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Abstract: The Van der Pol oscillator is investigated by the parameter control method. This method
only needs to control one parameter of the Van der Pol oscillator by a simple periodic function;
then, the Van der Pol oscillator can behave chaotically from the stable limit cycle. Based on the new
Van der Pol oscillator with variable parameter (VdPVP), some dynamical characteristics are discussed
by numerical simulations, such as the Lyapunov exponents and bifurcation diagrams. The numerical
results show that there exists a positive Lyapunov exponent in the VdPVP. Therefore, an encryption
algorithm is designed by the pseudo-random sequences generated from the VdPVP. This simple
algorithm consists of chaos scrambling and chaos XOR (exclusive-or) operation, and the statistical
analyses show that it has good security and encryption effectiveness. Finally, the feasibility and
validity are verified by simulation experiments of image encryption.
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1. Introduction

Chaos, as one of the three important discoveries of physics in the 20st century, has attracted wide
attention. Many chaotic systems are proposed, such as Chen system, Lü system, and the family of
generalized Lorenz systems [1–4]. Van der Pol once studied the electron tube circuit with constant
amplitude, and found the Van der Pol oscillator, which is now known as a type of stable limit cycle [5,6].
The modified Van der Pol oscillator and the chaos phenomena of forced oscillation Van der Pol–Duffing
equation are investigated by adding an external excitation term [7–10]. In Reference [11], a new
VdPD (Van der Pol-Duffing) Jerk oscillator is proposed based on the Van der Pol–Duffing oscillator
and Jerk oscillator, and the dynamic characteristics of the VdPD-Jerk oscillator are investigated by
numerical results, such as chaotic attractors and symmetrical bifurcations. The dynamics of symmetric
and asymmetric Van der Pol–Duffing oscillators with a periodic force are studied in Reference [12],
where the existence of parameter regions are investigated for the periodic, quasiperiodic and chaotic
behaviors. In Reference [13], a four dimensional autonomous Van der Pol–Duffing snap oscillator
is investigated by using standard tools of nonlinear analyis, and the synchronization is achieved by
adaptive sliding mode control. An experimental demonstration of a generation of bursting patterns
in the Van der Pol oscillator driven by two types of excitation is presented in Reference [14], and the
periodic and chaotic bursting oscillations are generated by the slowly sinusoidal voltage source.

In the troublesome case that the chaotic system (irregularity, mess and sensitiveness) is unlikely
to be useful, it should be reduced as much as possible, or totally suppressed. However, the irregularity
and sensitiveness can actually be useful under certain circumstances, such as the application of
information encryption and secure communication [15]. Therefore, researchers propose many
encryption algorithms based on chaotic systems or hyperchaotic systems [16–22]. On the other
hand, some references investigated the security of the chaos-based encryption method and some
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requirements are proposed for designing chaos encryption algorithms [23,24]. In Reference [25],
the application of image encryption based on nonlinear dynamics is reviewed, and a checklist is
proposed for different algorithms. The chaos-based encryption algorithm is one of the useful ways to
design new stream cipher algorithms for the information security.

This paper aims to study a new chaotic system based on the Van der Pol oscillator by the
parameter control method. The parameter control method is different from the above references in
that the external excitation term is added to Van der Pol oscillator, but only one parameter of the Van
der Pol oscillator is controlled by a periodic sinusoidal function. Then, the Van der Pol oscillator with
a variable parameter appears chaotic from a stable limit circle, and this kind of new chaotic system is
also called a modified Van der Pol oscillator.

The main contributions are given as follows: (1) Without adding new nonlinear or linear terms,
only one parameter of the linear term is controlled by the variable parameter; the other parameters and
nonlinear terms remain unchanged. Then, the VdPVP appears chaotic from a stable limit circle. (2) The
dynamical characters of the VdPVP are analysed via equilibrium point, the Lyapunov exponents and
bifurcation diagrams, which show that the VdPVP has a positive Lyapunov exponent, i.e., it is a chaotic
system. (3) An encryption algorithm based on the pseudo-random sequences generated from the
VdPVP is designed. It consists of the position scrambling encryption and the values encryption by
the pseudo-random via XOR (exclusive or) operation. This simple algorithm is very sensitive to the
parameters and initial conditions of the VdPVP system, and it is easy to generate pseudo-random
sequences. A simulation of image encryption is taken as an example to show the feasibility and
effectiveness of encryption algorithms.

The paper is organized as follows. The Van der Pol oscillator is described in Section 2. A new
chaotic system VdPVP is proposed by the parameter control method, and the corresponding dynamical
characteristics are analyzed in Section 3. In Section 4, an encryption algorithm is designed based on the
VdPVP system, and the effectiveness and security are verified by the experiments of image encryption.
Section 5 provides the conclusions.

2. System Description

The Van Der Pol Oscillator is given by

ẍ− 2ρ(1− x2)ẋ− σx = 0. (1)

If let y = ẋ, then Equation (1) is given in the form of{
ẋ = y,
ẏ = σx + 2ρy− 2ρx2y.

(2)

In addition, the Jacobi matrix is

J|(x,y) =

[
0 1

σ− 4ρxy 2ρ− 2ρx2

]
. (3)

As the equilibrium point of the dynamic system is O(0, 0), the Jacobi matrix at the equilibrium
point is given by

J|(0,0) =

[
0 1
σ 2ρ

]
. (4)

Therefore, the eigenvalues of the Jacobi matrix are

λ1,2 = ρ±
√

ρ2 + σ. (5)
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If the parameters −1 < ρ < 0, σ = −1, then the dynamic system (1) is locally stable at the
equilibrium point O(0, 0) since the real part of the eigenvalues is less than zero.

When the parameters ρ = −0.5, σ = −1, let initial values (x0, y0) = (1, 1), and the dynamic
system (1) is asymptotically stable. However, if the initial values (x0, y0) = (1, 2) and ρ = −0.5,
σ = −1, then it will go to infinite, so the stability of dynamic system (1) is closely related to the initial
values, i.e., it is locally stable in the region near equilibrium point O(0, 0).

When the parameters ρ > 0, σ = −0.6, such as ρ = 0.5, σ = −0.6, and let (x0, y0) = (1, 2),
then the dynamic system (1) has a locally stable limit cycle, and its phase diagram is shown in Figure 1.
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Figure 1. The phase diagram with initial values (x0, y0) = (1, 2).

3. Design and Analysis of the Dynamic System

3.1. Design of the Dynamic System

In this section, a new control method is designed to control the Van der Pol oscillator by an
external excitation term. The excitation term is used to disturb the parameter of dynamic system (1),
i.e., the parameter σ = −k sin ωt, then the new Van der Pol oscillator with variable parameter (VdPVP)
is given by {

ẋ = y,
ẏ = −k sin ωt · x + 2ρy− 2ρx2y.

(6)

If let t = z, then the VdPVP is given by
ẋ = y,
ẏ = −k sin ωz · x + 2ρy− 2ρx2y,
ż = 1.

(7)

In addition, let ρ = 0.6, ω = 5.9, k = 19.5, x0 = 0.1, y0 = 0.2, the Lyapunov exponents of
VdPVP are

λ1 = 0.57, λ2 = 0, λ3 = −4.01.

Then, the VdPVP has a chaotic attractor, and its phase diagram is shown in Figure 2.



Mathematics 2019, 7, 743 4 of 12

-4 -3 -2 -1 0 1 2 3 4
-15

-10

-5

0

5

10

15

Figure 2. The attractor of dynamic system (6) with initial values (x0, y0) = (0.1, 0.2).

3.2. Equilibrium Point

The equilibrium of VdPVP is the original point O(0, 0), and the corresponding Jacobi matrix is
given by

J|(0,0) =

[
0 1
σ 2ρ

]
, (8)

where σ = −k sin ωt, so the parameter of matrix is varied with time t and the eigenvalues of Jacobi
matrix (8) are

λ1,2 = ρ±
√

ρ2 + σ. (9)

If ρ > 0, σ = −1, then the VdPVP has a locally stable limit cycle. However, let σ = −k sin ωt,
i.e., −k 6 σ 6 k, the eigenvalues of VdPVP change between positive and negative values periodically,
which results in the breaking of the limit cycle and a chaos phenomenon appearing. For example,
let ρ = 0.6, ω = 5.9, k = 19.5 and initial values (x0, y0) = (−8,−10), the VdPVP will enter the chaotic
attractor after a transient period, where the chaotic attractor is shown in Figure 3.
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Figure 3. The attractor of dynamic system (6) with initial values (x0, y0) = (−8,−10).
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3.3. Lyapunov Exponent Analysis

A positive Lyapunov exponent is an important quantitative index for judging whether the
dynamic system is chaotic or not. There are two parameters k, ω in the parameter controller
σ = −k sin ωt; the corresponding Lyapunov exponents can be calculated for different parameter
values k or ω.

Let ρ = 0.6, k = 19.5. The Lyapunov exponent spectrum of VdPVP with respect to parameter ω

is shown in Figure 4; it shows that the VdPVP is chaotic in the interval ω ∈ (1, 6). Similarly, let ρ = 0.6,
ω = 5.9. The Lyapunov exponent spectrum of VdPVP with respect to parameter k is shown in
Figure 5, and it shows that the VdPVP has a chaotic attractor in the interval k ∈ (19, 25).
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Figure 4. The Lyapunov exponent spectrum of VdPVP (Van der Pol oscillator with variable parameter)
with respect to parameter ω when ρ = 0.6, k = 19.5. (The blue line represents the positive Lyapunov
exponent, the green line represents the zero Lyapunov exponent, and the red line represents the
negative Lyapunov exponent).
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Figure 5. The Lyapunov exponent spectrum of VdPVP with respect to parameter k when ρ = 0.6,
ω = 5.9. (The blue line represents the positive Lyapunov exponent, the green line represents the zero
Lyapunov exponent, and the red line represents the negative Lyapunov exponent).
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3.4. Bifurcation Diagram Analysis

Chaotic systems are highly sensitive to the parameters. Different parameters lead the dynamic
system to behave in different states, such as periodic motion, limit cycle and chaotic attractor.

According to the Poincare cross-section of x = y, and letting ρ = 0.6, k = 19.5, the bifurcation
diagram with respect to parameter ω is shown in Figure 6. Obviously, the VdPVP has chaos when
ω ∈ (1, 6). If one lets ρ = 0.6, ω = 5.9, the corresponding bifurcation diagram with respect to
parameter k is shown in Figure 7; the VdPVP appears to be chaotic when k ∈ (19, 25).
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Figure 6. Bifurcation diagrams with respect to parameter ω of Poincare cross-section when x = y.
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Figure 7. Bifurcation diagrams with respect to parameter k of Poincare cross-section when x = y.
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4. Design and Application of Chaotic Encryption Algorithms

A chaotic stream cipher encryption scheme based on the VdPVP is designed. The flowchart of the
encryption scheme is shown in Figure 8. The sender chooses the initial values as the keys to generate
chaotic pseudo-random sequences, and completes chaos scrambling and chaos XOR encryption for the
original information. The encrypted information can be transmitted to the receiver through a public
channel, and the keys need to be transmitted through a secret channel for security. On the receiver
side, the receiver recovers the information through the inverse operation of chaotic encryption with
the correct keys.

Information

Chaos Pseudo-

Random Sequences

Encrypted 

Information

Chaos 

Scrambling
Chaos XOR

Keys

Sender Receiver
Public 

Channel

Chaotic 

System

Secret 

Channel

Figure 8. Design of the chaotic stream cryptographic encryption flowchart.

4.1. Algorithm Design

According to the VdPVP proposed in Section 3, a chaos-based encryption algorithm is designed,
and it is divided into several steps:

Step 1 Generate pseudo-random sequences from VdPVP.
The fourth-order Runge–Kutta algorithm is employed to solve the VdPVP in Equation (6), and it

is given by 

Xm+1 = Xm +
h
6
(k1 + 2k2 + 2k3 + k4) ,

k1 = f (tm, Xm),

k2 = f (tm +
h
2

, Xm +
h
2
· k1),

k3 = f (tm +
h
2

, Xm +
h
2
· k2),

k4 = f (tm + h, Xm +
h
2
· k3).

(10)

With initial values X0 = (x0, y0), step h, length of time T, and the total iteration N, then one gets
the chaotic sequences X = [x, y] in the length of N.

Step 2 Remove the pseudo-random sequences in [0, tz] before the dynamic system enters the
chaotic state, and get the pseudo-random sequences X[tz ,T] after tz.

Step 3 Multiplying the pseudo-random sequence by 10θ (θ is an integer), and obtaining the integer
parts, one gets

Sθ = Fix
⌊(

X[tz ,T] − Fix
⌊

X[tz ,T]

⌋)
× 10θ

⌋
,

where Fix is an integral function.
Step 4 Model the pseudo-random sequences Sθ by 232, and convert them into binary sequences

S, i.e.,
S = Dec2bin

(
Mod

(
Sθ , 232

))
,

where Mod is a modulus function and Dec2bin is a decimal-to-binary function.
Step 5 Encrypt information by pseudo-random sequence S, Sθ .
In order to improve the effect of information encryption, a chaos scrambling process is added.

The algorithm is given as follows:
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The sequences Sθ = [Sθ
1, Sθ

2] are modeled by L (the length of information), and the new sequences
or sequence pairs are used as new positions to exchange the positions of the original information,
i.e., adjust the positions of the original information as

I(i)↔ I(Sθ
1), or I(i)↔ I(Sθ

2), or I(i, j)↔ I(Sθ
1, Sθ

2),

where I(0)↔ I(end), or I(0, 0)↔ I(end, end).
Step 6 Transform the information data I into binary sequences, and obtain the encrypted

information E by
E = I ⊕ S,

where ⊕ is exclusion-or (XOR) operation.
Finally, the encrypted information is transmitted to the receiver via the public channel. On the

receiving side, the decryption process is the inverse operation of above encryption, and the recovered
information is given by

I′ = E⊕ S,

and the positions of I′ is replaced by

I′(i)↔ I′(Sθ
1), or I′(i)↔ I′(Sθ

2), or I′(i, j)↔ I′(Sθ
1, Sθ

2),

where I′(0) ↔ I′(end), or I′(0, 0) ↔ I′(end, end). Then, the original information can be
recovered successfully.

4.2. Simulation Experiment

The simulation experiment of the encryption algorithm based on Matlab software (R2018a,
The MathWorks, Inc., Natick, Massachusetts, USA) is verified by taking the image as an example.
Firstly, the color image I is converted into RGB-channel images IR, IG, IB, respectively. With initial
values and parameters

(x0, y0, z0) = (0.21, 0.12, 0.31), ρ = 0.6, ω = 5.9, k = 19.5, θ = 12, T = 300, h = 0.001,

the pseudo-random sequences can be generated based on the VdPVP system, and they are used
to encrypt images IR, IG, IB by chaos scrambling and XOR operation. By the encryption algorithm,
the experiment results of image encryption are shown in Figure 9.

(a) (b) (c)

Figure 9. (a) original image; (b) encrypted image after chaos scrambling; (c) encrypted image after
chaos XOR (exclusive-or) operation.
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4.3. Security Analysis

4.3.1. Key Sensitivity and Key Space

There are two kinds of keys in chaotic encryption algorithms: one is the initial values, the other is
the parameters of the chaotic system. The keys sensitivity is tested by initial conditions with small
errors. If we let

(x0, y′0, z0) = (0.21, 0.1200000000000001, 0.31),

and ρ = 0.6, ω = 5.9, k = 19.5, θ = 12, the error of initial value y0 is 10−16; then, the decryption image
is shown in Figure 10a. If we let

ρ′ = 0.6000000000000001, ω = 5.9, k = 19.5, θ = 12,

and initial values (x0, y0, z0) = (0.21, 0.12, 0.31), the error of initial parameter ρ is 10−16; then,
the decryption image is shown in Figure 10b. Some initial conditions are tested and the results
are given in Table 1.

Then, the key space size can be estimated from the above key sensitivity accuracy, i.e.,

Ks = 1016 × 1015 × 1017 × 1018 × 1015 × 1014=1095 > 2315.

(a) (b)

Figure 10. (a) recovered image with initial value y′0; (b) recovered image with parameter ρ′.

Table 1. Test results of key sensitivity for the parameters and initial variables of VdPVP (Van der Pol
oscillator with variable parameter).

Variable Errors Parameter Errors Recover Original Image∣∣x0 − x′0
∣∣ > 10−15 0 No∣∣y0 − y′0
∣∣ > 10−16 0 No∣∣z0 − z′0
∣∣ > 10−17 0 No

0 |ρ− ρ′| > 10−16 No

0 |ω−ω′| > 10−15 No

0 |k− k′| > 10−14 No
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4.3.2. Statistical Analysis

For the encrypted image, the correlation coefficient is a statistical method to analyze the effect of
encryption algorithm, and it is defined by the following two formulas [20]:

cov(x, y) =
1
N

N

∑
i=1

(xi − E(x))(yi − E(y)), rxy =
cov(x, y)√
D(x)

√
D(y)

,

where E(x) =
1
N

N

∑
i=1

xi, D(x) =
1
N

N

∑
i=1

(xi − E(x))2, x, y are grey-scale values of two adjacent pixels in

the image.
The correlation of images can be divided into three directions: horizontal, vertical and diagonal.

Five thousand pairs of points are randomly selected, and then correlation coefficients are calculated
according to the formula of the correlation coefficient. The test results are shown in Table 2. The original
image correlation coefficient is close to 1, but, after the position scrambling and chaotic stream cipher
encryption, it is close to 0. Obviously, the correlation of image pixels becomes nearly irrelevant after
chaos encryption.

Table 2. Correlation coefficient of the original image and ciphered image.

Direction Original Image Chaos Scrambling Image Ciphered Image

Horizontal 0.9535 0.0105 −0.0076
Vertical 0.9754 −0.0011 0.0141

Diagonal 0.93334 0.0061 −0.0107

4.3.3. NIST Test

NIST (The National Institute of Standards and Technology) provides a necessary test for the
randomness; it contains 15 major items, such as frequency, block frequency and so on. By probabilistic
methods, the randomness is determined by the test p-value. If the p-value is greater than the
significance level 0.01, then it indicates that the sequence is random [26–28]. For the sequences
S = Dec2bin

(
Mod

(
Sθ , 232)), the test results of NIST are given in Table 3. Obviously, the p-values are

greater than 0.01, so it passes all the tests of NIST.

Table 3. The results of the NIST test.

Statistical Tests p-Value

Frequency 0.2248
Block frequency 0.0519

Cumulative sums 0.6583
Runs 0.3345

Longest run 0.3191
Rank 0.5141
FFT 0.8831

Non-overlapping template 0.4824
Overlapping template 0.8165

Universal 0.4944
Approximate entropy 0.3345
Random excursions 0.5587

Random excursions variant 0.4683
Linear complexity 0.3041

Serial 0.4950
Success All
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5. Conclusions

In this paper, a new VdPVP chaotic system is proposed through the external excitation control of
the Van der Pol oscillator. The characteristics of equilibrium point, exponent spectrums and bifurcation
diagrams of the dynamic system are analyzed. According to the VdPVP, an encryption algorithm of
chaos scrambling and chaos XOR encryption is designed, and the feasibility and validity of the scheme
are verified by simulation experiments with the image as an example. Security analyses show that
the encryption algorithm has good pseudo-randomness and high key sensitivity. It will be applied to
information encryption in the future.
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