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Abstract: The basic idea underneath the generalized intuitionistic fuzzy soft set is very constructive in
decision making, since it considers how to exploit an extra intuitionistic fuzzy input from the director to
make up for any distortion in the information provided by the evaluation experts, which is redefined
and clarified by F. Feng. In this paper, we introduced a method to solve decision making problems
using an adjustable weighted soft discernibility matrix in a generalized intuitionistic fuzzy soft set.
We define the threshold functions like mid-threshold, top-bottom-threshold, bottom-bottom-threshold,
top-top-threshold, med-threshold function and their level soft sets of the generalized intuitionistic fuzzy
soft set. After, we proposed two algorithms based on threshold functions, a weighted soft discernibility
matrix and a generalized intuitionistic fuzzy soft set and also to show the supremacy of the given
methods we illustrate a descriptive example using a weighted soft discernibility matrix in the generalized
intuitionistic fuzzy soft set. Results indicate that the proposed method is more effective and generalized
over all existing methods of the fuzzy soft set.

Keywords: generalized intuitionistic fuzzy soft set; adjustable approach; soft discernibility matrix;
multi-criteria decision making

1. Introduction

The real world is full of imprecision, vagueness and uncertainty. In our daily life, we deal mostly
with unclear concepts rather than exact ones. Dealing with imprecision is a big problem in many areas
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such as economics, medical science, social science, environmental science and engineering. In recent
years, model vagueness has become interested in many authors. Many classical theories such as fuzzy
set theory [1], probability theory, vague set theory [2], rough set theory [3], intuitionistic fuzzy set [4]
and interval mathematics [5] are well known and effectively model uncertainty. These approaches show
their inherent difficulties as pointed out by Molodtsov [6], because of intensive quantity and type of
uncertainties. In Reference [6], Molodtsov defines the soft set which is a new logical instrument for
dealing uncertainties.

Soft set theory attracts many authors because it has a vast range of applications in many areas like
the smoothness of functions, decision making, probability theory, data analysis, measurement theory,
forecasting and operations research [6–10]. Nowadays, many authors work to hybridize the different
models with soft set and achieved results in many applicable theories. Maji defines the fuzzy soft set
and intuitionistic fuzzy soft set [11,12]. Then the further extensions of soft sets like the generalized
fuzzy soft set [13], the interval-valued fuzzy soft set [14], the soft rough set [15], the vague soft set [16],
the trapezoidal fuzzy soft set [17], the neutrosophic soft set [18], the intuitionistic neutrosophic soft set [19],
the multi-fuzzy soft set [20] and the hesitant fuzzy soft set [21] are introduced. Agarwal defines the
generalized intuitionistic fuzzy soft set (GIFSS) [22] which has some problems pointed out by Feng [23]
and redefined GIFSS.

In Reference [24], Coung defines the picture fuzzy set which is an extension of the fuzzy soft set
and intuitionistic fuzzy set. In Reference [25], Sing defines the correlation coefficients of PFS and their
applications in clustering analysis. In Reference [26], Son and Thong define time arrangement gauging
and climate estimating with the help of novel fuzzy calculations based on the PFS domain. A novel fuzzy
derivation framework on PFS to enhance the inference performance of the traditional fuzzy inference
system is proposed by Son [27]. A novel picture fuzzy clustering technique is applied for complex data
and particle swarm optimization by Thong [28]. Wei [29] defines the picture fuzzy aggregation operators
method and uses them to multi attribute decision making (MADM) for ordering enterprise resource
planning (ERP) structures. Wei [30], in the light of the picture fuzzy weighted cross-entropy a basic
leadership technique is researched and used it to order the choices. In Reference [31], Garg defines
aggregation operations on picture fuzzy soft set (PFSS) and used them to multi criteria decision-making
(MCDM) problems. In Reference [32], Yang defined the picture fuzzy soft set and applied them to decision
making problems. In Reference [33], Jabir khan defines the generalized picture fuzzy soft set and applied
them to decision making problems. For more about decision making, we refer to References [34–38].

The soft matrix and its operations in a soft set are defined by Cagman [39]. The notion of soft
discernibility matrix (SDM) is given by Feng and Zhou, which not only provide the best choice but also
an order relation among all alternatives [40]. In [41], Feng defines an adjustable approach for the fuzzy soft
set and an adjustable approach for the intuitionistic fuzzy soft set is defined by Jiang [42]. In Reference [32],
an adjustable SDM is define dfor picture fuzzy soft sets.

The idea of GIFSS is very encouraging in decision-making since it considers how to capitalize an
additional intuitionistic fuzzy input from the director to minimize any possible perversion in the data
provided by evaluating specialists. First, Skowron and Rauszer [43] initiated the concept of discernibility
matrix and extensively used in rough sets to solve attribute reduction, and its influence is significant and
easy to understand. Also, in our daily life decision making problems, different attributes are not of equal
importance. Some are more important than others, therefore, the decision maker assigns different values
(weights) to different attributes and imposes different threshold functions when we need a restriction to
a positive membership function and negative membership function. In this paper, we use an adjustable
perspective to GIFSS and get level soft sets. Then each GIFSS can be seen as a level soft set and composed
a crisp soft set, therefore, for solving decision making problems we applyWSDM.
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The purpose of this paper is to use weighted soft discernibility matrix (WSDM) for GIFSS using
an adjustable perspective to solve decision making problems. In the literature, the GIFSS set is defined
and applied for decision making problems using intuitionistic fuzzy weighted averaging operators.
This technique can not only give the best alternative but also an order relation of all alternatives easily
by scanning theWSDM at most one time. In this paper, Sections 1 and 2 consists of an introduction
and preliminaries which include the basic definition related to fuzzy sets, intuitionistic fuzzy set and
SDM. Section 3 is devoted to the threshold functions and their level soft sets. In Section 4, two algorithms
are proposed basis on WSDM to solve decision making problem using GIFSS. Section 5 consists
of a case study of scholarship for a doctoral degree. Finally, comparison and conclusion are given in
Sections 6 and 7.

2. Preliminaries

In this section, we present the basic definitions of fuzzy set, intuitionistic fuzzy set, soft set, generalized
intuitionistic fuzzy soft set, soft discernibility matrix and weighted soft discernibility matrix.

Throughout this paper, finite set Ŷ = {`1, `2, ..., `n} and P̂ = {ε1, ε2, ..., εm} represents the set of
n alternatives and m attributes (parameters). The abbreviations IFS, IFSS, GIFSS, SDP, SDM and
WSDM represents the intuitionistic fuzzy set, intuitionistic fuzzy soft set, generalized intuitionistic fuzzy
soft set, soft discernibility parameters, soft discernibility matrix and weighted soft discernibility matrix,
respectively. Moreover, the abbreviation “w.r.t.” is used for “with respect to.”

A fuzzy set is defined by Zadeh [1], which handles uncertainty based on the view of
gradualness effectively.

Definition 1 ([1]). A membership function ξÂ : Ŷ → [0, 1] defines the fuzzy set Â over the Ŷ , where ξÂ(`)

particularized the membership of an element ` ∈ Ŷ in fuzzy set Â.

Like a membership degree on an element in a fuzzy set, human intuition suggests that there is a
non-membership degree of an element in a set. In Reference [4], an IFS defined by Atanassov to sketch
the imprecision of human beings when needing the judgments over the elements.

Definition 2 ([4]). An IFS Â over the universe Ŷ is defined as

Â = {(`, ξÂ, ϑÂ)|` ∈ Ŷ},

where ξÂ : Ŷ → [0, 1] and ϑÂ : Ŷ → [0, 1] are the degree of positive membership and degree of negative membership,
respectively. Furthermore, it is required that 0 ≤ ξÂ + ϑÂ ≤ 1.

A soft set is defined by Molodtsov [6], which provides an effective framework to dealings with
imprecision with the parametric point of view, that is, each element is judged by some criteria of attributes.

Definition 3 ([6]). Let Ŷ be a universal set, P̂ a parameter space, Â ⊆ P̂ and P(Ŷ) the power set of Ŷ . A pair
(F̂ , Â) is called a soft set over Ŷ , where F̂ is a set valued mapping given by F̂ : Â → P(Ŷ).

In [12], Maji defines the IFSS as follows.

Definition 4 ([12]). Let Ŷ be a universal set, P̂ a parameter space, Â ⊂ P̂ and IF(Ŷ) the set of all IFSs of Ŷ .
A pair (F̂ , Â) is called an IFSS over Ŷ , where F̂ is a set valued mapping given by F̂ : Â → IF(Ŷ).
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The idea of GIFSS is very encouraging in decision-making since it considers how to capitalize an
additional intuitionistic fuzzy input from the director to minimize any possible perversion in the data
provided by evaluating specialists. First Agarwal [22], defines the GIFSS, but it has some problems,
therefore, in Reference [23], Feng redefines the GIFSS as follows.

Definition 5 ([23]). Let Ŷ be a universal set, Â ⊂ P̂ a parametric set. By a GIFSS we mean a triple (F̂ , Â, ρ̂),
where (F̂ , Â) is an IFSS over Ŷ and ρ̂ : Â → IF(Â) is an IFS in Â.

where (F̂ , Â) is called basic intuitionistic fuzzy soft set (BIFSS) and ρ̂ is called the parametric intuitionistic
fuzzy set (PIFS).

In [40], Q. Feng defines the SDM for soft sets which provide not only the best alternative but also an
order relation among all the alternatives.

Definition 6 ([40]). Let (F̂ , Â) be a soft set over Ŷ . F̂ determined the partition U|IND(F̂ , Â) = {Ni : i ≤ |Ŷ|}
of Ŷ . The SDM is defined asM = (M(Ni, Nj))i,j≤|Ŷ|, where M(Ni, Nj) is called the SDPs among Ni and Nj
and defined as

M(Ni, Nj) = {Êi ∪ Êj : i, j ≤ |Ŷ|}.

In which

Êi = {εi
p : F̂ (`i, εp) = 1 and F̂ (`j, εp) = 0, ∀`i ∈ Ni, ∀`j ∈ Nj}

and

Êj = {εj
p : F̂ (`j, εp) = 1 and F̂ (`i, εp) = 0, ∀`j ∈ Nj, ∀`i ∈ Ni}.

The symbol εi
p (or ε

j
p) represents the elements in Ni (or Nj) have the value 1 at the attribute εp, that is,

F̂ (`i, εp) = 1, `i ∈ Ni (or F̂ (`j, εp) = 1, `j ∈ Nj).

TheWSDM is defined as follows.

Definition 7 ([40]). Let (F̂ , Â) be a soft set over Ŷ . F̂ determined the partition U|IND(F̂ , Â) = {Ni : i ≤ |Ŷ|}
of Ŷ . TheWSDM is defined asM = (M(Ni, Nj))i,j≤|Ŷ|, where M(Ni, Nj) is called the SDPs among Ni and Nj
and defined as

M(Ni, Nj) = {Êi ∪ Êj : i, j ≤ |Ŷ|}.

In which

Êi = {εi∗ω̂i
p : F̂ (`i, εp) = 1 and F̂ (`j, εp) = 0, ∀`i ∈ Ni, ∀`j ∈ Nj}

and

Êj = {εj∗ω̂j
p : F̂ (`j, εp) = 1 and F̂ (`i, εp) = 0, ∀`j ∈ Nj, ∀`i ∈ Ni}.

The symbol ε
i∗ω̂i
p (or ε

j∗ω̂j
p ) represents the elements in Ni (or Nj) have the value 1 at the parameter εp, that is,

F̂ (`i, εp) = 1, `i ∈ Ni (or F̂ (`j, εp) = 1, `j ∈ Nj).

In [40], Q. Feng also give some properties of SDM andWSDM.
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Proposition 1 ([40]). Let (F̂ , Â) be a soft set over Ŷ , where Ŷ = {`1, `2, ..., `n} and ϕ(Ni, Nj) = |M(Ni, Nj)|.
Then the SDM has the following characteristics:

1: M(Ni, Ni) = ∅ (∀i ≤ n);
2: M(Ni, Nj) = M(Nj, Ni) (∀i, j ≤ n);
3: ϕ(Ni, Ni) = 0 (∀i ≤ n);
4: ϕ(Ni, Nj) = ϕ(Nj, Ni) (∀i, j ≤ n);
5: ϕ(Ni, Nj) = |M(Ni, Nj)| = |Êi|+ |Êj|;
6: If ϕ(Ni, Nj) = 2m (m ∈ N+) and |Êi| = |Êj| then the elements of Ni and Nj have same rank (order);
7: If ϕ(Ni, Nj) = 2m + 1 (m ∈ N+), then |Êi| 6= |Êj|, that is, |Êi| < |Êj| or |Êi| > |Êj| and there is an order

relation between the elements of Ni and Nj.

3. Threshold Functions and Level Soft Sets

Definition 8. Let Γ̂ = (F̂ , Â, ρ̂) be a GIFSS over Ŷ and Â ⊆ P̂ be a set of attributes. For a triple (k, l, α), where
(k, l), α ∈ [0, 1]2, the (k, l, α)-level soft set of Γ̂ is a crisp soft set L(Γ̂; (k, l, α)) = (F̂(k,l), Â, ρ̂α) defined by

1. L(Γ̂; k, l) = (F̂(k,l), Â) is a (k, l) level-soft set of an IFSS defined by

F̂(k,l)(ε) = L(F̂ (ε); k, l) = {` ∈ Ŷ|ξF̂ (ε)(`) ≥ k and ϑF̂ (ε)(`) ≤ l}, for all ε ∈ Â.

2. ρ̂α is an α-level soft set of an IFS defined by

ρ̂α = L(ρ̂; α) = {ε ∈ Â|ξρ̂(ε) ≥ u and ϑρ̂(ε) ≤ v}, where α = (u, v).

Example 1. Department appointment to higher positions in an institute and an applicant may be evaluated by
criteria such as “creativity" and “managerial skills" and so forth.

Suppose that there are five candidates Ŷ = {`1, `2, `3, `4, `5} for senior positions and Â =
{ε1, ε2, ε3, ε4, ε5, ε6} is a criteria for evaluating candidates, where each εi stands for “creativity", “managerial skills",

“intuition", “research productivity", “ability to work under pressure" and “knowledge", respectively. Suppose that

F̂ (ε1) = {(0.8, 0.1)/`1, (0.6, 0.2)/`2, (0.7, 0.3)/`3, (0.8, 0.1)/`4, (0.5, 0.4)/`5},

F̂ (ε2) = {(0.6, 0.2)/`1, (0.7, 0.2)/`2, (0.8, 0.1)/`3, (0.9, 0.1)/`4, (0.6, 0.3)/`5},

F̂ (ε3) = {(0.4, 0.4)/`1, (0.4, 0.5)/`2, (0.6, 0.3)/`3, (0.6, 0.2)/`4, (0.7, 0.2)/`5},

F̂ (ε4) = {(0.7, 0.2)/`1, (0.5, 0.1)/`2, (0.7, 0.1)/`3, (0.5, 0.3)/`4, (0.2, 0.6)/`5},

F̂ (ε5) = {(0.6, 0.1)/`1, (0.6, 0.2)/`2, (0.2, 0.5)/`3, (0.7, 0.2)/`4, (0.7, 0.1)/`5},

F̂ (ε6) = {(0.7, 0.3)/`1, (0.5, 0.3)/`2, (0.7, 0.1)/`3, (0.6, 0.2)/`4, (0.3, 0.5)/`5}.

In addition, ρ̂ is the PIFS which is given by

ρ̂ = {(0.4, 0.2)/ε1, (0.8, 0.2)/ε2, (0.5, 0.3)/ε3, (0.6, 0.2)/ε4, (0.7, 0.1)/ε5, (0.4, 0.4)/ε6}.

The tabular representation of GIFSS (F̂ , Â, ρ̂) is shown in Table 1.
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Table 1. The GIFSS (F̂ , Â, ρ̂).

Ŷ ε1 ε2 ε3 ε4 ε5 ε6

`1 (0.8,0.1) (0.6,0.2) (0.4,0.4) (0.7,0.2) (0.6,0.1) (0.7,0.3)
`2 (0.6,0.2) (0.7,0.2) (0.4,0.5) (0.5,0.1) (0.6,0.2) (0.5,0.3)
`3 (0.7,0.3) (0.8,0.1) (0.6,0.3) (0.7,0.1) (0.2,0.5) (0.7,0.1)
`4 (0.8,0.1) (0.9,0.1) (0.6,0.2) (0.5,0.3) (0.7,0.2) (0.6,0.2)
`5 (0.5,0.4) (0.6,0.3) (0.7,0.2) (0.2,0.6) (0.7,0.1) (0.3,0.5)

ρ̂ (0.4,0.2) (0.8,0.2) (0.5,0.3) (0.6,0.2) (0.7,0.1) (0.4,0.4)

Now we take k = 0.6, l = 0.3 and α = (0.5, 0.3), then we have the following:

L(F̂ (ε1); 0.6, 0.3) = {`1, `2, `3, `4},
L(F̂ (ε2); 0.6, 0.3) = {`1, `2, `3, `4, `5},
L(F̂ (ε3); 0.6, 0.3) = {`3, `4, `5},
L(F̂ (ε4); 0.6, 0.3) = {`1, `3},
L(F̂ (ε5); 0.6, 0.3) = {`1, `2, `4, `5},
L(F̂ (ε6); 0.6, 0.3) = {`1, `3, `4},

and
L(ρ̂; 0.5, 0.3) = {ε2, ε3, ε4, ε5}.

Hence the (0.6, 0.3, (0.5, 0.3))-level soft set of Γ̂ = (F̂ , Â, ρ̂) is a soft set L = (Γ̂; 0.6, 0.3, (0.5, 0.3)) =

(F̂(0.6,0.3), Â, ρ̂(0.5,0.3)), where the set valued mappings F̂(0.6,0.3) : Â → P(Ŷ) and ρ̂(0.5,0.3) : Â → P(Â) are
defined as F̂(0.6,0.3)(ε) = L(F̂ ; 0.6, 0.3) for all ε ∈ Â and ρ̂(0.5,0.3) = L(ρ̂; (0.5, 0.3)), where P(Ŷ) and P(Â)
are power sets of Ŷ and Â, respectively. The tabular representation of (0.6, 0.3, (0.5, 0.3))-level soft set is given in
Table 2.

Table 2. (0.6, 0.3, (0.5, 0.3))-level soft set of Γ̂.

Ŷ ε1 ε2 ε3 ε4 ε5 ε6

`1 1 1 0 1 1 1
`2 1 1 0 0 1 0
`3 1 1 1 1 0 1
`4 1 1 1 0 1 1
`5 0 1 1 0 1 0

ρ̂ 0 1 1 1 1 0

Now we show some properties of (k, l, α)-level soft sets.

Theorem 1. Let Γ̂ = (F̂ , Â, ρ̂) be a GIFSS over Ŷ and Â ⊆ P̂ a set of parameters. Let L(Γ̂; k1, l1, α1) and
L(Γ̂; k2, l2, α2) are (k1, l1, α1) and (k2, l2, α2)-level soft sets of Γ̂, respectively, where k1, l1, k2, l2 ∈ [0, 1] and
α1, α2 ∈ [0, 1]2. If k1 ≥ k2, l2 ≥ l1 and α2 ⊆ α1, then we have

L(Γ̂; k1, l1, α1) ⊆ L(Γ̂; k2, l2, α2).

Proof. To complete the proof, we need to show

1. L(Γ̂; k1, l1) ⊆ L(Γ̂; k2, l2),
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2. L(ρ̂; α1) ⊆ L(ρ̂; α2).

Let L(Γ̂; k1, l1) = (F̂(k1,l1), Â), where F̂(k1,l1)(ε) = {` ∈ Ŷ|ξF̂ (ε)(`) ≥ k1 and ϑF̂ (ε)(`) ≤ l1} and

L(Γ̂; k2, l2) = (F̂(k2,l2), Â), where F̂(k2,l2)(ε) = {` ∈ Ŷ|ξF̂ (ε)(`) ≥ k2 and ϑF̂ (ε)(`) ≤ l2} for all ε ∈ Â are
the (k1, l1) and (k2, l2)-level soft sets of an IFSS.

Since k1 ≥ k2 and l2 ≥ l1, then for all ε ∈ Â we have the following

{` ∈ Ŷ|ξF̂ (ε)(`) ≥ k1 and ϑF̂ (ε)(`) ≤ l1} ⊆ {` ∈ Ŷ|ξF̂ (ε)(`) ≥ k2 and ϑF̂ (ε)(`) ≤ l2}

F̂(k1,l1)(ε) ⊆ F̂(k2,l2)(ε)

L(Γ̂; k1, l1) ⊆ L(Γ̂; k2, l2).

Let α1 = (u1, v1) and α2 = (u2, v2). Since α2 ⊆ α1, therefore, u2 ≤ u1 and v2 ≥ v1. We have

{ε ∈ Â|ξρ̂(ε) ≥ u1 and ϑρ̂(ε) ≤ v1} ⊆ {ε ∈ Â|ξρ̂(ε) ≥ u2 and ϑρ̂(ε) ≤ v2}
L(ρ̂; α1) ⊆ L(ρ̂; α2).

Hence we have L(Γ̂; k1, l1, α1) ⊆ L(Γ̂; k2, l2, α2).

Theorem 2. Let Γ̂1 = (F̂ , Â, ρ̂) and Γ̂2 = (Ĝ, Â, σ̂) be GIFSSs over Ŷ and Â ⊆ P̂ a set of parameters.
Let L(Γ̂1; k, l, α) and L(Γ̂2; k, l, α) are (k, l, α)-level soft sets of Γ̂1 and Γ̂2, respectively, where (k, l), α ∈ [0, 1]2.
If Γ̂1 ⊆ Γ̂2, then we have L(Γ̂1; k, l, α) ⊆ L(Γ̂2; k, l, α).

Proof. Let L(Γ̂1; k, l, α) = (F̂(k,l), Â, ρ̂α) and L(Γ̂2; k, l, α) = (Ĝ(k,l), Â, σ̂α). Obviously, Â ⊆ Â. In the
following we will prove that

1. L(Γ̂1; k, l) ⊆ L(Γ̂2; k, l),
2. L(ρ̂; α) ⊆ L(σ̂; α).

Let L(Γ̂1; k, l) = (F̂(k,l), Â), where F̂(k,l)(ε) = {` ∈ Ŷ|ξF̂ (ε)(`) ≥ k and ϑF̂ (ε)(`) ≤ l} and

L(Γ̂2; k, l) = (Ĝ(k,l), Â), where Ĝ(k,l)(ε) = {` ∈ Ŷ|ξĜ(ε)(`) ≥ k and ϑĜ(ε)(`) ≤ l} for all ε ∈ Â are

the (k, l)-level soft sets of an IFSS. Assume that ` ∈ F̂(k,l)(ε). Since F̂(k,l)(ε) = {` ∈ Ŷ|ξF̂ (ε)(`) ≥
k and ϑF̂ (ε)(`) ≤ l}, then we have ξF̂ (ε)(`) ≥ k and ϑF̂ (ε)(`) ≤ l. Since Γ̂1 ⊆ Γ̂2, we have

ξĜ(ε)(`) ≥ ξF̂ (ε)(`) and ϑĜ(ε)(`) ≤ ϑF̂ (ε)(`).

Hence ` ∈ Ĝ(k,l)(ε), where Ĝ(k,l)(ε) = {` ∈ Ŷ|ξĜ(ε)(`) ≥ k and ϑĜ(ε)(`) ≤ l}, because ξĜ(ε)(`) ≥
ξF̂ (ε)(`) ≥ k and ϑĜ(ε)(`) ≤ ϑF̂ (ε)(`) ≤ l. This completes the first part, that is,

L(Γ̂1; k, l) ⊆ L(Γ̂2; k, l).

Now, since ρ̂ ⊆ σ̂, then for all ε ∈ Â we have the following

ξ ρ̂(ε) ≤ ξσ̂(ε) and ϑρ̂(ε) ≥ ϑσ̂(ε).

Let α = (u, v) and
L(ρ̂; α) = {ε ∈ Â|ξρ̂(ε) ≥ u and ϑρ̂(ε) ≤ v},

and
L(σ̂; α) = {ε ∈ Â|ξσ̂(ε) ≥ u and ϑσ̂(ε) ≤ v}.
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Assume that ε ∈ L(ρ̂; α), then we have ξρ̂(ε) ≥ u and ϑρ̂(ε) ≤ v. Hence ε ∈ L(σ̂; α), because ξσ̂(ε) ≥
ξρ̂(ε) ≥ u and ϑσ̂(ε) ≤ ϑρ̂(ε) ≤ v, and we have

L(ρ̂; α) ⊆ L(σ̂; α).

Consequently, L(Γ̂1; k, l, α) ⊆ L(Γ̂2; k, l, α).

Definition 9. Let Γ̂ = (F̂ , Â, ρ̂) be a GIFSS over Ŷ and Â ⊆ P̂ be a set of attributes. Then the threshold function
ψ : Â → [0, 1]2, i.e., ψ(ε) = (k(ε), l(ε)), ψρ̂ = (uψ, vψ) and k(ε), l(ε), uψ, vψ ∈ [0, 1] for all ε ∈ Â. The level
soft set of Γ̂ w.r.t. ψ is a crisp soft set L(Γ̂; ψ) = (F̂ψ, Â, ρ̂ψ) defined by L(Γ̂; ψ(ε)) = (F̂ψ(ε), Â), where for all
ε ∈ Â

F̂ψ(ε) = L(F̂ (ε); ψ(ε)) = {` ∈ Ŷ|ξF̂ (ε)(`) ≥ k(ε) and ϑF̂ (ε)(`) ≤ l(ε)}

and
ρ̂ψ = L(ρ̂; ψ) = {ε ∈ Â|ξρ̂(ε) ≥ uψ and ϑρ̂(ε) ≤ vψ}.

Definition 10. Let Γ̂ = (F̂ , Â, ρ̂) be a GIFSS over Ŷ and Â ⊆ P̂ be a set of attributes. Then mid-level threshold
function midΓ̂ : Â → [0, 1]2, i.e., midΓ̂(ε) = (kmidΓ̂

(ε), lmidΓ̂
(ε)) and midΓ̂(ρ̂) = (umidΓ̂

, vmidΓ̂
) for all ε ∈ Â,

where
kmidΓ̂

(ε) =
1
|Ŷ | ∑

`∈Ŷ
ξF̂ (ε)(`) and lmidΓ̂

(ε) =
1
|Ŷ | ∑

`∈Ŷ
ϑF̂ (ε)(`),

umidΓ̂
=

1
|Â| ∑

ε∈Â
ξρ̂(ε) and vmidΓ̂

=
1
|Â| ∑

ε∈Â
ϑρ̂(ε).

L(Γ̂; mid) is a notation used to represents the corresponding level soft set of Γ̂ and is called the mid-level soft set of Γ̂.

Definition 11. Let Γ̂ = (F̂ , Â, ρ̂) be a GIFSS over Ŷ and Â ⊆ P̂ be a set of attributes. Then top-bottom-level
threshold function tbΓ̂ : Â → [0, 1]2, i.e., tbΓ̂(ε) = (ktbΓ̂

(ε), ltbΓ̂
(ε)) and tbΓ̂(ρ̂) = (utbΓ̂

, vtbΓ̂
) for all ε ∈ Â, where

ktbΓ̂
(ε) = max`∈Ŷ ξF̂ (ε)(`) and ltbΓ̂

(ε) = min`∈ŶϑF̂ (ε)(`),

utbΓ̂
= maxε∈Âξ ρ̂(ε) and vtbΓ̂

= minε∈Âϑρ̂(ε).

L(Γ̂; tb) is a notation used to represents the corresponding level soft set of Γ̂ and called the top-bottom-level soft set
of Γ̂.

Definition 12. Let Γ̂ = (F̂ , Â, ρ̂) be a GIFSS over Ŷ and Â ⊆ P̂ be a set of attributes. Then top-top-level
threshold function ttΓ̂ : Â → [0, 1]2, i.e., ttΓ̂(ε) = (kttΓ̂

(ε), lttΓ̂
(ε)) and ttΓ̂(ρ̂) = (uttΓ̂

, vttΓ̂
) for all ε ∈ Â, where

kttΓ̂
(ε) = max`∈Ŷ ξF̂ (ε)(`) and lttΓ̂

(ε) = max`∈ŶϑF̂ (ε)(`),

uttΓ̂
= maxε∈Âξρ̂(ε) and vttΓ̂

= maxε∈Âϑρ̂(ε).

L(Γ̂; tt) is a notation used to represents the corresponding level soft set of Γ̂ and called the top-top-level soft set of Γ̂.
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Definition 13. Let Γ̂ = (F̂ , Â, ρ̂) be a GIFSS over Ŷ and Â ⊆ P̂ be a set of attributes. Then bottom-bottom-level
threshold function bbΓ̂ : Â → [0, 1]2, i.e., bbΓ̂(ε) = (kbbΓ̂

(ε), lbbΓ̂
(ε)) and bbΓ̂(ρ̂) = (ubbΓ̂

, vbbΓ̂
) for all ε ∈ Â, where

kbbΓ̂
(ε) = min`∈Ŷ ξF̂ (ε)(`) and lbbΓ̂

(ε) = min`∈ŶϑF̂ (ε)(`),

ubbΓ̂
= minε∈Âξρ̂(ε) and vbbΓ̂

= minε∈Âϑρ̂(ε).

L(Γ̂; bb) is a notation used to represents the corresponding level soft set of Γ̂ and is called the bottom-bottom-level
soft set of Γ̂.

Definition 14. Let Γ̂ = (F̂ , Â, ρ̂) be a GIFSS over Ŷ and Â ⊆ P̂ be a set of attributes. Then med-level threshold
function medΓ̂ : Â → [0, 1]2, that is, medΓ̂(ε) = (kmedΓ̂

(ε), lmedΓ̂
(ε)) and medΓ̂(ρ̂) = (umedΓ̂

, vmedΓ̂
) for all

ε ∈ Â, where for all ε ∈ Â, if we align ascendingly (or descendingly) the value of membership function of all
elements of BIFSS, kmedΓ̂

(ε) represents the median, namely

kmedΓ̂
(ε) =


ξF̂ (ε)(`( |Ŷ |+1

2 )
), if |Ŷ | is odd,

(ξF̂ (ε)(`( |Ŷ |2 )
)+

ξF̂ (ε)(`( |Ŷ |2 +1)
))/2, if |Ŷ | is even,

if we align ascendingly (or descendingly) the value of non-membership function of all elements of BIFSS, lmedΓ̂
(ε)

represents the median, namely

lmedΓ̂
(ε) =


ϑF̂ (ε)(`( |Ŷ |+1

2 )
), if |Ŷ | is odd,

(ϑF̂ (ε)(`( |Ŷ |2 )
)+

ϑF̂ (ε)(`( |Ŷ |2 +1)
))/2, if |Ŷ | is even,

if we align ascendingly (or descendingly) the value of membership function of all elements of PIFS, umedΓ̂
represents

the median, namely

umedΓ̂
(ε) =


ξρ̂(ε)(ε( |Â|+1

2 )
), if |Â| is odd,

(ξρ̂(ε)(ε( |Â|2 )
)+

ξρ̂(ε)(ε( |Â|2 +1)
))/2, if |Â| is even,

and if we align ascendingly (or descendingly) the value of non-membership function of all elements of PIFS, vmedΓ̂
represents the median, namely

vmedΓ̂
(ε) =


ϑρ̂(ε)(ε( |Â|+1

2 )
), if |Â| is odd,

(ϑρ̂(ε)(ε( |Â|2 )
)+

ϑρ̂(ε)(ε( |Â|2 +1)
))/2, if |Â| is even.

L(Γ̂; med) is a notation used to represents the corresponding level soft set of Γ̂ and called the med-level soft set of Γ̂.

Example 2. Let us consider the GIFSS Γ̂ = (F̂ , Â, ρ̂) in Example 1. The threshold functions mentioned above and
their level soft sets with tabular representation (Tables 3–7) are given as follows.
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i. midΓ̂ = {(0.68, 0.22)/ε1, (0.72, 0.18)/ε2, (0.54, 0.32)/ε3, (0.52, 0.26)/ε4, (0.56, 0.22)/ε5, (0.56, 0.28)/ε6},
midΓ̂(ρ̂) = (0.57, 0.23).

The mid-level soft set is given as

L(F̂ ; mid) = {{`1, `4}/ε1, {`3, `4}/ε2, {`3, `4, `5}/ε3, {`1, `3}/ε4, {`1, `2, `4, `5}/ε5, {`3, `4}/ε6, },
L(ρ̂, mid) = {ε2, ε4, ε5}.

ii. tbΓ̂ = {(0.8, 0.1)/ε1, (0.9, 0.1)/ε2, (0.7, 0.2)/ε3, (0.7, 0.1)/ε4, (0.7, 0.1)/ε5, (0.7, 0.1)/ε6},
tbΓ̂(ρ̂) = (0.8, 0.1).

The tb-level soft set is given as

L(F̂ ; tb) = {{`1, `4}/ε1, {`4}/ε2, {`5}/ε3, {`3}/ε4, {`5}/ε5, {`3}/ε6},
L(ρ̂, tb) = {}.

iii. ttΓ̂ = {(0.8, 0.4)/ε1, (0.9, 0.3)/ε2, (0.7, 0.5)/ε3, (0.7, 0.6)/ε4, (0.7, 0.5)/ε5, (0.7, 0.5)/ε6},
ttΓ̂(ρ̂) = (0.8, 0.4).

The tt-level soft set is given as

L(F̂ ; tt) = {{`1, `4}/ε1, {`4}/ε2, {`5}/ε3, {`1, `3}/ε4, {`4, `5}/ε5, {`1, `3}/ε6},
L(ρ̂, tt) = {ε2}.

iv. bbΓ̂ = {(0.5, 0.1)/ε1, (0.6, 0.1)/ε2, (0.4, 0.2)/ε3, (0.2, 0.1)/ε4, (0.2, 0.1)/ε5, (0.3, 0.1)/ε6},
bbΓ̂(ρ̂) = (0.4, 0.1).

The bb-level soft set is given as

L(F̂ ; bb) = {{`1, `4}/ε1, {`3, `4}/ε2, {`4, `5}/ε3, {`2, `3}/ε4, {`1, `5}/ε5, {`3}/ε6},
L(ρ̂, bb) = {ε5}.

v. medΓ̂ = {(0.7, 0.2)/ε1, (0.7, 0.2)/ε2, (0.6, 0.3)/ε3, (0.5, 0.2)/ε4, (0.6, 0.2)/ε5, (0.6, 0.3)/ε6},
medΓ̂(ρ̂) = (0.55, 0.2).

The med-level soft set is given as

L(F̂ ; med) = {{`2, `3, `4}/ε1, {`3, `4, `5}/ε2, {`1, `2, `3}/ε3, {`1, `2, `3}/ε4, {`1, `2, `4, `5}
/ε5, {`1, `3, `4}/ε6, },

L(ρ̂, med) = {ε2, ε3, ε4}.

Table 3. Level soft set L(Γ̂; mid)

Ŷ ε1 ε2 ε3 ε4 ε5 ε6

`1 1 0 0 1 1 0
`2 0 0 0 0 1 0
`3 0 1 1 1 0 1
`4 1 1 1 0 1 1
`5 0 0 1 0 1 0

ρ̂ 0 1 0 1 1 0
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Table 4. Level soft set L(Γ̂; tb)

Ŷ ε1 ε2 ε3 ε4 ε5 ε6

`1 1 0 0 0 0 0
`2 0 0 0 0 0 0
`3 0 0 0 1 0 1
`4 1 1 0 0 0 0
`5 0 0 1 0 1 0

ρ̂ 0 0 0 0 0 0

Table 5. Level soft set L(Γ̂; tt)

Ŷ ε1 ε2 ε3 ε4 ε5 ε6

`1 1 0 0 1 0 1
`2 0 0 0 0 0 0
`3 0 0 0 1 0 1
`4 1 1 0 0 1 0
`5 0 0 1 0 1 0

ρ̂ 0 1 0 0 0 0

Table 6. Level soft set L(Γ̂; bb)

Ŷ ε1 ε2 ε3 ε4 ε5 ε6

`1 1 0 0 0 1 0
`2 0 0 0 1 0 0
`3 0 1 0 1 0 1
`4 1 1 1 0 0 0
`5 0 0 1 0 1 0

ρ̂ 0 0 0 0 1 0

Table 7. Level soft set L(Γ̂; med)

Ŷ ε1 ε2 ε3 ε4 ε5 ε6

`1 1 0 0 1 1 1
`2 0 1 0 1 1 0
`3 0 1 1 1 0 1
`4 1 1 1 0 1 1
`5 0 0 1 0 1 0

ρ̂ 0 1 0 1 1 0

Remark 1. In GIFSS we do not define bottom-top (bt) threshold function because in this function we consider a
lower bound of membership function and an upper bound of non-membership function and that’s why it is dispensable
and we always get a unit table. For example, if we consider the GIFSS use in Example 1, then

btΓ̂ = {(0.5, 0.4)/ε1, (0.6, 0.3)/ε2, (0.4, 0.5)/ε3, (0.2, 0.6)/ε4, (0.2, 0.5)/ε5, (0.3, 0.5)/ε6},
btΓ̂(ρ̂) = (0.4, 0.4).

The level soft set related to bottom-top threshold function is defined in Table 8.
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Table 8. Level soft set L(Γ̂; bt)

Ŷ ε1 ε2 ε3 ε4 ε5 ε6

`1 1 1 1 1 1 1
`2 1 1 1 1 1 1
`3 1 1 1 1 1 1
`4 1 1 1 1 1 1
`5 1 1 1 1 1 1

ρ̂ 1 1 1 1 1 1

Theorem 3. Let Γ̂ = (F̂ , Â, ρ̂) be a GIFSS over Ŷ and Â ⊆ P̂ a parametric set. Then we have the
following characteristics:

1. L(Γ̂; tb) ⊆ L(Γ̂; mid);
2. L(Γ̂; tb) ⊆ L(Γ̂; tt);
3. L(Γ̂; tb) ⊆ L(Γ̂; bb).

Proof. In the following we prove only first part, remaining parts prove similarly.
Let L(Γ̂; tb) = (F̂tb, Â, ρ̂tb) and L(Γ̂; mid) = (F̂mid, Â, ρ̂mid). To complete the proof, we need to

show (F̂tb, Â) ⊆ (F̂mid, Â) and L(ρ̂; tb) ⊆ L(ρ̂; mid). To show (F̂tb, Â) ⊆ (F̂mid, Â), we have to show
F̂tb(ε) ⊆ F̂mid(ε) for all ε ∈ Â. Let F̂tb(ε) = {` ∈ Ŷ|ξF̂ (ε)(`) ≥ ktbΓ̂

(ε) and ϑF̂ (ε)(`) ≤ ltbΓ̂
(ε)} and

F̂mid(ε) = {` ∈ Ŷ|ξF̂ (ε)(`) ≥ kmidΓ̂
(ε) and ϑF̂ (ε)(`) ≤ lmidΓ̂

(ε)}. Since

ktbΓ̂
(ε) = max`∈Ŷ ξF̂ (ε)(`) ≥

1
|Ŷ | ∑`∈Ŷ ξF̂ (ε)(`) = kmidΓ̂

(ε)ktbΓ̂
(ε) ≥ kmidΓ̂

(ε),

ltbΓ̂
(ε) = min`∈ŶϑF̂ (ε)(`) ≤

1
|Ŷ | ∑

`∈Ŷ
ϑF̂ (ε)(`) = lmidΓ̂

(ε)

ltbΓ̂
(ε) ≤ lmidΓ̂

(ε).

If ` ∈ F̂tb(ε), then we have ξF̂ (ε)(`) ≥ ktbΓ̂
(ε) ≥ kmidΓ̂

(ε) and ϑF̂ (ε)(`) ≤ ltbΓ̂
(ε) ≤ lmidΓ̂

(ε), and hence

` ∈ F̂mid(ε).
Now, let L(ρ̂; tb) = {ε ∈ Â|ξρ̂(ε) ≥ utb and ϑρ̂(ε) ≤ vtb} and L(ρ̂; mid) = {ε ∈ Â|ξ ρ̂(ε) ≥

umid and ϑρ̂(ε) ≤ vmid} for all ε ∈ Â. Since

utbΓ̂
= maxε∈Âξρ̂(ε) ≥

1
|Â| ∑

ε∈Â
ξ ρ̂(ε) = umidΓ̂

utbΓ̂
≥ umidΓ̂

,

vtbΓ̂
= minε∈Âϑρ̂(ε) ≤

1
|Â| ∑

ε∈Â
ϑρ̂(ε) = vmidΓ̂

vtbΓ̂
≤ vmidΓ̂

.

If ε ∈ L(ρ̂; tb), then ξ ρ̂(ε) ≥ utb ≥ umidΓ̂
and ϑρ̂(ε) ≤ vtb ≤ vmidΓ̂

. Hence ε ∈ L(ρ̂; mid) and we
are done.
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4. Applications of the GIFSS Model Based on Weighted Soft Discernibility Matrix

The idea of GIFSS is very encouraging in decision-making since it considers how to capitalize an
additional intuitionistic fuzzy input from the director to minimize any possible perversion in the data
provided by evaluating specialists. Also, in our daily life decision making problems, different attributes
are not of equal importance. Some are more important than others; therefore, the decision maker assigns
different values (weights) to different attributes and imposed different thresholds functions when we
need to put restriction on membership function and non-membership function. First, Skowron and
Rauszer [43] initiated the concept of discernibility matrix and extensively used in rough sets to solve
attribute reduction and the influence of it are significant and easy to understand. In this paper, we use an
adjustable perspective to GIFSS and get level soft sets. Then each GIFSS can be seen as the level soft set
and composed a crisp soft set, therefore, for solving decision making problems we apply SDM. The soft
equivalence relation in soft sets is a bridge among soft sets and rough sets which is introduced by Ali [44].

Definition 15. The accuracy weighted choice value of an alternative `i ∈ Ŷ is fi given by fi = ∑ eij, where eij =

ω̂ij × `ij, where ω̂ij are the accuracy weights calculated from PIFS using accuracy function defined as ω̂ij = ξ j + ϑj.

Definition 16. The expectation score weighted choice value of an alternative `i ∈ Ŷ is fi given by fi = ∑ eij,
where eij = ω̂ij × `ij, where ω̂ij are the expectation score weights calculated from PIFS using expectation score
function defined as ω̂ij = (ξ j − ϑj + 1)/2.

Algorithm 1

1: Input GIFSS (F̂ , Â, ρ̂) over Ŷ , where Ŷ = {`1, `2, ..., `n}.
2: Input any threshold function ψ : Â → [0, 1]2 or give a threshold value (k, l, α), where (k, l), α ∈ [0, 1]2.
3: Compose the level soft set according to given threshold function or (k, l, α)-level soft set and present in

tabular form.
4: Find the partition of Ŷ and the SDM,M = M(Ni, Nj)i,j≤n.
5: Input the weight of attributes calculated from L(ρ̂, α).
6: Separate M1 = {M(Ni, Nj) : ϕ(Ni, Nj) = 2m, m ∈ N+} and M2 = {M(Ni, Nj) : ϕ(Ni, Nj) =

2m + 1, m ∈ N+} from SDM.
7: For every element of M1, we compare the weighted choice values of |Êi| and |Êj|, if |Êi| = |εp| × ω̂p =

|Êj| = |εq| × ω̂q, where εp ∈ Êi and εq ∈ Êj, then the elements `i ∈ Ni and `j ∈ Nj have same rank,
otherwise there is an order relation between elements of Ni and Nj.

8: If there is a global relation between elements of Ŷ in step 7, then choose the superior one as the optimal,
otherwise move to next step.

9: Use the elements of M2 to find the order relation of the elements of Ŷ together with the step 8.
10: From the order relation of elements from step 8 and step 9, choose the optimal alternative which is

superior.

From Reference [44], we have no concern with the values of decision parameter D = ∑ `ij but actually
we are interested on investigation its classification ability. Only from the parameters value in the set of
SDPs, classification ability of decision parameter is determined. Thus, we only need to compare the values
of the decision parameter restricted within every set of SDPs.

Example 3. Given a GIFSS (F̂ , Â, ρ̂) as in Example 1, find the order relation among all the alternatives of GIFSS
using Algoritm 1. We use the med-level threshold function and compute the level soft set L(Γ̂; med) as in Table 7.
From Table 7, the parameters ε2, ε4, ε5 have value 1, therefore, the weighted value of ε2, ε4 and ε5 are 1 (say) and the
parameters ε1, ε3, ε6 have value 0, therefore, the weight value of ε1, ε3 and ε6 are 0.7.
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From Table 7, we can obtained the partition of Ŷ is

{{`1}, {`2}, {`3}, {`4}, {`5}}.

We will denote N1 = {`1}, N2 = {`2}, N3 = {`3}, N4 = {`4} and N5 = {`5} and also constructed SDM
in Table 9.

Table 9. TheWSDM of Example 3.

Ni N1 N2 N3 N4 N5

N1 ∅
N2 {ε1∗0.7

1 , ε1∗0.7
6 , ε2∗1

2 } ∅
N3 {ε1∗0.7

1 , ε1∗1
5 , ε3∗1

2 , ε3∗0.7
3 } {ε2∗1

5 , ε3∗0.7
3 , ε3∗0.7

6 } ∅
N4 {ε1∗1

4 , ε4∗1
2 , ε4∗0.7

3 } {ε2∗1
4 , ε4∗0.7

6 , ε4∗0.7
1 , ε4∗0.7

3 } {ε3∗1
4 , ε4∗0.7

1 , ε4∗1
5 } ∅

N5 {ε1∗0.7
1 , ε1∗1

4 , ε1∗0.7
6 , ε5∗0.7

3 } {ε2∗1
2 , ε2∗1

4 , ε5∗0.7
3 } {ε3∗1

2 , ε3∗1
4 , ε3∗0.7

6 , ε5∗0.7
5 } {ε4∗0.7

1 , ε4∗1
2 , ε4∗0.7

6 } ∅

From Table 9, we have

M1 = {M(N1, N3), M(N1, N5), M(N2, N4), M(N3, N5)}.
M2 = {M(N1, N2), M(N1, N4), M(N2, N3), M(N2, N5), M(N3, N4), M(N4, N5)}.

From M1, we know that in M(N1, N3), |Ê1| = |ε1| × 0.7+ |ε5| × 1 = 1.7 and |Ê3| = |ε2| × 1+ |ε3| × 0.7 =

1.7, so the alternatives in Ê1 and Ê3 have same rank, in other words `1 and `3 are in same decision class. Similarly,
in M(N1, N5), |Ê1| > |Ê5|, the alternative in N1 is superior to the alternative in N5, that is, `1 is superior to
`5. From M(N1, N3), we have `1, `3 are superior to `5. From M(N1, N2), |Ê1| > |Ê2|, the alternative in N1 is
superior to the alternative in N2, that is, `1 is superior to `2. From M(N1, N3), we have `1 and `3 are superior to `2.
From M(N1, N4), |Ê4| > |Ê1|, the alternative in N4 is superior to the alternative in N1, that is, `4 is superior to `1,
hence `4 is superior to `3. From M(N2, N5), |Ê2| > |Ê5|, the alternative in N2 is superior to the alternative in N5,
that is, `2 is superior to `5.

Combining the above results, we have `4 � {`1, `3} � `2 � `5, so an order relation among all the alternatives
is obtained. And the best alternative is `4.

We have seen that when we solve decision making problem using SDM, some attributes will be
erased unintentionally. Thus, by constructing SDM for a soft set some attributes which have no impact
on the final conclusion will be erased.

Algorithm 2

Input: The GIFSS (F̂ , Â, ρ̂) over Ŷ , where Ŷ = {`1, `2, ..., `n}.
Output: The order relation of all the alternatives.

1: Input the threshold function ψ : Â → [0, 1]2 or give a threshold value (k, l), where (k, l) ∈ [0, 1]2.
2: Compute the level soft set of BIFSS accordingly and present it in tabular form.
3: Compute the partition of Ŷ and SDM,M = M(Ni, Nj)i,j≤n.
4: Find the accuracy weights or expectation score weights of attributes from PIFS.
5: Input the weights calculated in step 4 of attributes into the SDM.
6: Compare the weighted choice values of M(Ni, Nj) in the similar way as in Algorithm 1.
7: Output the order relation among all the alternatives.

Example 4. For the GIFSS define in Table 1, the (kmed, lmed)-level soft set have calculated in Table 7, and the
partition M1 and M2 are calculated in Example 3. The accuracy weights of each parameter is given as follows:
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ω̂1 = 0.6, ω̂2 = 1, ω̂3 = 0.8, ω̂4 = 0.8, ω̂5 = 0.8 and ω̂6 = 0.8. Then we have a accuracyWSDM with the
tabular representation shown in Table 10.

Table 10. The accuracyWSDM of Example 4.

Ni N1 N2 N3 N4 N5

N1 ∅
N2 {ε1∗0.6

1 , ε1∗0.8
6 , ε2∗1

2 } ∅
N3 {ε1∗0.6

1 , ε1∗0.8
5 , ε3∗1

2 , ε3∗0.8
3 } {ε2∗0.8

5 , ε3∗0.8
3 , ε3∗0.8

6 } ∅
N4 {ε1∗0.8

4 , ε4∗1
2 , ε4∗0.8

3 } {ε2∗0.8
4 , ε4∗0.8

6 , ε4∗0.6
1 , ε4∗0.8

3 } {ε3∗0.8
4 , ε4∗0.6

1 , ε4∗0.8
5 } ∅

N5 {ε1∗0.6
1 , ε1∗0.8

4 , ε1∗0.8
6 , ε5∗0.8

3 } {ε2∗1
2 , ε2∗0.8

4 , ε5∗0.8
3 } {ε3∗1

2 , ε3∗0.8
4 , ε3∗0.8

6 , ε5∗0.8
5 } {ε4∗0.6

1 , ε4∗1
2 , ε4∗0.8

6 } ∅

From Table 10, we know that in M(N1, N3), |Ê1| = |ε1| × 0.6 + |ε5| × 0.8 = 1.4 and |Ê3| = |ε2| × 1 +

|ε5| × 0.8 = 1.8, thus the alternative in N3 is superior to the alternative in N1, that is, `3 is superior to `1. Similarly,
we can obtained the order relation among the all alternatives is `4 � `3 � `1 � `2 � `5. Hence the optimal
alternative is `4.

5. Case Study for Selecting Candidates for Ph.D. Scholarships

A mathematics department of university Y has three scholarships for a doctoral degree. Many students
apply for a scholarship but due to initial conditions on CGPA (cumulative grade points average), only seven
students are short listed for further evaluation. Let Ŷ = {`1, `2, ..., `7} represent the alternatives (students)
and P̂ = {ε1, ε2, ..., ε6} are the attributes (criteria), where each εi stands for “CGPA”, “no. of research
papers”, “research quality”, “research proposal”, “personal statement” and “interview”. For selection,
the vice chancellor of the university set up a committee of experts to make an evaluation on the basis of
given criteria (attributes). The committee evaluates students and given their evaluation in the form of
BIFSS and vice chancellor scrutinizes the general quality of evaluation made by an expert group and
gives his view in the form of PIFS, which completes the construction of GIFSS, Γ̂ = (F̂ , Â, ρ̂). The tabular
representation of GIFSS is given in Table 11.

Table 11. The GIFSS (F̂ , Â, ρ̂).

Ŷ ε1 ε2 ε3 ε4 ε5 ε6

`1 (0.6,0.3) (0.7,0.3) (0.4,0.4) (0.3,0.7) (0.8,0.2) (0.4,0.6)
`2 (0.3,0.5) (0.4,0.5) (0.6,0.3) (0.5,0.4) (0.4,0.4) (0.6,0.4)
`3 (0.5,0.4) (0.8,0.2) (0.5,0.4) (0.8,0.1) (0.7,0.3) (0.7,0.3)
`4 (0.7,0.2) (0.5,0.4) (0.4,0.5) (0.9,0.1) (0.3,0.5) (0.3,0.5)
`5 (0.8,0.2) (0.6,0.3) (0.8,0.2) (0.2,0.7) (0.5,0.3) (0.5,0.4)
`6 (0.4,0.5) (0.7,0.2) (0.7,0.2) (0.4,0.4) (0.4,0.5) (0.4,0.3)
`7 (0.5,0.5) (0.3,0.6) (0.3,0.6) (0.4,0.5) (0.6,0.4) (0.6,0.3)

ρ̂ (0.7,0.3) (0.6,0.2) (0.3,0.4) (0.5,0.4) (0.3,0.3) (0.7,0.1)

We use med-level threshold function for BIFSS and the med-level soft set with its tabular
representation (Table 12) is given as follows

medΓ̂ = {(0.5, 0.4)/ε1, (0.6, 0.3)/ε2, (0.5, 0.4)/ε3, (0.4, 0.4)/ε4, (0.5, 0.4)/ε5, (0.5, 0.4)/ε6}.

From Table 12, we can obtained the partition of Ŷ is N1 = {`1}, N2 = {`2}, N3 = {`3}, N4 = {`4},
N5 = {`5}, N6 = {`6} and N7 = {`7}. We find the expectation score weights from PIFS, which are
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ω̂1 = 0.7, ω̂2 = 0.7, ω̂3 = 0.45, ω̂4 = 0.55, ω̂5 = 0.5 and ω̂6 = 0.8. From partition, we constructedWSDM
which is given in Table 13.

Table 12. Level Soft Set L(Γ̂; med).

Ŷ ε1 ε2 ε3 ε4 ε5 ε6

`1 1 1 0 0 1 0
`2 0 0 1 1 0 1
`3 1 1 1 1 1 1
`4 1 0 0 1 0 0
`5 1 1 1 0 1 1
`6 0 1 1 1 0 0
`7 0 0 0 0 1 1

Table 13. TheWSDM of case study in Section 5.

Ni N1 N2 N3 N4 N5 N6 N7

N1 ϕ

N2


ε1∗1

1 , ε1∗0.8
2 ,

ε1∗0.6
3 , ε2∗0.7

4 ,
ε2∗0.9

5 , ε2∗0.8
6

 ϕ

N3

{
ε3∗0.7

3 , ε3∗0.9
4 ,

ε3∗0.8
6

} {
ε3∗1

1 , ε3∗0.8
2 ,

ε3∗0.6
5

}
ϕ

N4

{
ε1∗0.8

2 , ε1∗0.6
5 ,

ε4∗0.9
4

} {
ε2∗0.7

3 , ε2∗0.8
6 ,

ε4∗1
1

} 
ε3∗0.8

2 ,
ε3∗0.7

3 ,
ε3∗0.6

5

 ϕ

N5
{

ε5∗0.7
3 , ε5∗0.8

6
} {

ε2∗0.9
4 , ε5∗1

1 ,
ε5∗0.8

2 , ε5∗0.6
5

} {
ε3∗0.9

4
} 

ε4∗0.9
4 , ε5∗0.8

2 ,
ε5∗0.7

3 , ε5∗0.6
5 ,

ε5∗0.8
6

 ϕ

N6

{
ε1∗1

1 , ε1∗0.6
5 ,

ε6∗0.7
3 , ε6∗0.9

4

} {
ε2∗0.8

6 , ε6∗0.8
2

} 
ε3∗1

1 ,
ε3∗0.6

5 ,
ε3∗0.8

6




ε4∗1
1 ,

ε6∗0.8
2 ,

ε6∗0.7
3


{

ε5∗1
1 , ε5∗0.6

5 ,
ε5∗0.8

6 , ε6∗0.9
4

}
ϕ

N7

{
ε1∗1

1 , ε1∗0.8
2 ,

ε7∗0.8
6

} {
ε2∗0.7

3 , ε2∗0.9
4 ,

ε7∗0.6
5

} 
ε3∗1

1 ,
ε3∗0.8

2 ,
ε3∗0.7

3 ,
ε3∗0.9

4




ε4∗1
1 ,

ε4∗0.9
4 ,

ε7∗0.6
5 ,

ε7∗0.8
6




ε5∗1
1 ,

ε5∗0.8
2 ,

ε5∗0.7
3




ε6∗0.8
2 ,

ε6∗0.7
3 ,

ε6∗0.9
4 ,

ε7∗0.6
5 ,

ε7∗0.8
6

 ϕ

From Table 13, we have

M1 = {M(N1, N2), M(N1, N5), M(N1, N6), M(N2, N5), M(N2, N6), M(N3, N7), M(N4, N7), M(N5, N6)}.

M2 = {M(N1, N3), M(N1, N4), M(N1, N7), M(N2, N3), M(N2, N4), M(N2, N7), M(N3, N4), M(N2, N4),

M(N3, N5), M(N3, N6), M(N4, N5), M(N4, N6), M(N5, N7), M(N6, N7)}.

From WSDM, we know that in M(N1, N2), |Ê1| = |ε1| × 0.7 + |ε2| × 0.7 + |ε5| × 0.5 = 1.9 and
|Ê2| = |ε3| × 0.45 + |ε4| × 0.55 + |ε6| × 0.8 = 1.8, thus we find that N1 is superior to N2, that is, `1 is
superior to `2. Similarly, in M(N1, N3), |Ê3| > |Ê1|, the alternative in N3 is superior to the alternative in N1,
that is, `3 is superior to `1. From M(N1, N4), |Ê1| > |Ê4|, the alternative in N1 is superior to the alternative
in N4, that is, `1 is superior to `4. From M(N1, N5), we have `5 is superior to `1. From M(N1, N6), we
have `1 is superior to `6. From M(N1, N7), we have `1 is superior to `7. From M(N2, N4), we have `2 is
superior to `4. From M(N4, N6), we have `6 is superior to `4. From M(N2, N6), we have `2 is superior to



Mathematics 2019, 7, 742 17 of 21

`6. From M(N6, N7), we have `6 is superior to `7. From M(N4, N7), we have `7 is superior to `4. And from
M(N3, N5), we have `3 is superior to `5. Hence the order relation among the alternatives is

`3 � `5 � `1 � `2 � `6 � `7 � `4,

and `3, `5 and `1 are the best candidates for scholarship.

6. Comparison Analysis

In this section, we compare our proposed algorithm with some related methods to indicate
its advantages.

At first, we compare our method with the method proposed in Reference [22], where Agarwal define
GIFSS and used it for different problems like medical diagnose and decision making but in Reference [23],
Feng pointed out some problems in the proposed method and provided a counter example that shows
that in calculating the NAE in the fifth step, the relation is not compatible with the ⊗ operation. Also in
Reference [45], Khalil gives a counter example to some propositions of GIFSS. If we compare our method
with the method proposed in Reference [23], we have seen that the we get same result as in Reference [23].
But it is not necessary that we get the same results because our method is different and helps in situations
when all attributes are not of equal importance and we need to put some restrictions/boundaries on
membership and non-membership functions. In our proposed method, we can find not only the best choice
alternative, but also an order relation of all alternatives easily by scanning theWSDM at most one time.
If we compare our method with the method proposed in Reference [40], we have seen that the previous
method deals with the intuitionistic fuzzy soft sets and in his method he did not give any information on
how to calculate the weights of parameters but in our proposed method we are working in GIFSS and
give different criteria to find the weights of parameters by using parametric intuitionistic fuzzy soft set. We
compare our method with the methods proposed in References [23,40,46–49] and results summarized in
Table 14 taken from [23], we have seen that the order relation among all alternatives and optimal alternative
is the same as we have. Only in Reference [46], we have seen that the `3 is superior to `1, but in remaining
all methods `1 is superior to `3. Actually Lin use the measure SLin(ξÂ, ϑÂ) = 2ξÂ + ϑÂ − 1, which is
increasing w.r.t the ϑÂ. This is counter intuitive and might cause difficulties in some practical applications.

Table 14. Order of alternatives using different methods.

Ŷ Order of the Alternatives

[23] `4 � `1 � `3 � `2 � `5
[40] `4 � `1 � `3 � `2 � `5
[46] `4 � `3 � `1 � `2 � `5
[47] `4 � `1 � `3 � `2 � `5
[48] `4 � `1 � `3 � `2 � `5
[49] `4 � `1 � `3 � `2 � `5

Proposed `4 � `1 � `3 � `2 � `5

Our main concern to compare with the method proposed in Reference [23] because both papers
dealing with GIFSS. But when we solved the case study Section 5, the order of the alternatives not remains
the same, that is,

`3 � `5 � `4 � `6 � `1 � `2 � `7.

The reason behind the changing of order is that, in our proposed method we put some threshold
function or values initially that minimize the effect of alternatives that are not fulfil the initial criteria.
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The proposed method depends on the initial threshold function, like if we use the top-bottom threshold
function then we get the order of alternatives

`3 � `5 � `4 � `1 � {`2, `6, `7}.

It means it is important to select the threshold function or threshold value according to the situation
required in decision making. Actually this is an advantage in a sense that our proposed method response
when we change the threshold function or values because the threshold values suggested according to
the decision problem situation and secondly we strengthen the attributes by assigning the weights to
the attributes.

The limitations of our approach are that in Algorithm 1, the attributes categorized in two groups
and the weights are more effective only when the difference between positive membership and negative
membership function is maximum. In Algorithm 2, we assign different weights to the attributes but to
make weights more effective, the difference between positive membership and negative membership
function is high.

7. Conclusions

Keeping in mind the idea of decision making, in this paper, we have strengthened the
director/administrator/decision maker point of view because first, he adjusts the initial conditions
according to a situation like in the case study in Section 5, he makes an initial condition that the
CGPA of a candidate should be greater than a particular value. Secondly, he differentiates the
different attributes/criteria by assigning different weights like in the case study in Section 5, he
gave the interview more weightage than the personal statement. Thirdly, we provide the criteria
for obtaining weights of different attributes and the weights obtained from PIFS provided by
director/administrator/decision maker.

The idea of GIFSS is very encouraging in decision-making since it considers how to capitalize an
additional intuitionistic fuzzy input from the director to minimize any possible perversion in the data
provided by evaluating specialists. First, Skowron and Rauszer [43] initiated the concept of discernibility
matrix and extensively used in rough sets to solve attribute reduction, and the influence of it are significant
and easy to understand. In this paper, we use an adjustable perspective to GIFSS and get level soft sets.
Then each GIFSS can be seen as a level soft set and composed a crisp soft set, therefore, for solving decision
making problems we applyWSDM. In literature, GIFSS is defined and applied for decision making
problems using intuitionistic fuzzy weighted averaging operators. But in our daily life decision making
problems, different attributes are not of equal importance. Some are more important than others; therefore,
the decision maker assigns different values (weights) to different attributes and imposed different threshold
functions when we need to put a restriction on membership functions and non-membership functions.
Our proposed technique can not only give the best alternative but also an order relation of all alternatives
easily, by scanning the WSDM at one time. We define the threshold functions like mid-threshold,
top-bottom-threshold, bottom-bottom-threshold, top-top-threshold, med-threshold function and their
level soft sets. After, we proposed two algorithms based on threshold functions,WSDM, and GIFSSs.
In Algorithm 1, the attributes are categorized in two groups while in Algorithm 2, each attribute is
weighted differently. To show the supremacy of the given methods we illustrate a descriptive example
using Algorithm 2. Results indicate that the proposed method is more effective and generalized over all
the existing methods of fuzzy soft sets.

In future directions, we will introduce the different methods to get the weights of attributes by using
similarity or entropy measures. We apply this method to the best concept selection and multiattribute
classification or sorting problems.
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