given weighted digraph G with n vertices, A = (apq)n×n is the weight matrix whose entry
apq is the weight of (p, q) if it exists, and 0 otherwise. For our purpose, we write a weighted digraph
as (G, A). If for any pair of vertices there exists a directed arc from one to the other, then G is strongly
connected. The we define the Laplacian matrix of (G, A) as

L =


∑k 6=1 a1k −a12 · · · −a1n
−a21 ∑k 6=2 a2k · · · −a2n

...
...

. . .
...

−an1 −an2 · · · ∑k 6=n ank

 . (1)

Let cp be the cofactor of the p-th diagonal element of L. Then we have the following results.

Lemma 3. [40] Assume n ≥ 2. Then

cp = ∑
T ∈Tp

w(T ), p = 1, 2, · · · , n, (2)

where Tp is the set of all spanning trees T of (G, A) that are rooted at vertex p, and w(T ) is the weight of T .
In particular, if (G, A) is strongly connected, then cp > 0 for 1 ≤ p ≤ n.

For the coupled system on a directed graph G:

Dαup = fp(t, up) +
n

∑
q=1

gpq(t, up, uq), p = 1, 2, · · · , n, (3)

where up ∈ Rmp , fp : R× Rmp → Rmp , gpq : R× Rmp × Rmq → Rmp represent the influence from
vertex p to vertex q, and gpq = 0 if there does not exist arc from p to q in G.

Motivated by Theorem 3.4 in [40], for fractional-order systems, we have the following theorem.

Theorem 1. Assume that the following assumptions hold.

(i) For the Lyapunov function Vp(t, up) on each vertex. There exist Fpq(t, up, uq), apq ≥ 0, and bp ≥ 0
such that

DαVp(t, up) ≤ −bpVp(t, up) +
n

∑
q=1

apqFpq(t, up, uq), t > 0, up ∈ Dp, 1 ≤ p ≤ n

holds.

(ii) Along each directed cycle C in the weighted digraph (G, A), A = (apq),

∑
(s,r)∈E(C)

Frs(t, ur, us) ≤ 0, t > 0, ur ∈ Dr, us ∈ Ds.

(iii) cp are constants which are given in Lemma 3.
Then V(t, u) = ∑n

p=1 cpVp(t, up) satisfies

DαV(t, u) ≤ −bV(t, u), t > 0, u ∈ D,
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where b = min{b1, b2, . . . , bn}.

Proof. For a spanning tree T (see Figure 1) rooted at q, by adding an arc (p, q) from p to q, we obtain
a unicyclic graph Q (see Figure 2).

Figure 1. A rooted tree T .

Figure 2. A unicyclic graph Q.

According to the definition for the weight of a graph, we have w(Q) = w(T )apq. As a result,
w(T )apqFpq(t, up, uq) = w(Q)Fpq(t, up, uq), (q, p) ∈ E(CQ). Here Fpq(t, up, uq), 1 ≤ p, q ≤ n,
are arbitrary functions, CQ denotes the directed cycle of Q.

When we do this operation to all rooted spanning trees in diagraph G in all possible ways, we will
derive all unicyclic graphs in G. Then we get

n

∑
p,q=1

cpapqFpq(t, up, uq) = ∑
Q∈Q

w(Q) ∑
(s,r)∈E(CQ)

Frs(t, ur, us),

where Q is a set which includes all spanning unicyclic graphs of (G, A).
Based on the definition of the Caputo fractional order derivative, we know that Dα[lx(t) +

my(t)] = lDαx(t) + mDαy(t) easily. Thus, for V(t, u) = ∑n
i=p cpVp(t, up), we have

DαV(t, u) = Dα
n

∑
p=1

cpVp(t, up)

=
n

∑
p=1

cpDαVp(t, up)

≤
n

∑
p=1

cp[−bpVp(t, up) +
n

∑
q=1

apqFpq(t, up, uq)]

= −
n

∑
p=1

bpcpVp(t, up) +
n

∑
p,q=1

cpapqFpq(t, up, uq)

= −
n

∑
p=1

bpcpVp(t, up) + ∑
Q∈Q

w(Q) ∑
(s,r)∈E(CQ)

Frs(t, ur, us).
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In view of the condition (ii) and w(Q) > 0, we have

DαV(t, u) ≤ −
n

∑
p=1

bpcpVp(t, up) ≤ −
n

∑
p=1

bcpVp(t, up) = −bV(t, u),

here b = min{b1, b2, . . . , bn}.

Remark 1. To study the stability of the coupled systems, constructing a proper Lyapunov function is of great
importance. Theorem 1 reveals that a global Lyapunov function for (3) can be the combination of the Lyapunov
function Vi of each vertex system, which decreases the difficulty for us.

3. Main Results

Given a network represented by a digraph G with n vertices. Assume that the dynamic of each
vertex is described by the following impulsive differential equation:

Dµxp = −wpxp + ∑n
q=1 apq fq(xq(t)), t ≥ 0, t 6= tk,

∆xp(tk) = Ik(xp(tk)),

x(t−k ) = x(tk), k = 1, 2, · · · ,

(4)

p, q = 1, 2, . . . , n, where 0 < µ < 1, wp > 0 is the self-regulating parameters of the p-th vertex,
apq represents the weight of the arc from vertex p to q. fq(x) is the neuron activation function
satisfying Lipschitz condition: for all x, y ∈ R, there exists a Lipschitz constant lj > 0 such that
| fq(x)− fq(y)| ≤ lq|x− y|. In addition, fq(0) = 0.

Now we consider the following impulsive coupled system on digraph G:
Dµxp = −wpxp + ∑n

q=1 apq fq(xq(t)) + ∑n
q=1 apq(xp(t)− xq(t)), t ≥ 0, t 6= tk,

∆xp(tk) = Ik(xp(tk)),

x(t−k ) = x(tk), k = 1, 2, · · · .

(5)

Theorem 2. Assume (G, A) is strongly connected. If the following conditions hold:

(1) b = min
1≤p≤n

(2wp −∑n
q=1 lqapq −∑n

q=1 lpaqp) > 0 ;

(2) Ik(xpk(tk)) = δpkxpk(tk), where −1 < δpk < 0 ;
(3) In each interval, xp(t) satisfies |xp(tk)| < |xp(t+k−1)|.

Then the trivial solution of (5) is globally stable.
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Proof. Construct a Lyapunov function Vp =
x2

p
2 and calculate the µ-order derivative of Vp along (5),

we have

DµVp = Dµ
x2

p

2
≤ xpDµxp

= xp[−wpxp +
n

∑
q=1

apq fq(xq) +
n

∑
q=1

apq(xp − xq)]

≤ −wpx2
p +

n

∑
q=1
|xp|apq| fq(xq)|+

n

∑
q=1

apq(xp − xq)xp

≤ −wpx2
p +

n

∑
q=1
|xp|apqlq|xq|+

n

∑
q=1

apq(xp − xq)xp

≤ −wpx2
p +

1
2

n

∑
q=1

lqapq(x2
p + x2

q) +
n

∑
q=1

apq(xp − xq)xp

= −wpx2
p +

1
2

n

∑
q=1

lqapqx2
p +

1
2

n

∑
q=1

lqapqx2
q +

n

∑
q=1

apq(xp − xq)xp

= −wpx2
p +

1
2

n

∑
q=1

lqapqx2
p +

1
2

n

∑
q=1

liaqpx2
p +

n

∑
q=1

apq(xp − xq)xp

= −1
2
(2wp −

n

∑
q=1

lqapq −
n

∑
q=1

lpaqp)x2
p +

n

∑
q=1

apq(xp − xq)xp

= −(2wp −
n

∑
q=1

lqapq −
n

∑
q=1

lpaqp)Vp +
n

∑
q=1

apq(−
1
2
(xp − xq)

2 +
1
2
(x2

q − x2
p))

≤ −(2wp −
n

∑
q=1

lqapq −
n

∑
q=1

lpaqp)Vp +
n

∑
q=1

apq[
1
2
(x2

q − x2
p)], t 6= tk.

Let Fpq = 1
2 (x2

q − x2
p), along every directed cycle C of the weighted digraph (G, A) we have

∑(s,r)∈E(C) Frs(xr, xs) = ∑(s,r)∈E(C)
1
2 (x2

s − x2
r ) = 0.

Let bp = 2wp −∑n
q=1 lq|apq| −∑n

q=1 lp|aqp|, V = ∑n
q=1 cpVp. In view of Theorem 1, we obtain

DµV(t, x) ≤ −bV(t, x) t > 0, t 6= tk,

where b = min{b1, b2, . . . , bn}. Now we select ω = bV(t, x), then ω is a positive definite function.

From lemma 2, we know that the trivial solution is globally stable when t 6= tk.

When t = tk, ∆xp(tk) = Ik(xp(tk)) = δpkxp(tk). Besides, ∆xp(tk) = xp(t+k )− xp(t−k ) = xp(t+k )−
xp(tk), then we can obtain

xp(t+k ) = (1 + δpk)xp(tk).

Due to −1 < δpk < 0, then |xp(t+k )| ≤ |xp(tk)|. In view of the third condition of this theorem,
we derive

|xp(t+k )| ≤ |xp(tk)| < |xp(t+k−1)| ≤ |xp(tk−1)|.

As a consequence, in each interval, we get V(xp(t+k )) < V(xp(tk−1)). In view of 0 < t1 < t2 <

· · · < tk < · · · , tk → ∞ as k→ ∞, then V(xp(tk))→ 0 as k→ ∞.
This ends the proof.
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4. Example and Numerical Simulation

In this section, we study the following fractional impulsive system on a digraph with two vertices.
Dµx1 = −w1x1 + ∑2

j=1 a1j f j(xj(t)) + ∑2
j=1 a1j f j(x1(t)− xj(t)), t ≥ 0, t 6= 5, 10, 15 . . . ,

Dµx2 = −w2x2 + ∑2
j=1 a2j f j(xj(t)) + ∑2

j=1 a2j f j(x2(t)− xj(t)), t ≥ 0, t 6= 5, 10, 15 . . . ,

∆xi(tk) = δik(xi(tk)),

x(t−k ) = x(tk), tk = 5, 10, 15, . . . ,

(6)

When µ = 0.92, δik = − 1
2 , w1 = w2 = 5, a11 = a22 = 4, a12 = a21 = 0, fi(s) = tanh(s). Obviously,

we can take the Lipschitz constant li = 1. The initial conditions are assumed that x1(t) and x2(t) are
x1(0) = 2 and x2(0) = −2. The simulation result for the above system is shown in Figure 3.

Figure 3. Dynamical behaviors of states x1(t) and x2(t) under above parameters.

When µ = 1
2 , δik = − 1

2 , w1 = 15, w2 = 14, a11 = a22 = 1, a12 = a21 = 0, fi(s) = tanh(s). Obviously,

we can take the Lipschitz constant li = 1. The initial conditions are assumed that x1(t) and x2(t) are
x1(0) = 1 and x2(0) = −1. The simulation result for the above system is shown in Figure 4.

Figure 4. Dynamical behaviors of states x1(t) and x2(t) under above parameters.
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5. Conclusions and Discussions

In this paper, we apply the graph theory and stability theory of dynamical system to study
the stability of a coupled fractional-order system. This method can be extended to the other complex
networks or multi-layer networks. In fact, many classical results for the integer-order system are not
valid for the fractional-order system. We summarize the differences between fractional derivative
and integer derivative as follows.

1. For the integer derivative, the sign of the first order derivative implies the monotonicity of
a function. However, this is not valid for the fractional derivative (see [47]). This difference raises
great difficulties for us to deal with the impulses at moment tk. In order to ensure the stability of
the trivial solution of (5), we have to add the condition |xp(tk)| < |xp(t+k−1)|.

2. For the integer-order system dx
dt = f (x, t), the first derivative dV(x)

dt ≤ −ω(x) < 0 implies

the asymptotically stability in the sense of Lyapunov. However, this classical Lyapunov stability
result is not valid for fractional-order system. The derivative DαV(x) ≤ −ω(x) < 0 does not
imply the asymptotically stability in view of Lemma 2. It can only guarantee the stability.
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