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Abstract: In this study, we systematically investigate a road-rail intermodal routing problem the
optimization of which is oriented on the customer demands on transportation economy, timeliness
and reliability. The road-rail intermodal transportation system is modelled as a hub-and-spoke
network that contains time-flexible container truck services and scheduled container train services.
The transportation timeliness is optimized by using fuzzy soft time windows associated with the
service level of the transportation. Reliability is enhanced by considering multiple sources of time
uncertainty, including road travel time and loading/unloading time. Such uncertainty is modelled
by using fuzzy set theory. Triangular fuzzy numbers are adopted to represent the uncertain time.
Under the above consideration, we first establish a fuzzy mixed integer nonlinear programming
model with a weighted objective that includes minimizing the costs and maximizing the service level
for accomplishing transportation orders. Then we use the fuzzy expected value model and fuzzy
chance-constrained programming separately to realize the defuzzification of the fuzzy objective and
use fuzzy chance-constrained programming to deal with the fuzzy constraint. After defuzzification
and linearization, an equivalent mixed integer linear programming (MILP) model is generated to
enable the problem to be solved by mathematical programming software. Finally, a numerical case
modified from our previous study is presented to demonstrate the feasibility of the proposed fuzzy
programming approaches. Sensitivity analysis and fuzzy simulation are comprehensively utilized to
discuss the effects of the fuzzy soft time windows and time uncertainty on the routing optimization
and help decision makers to better design a crisp transportation plan that can effectively make
tradeoffs among economy, timeliness and reliability.

Keywords: routing problem; road-rail intermodal transportation; hub-and-spoke network; fuzzy soft
time windows; time uncertainty; fuzzy programming; sensitivity analysis

1. Introduction

Globalization and accompanying international trade enable companies to take advantage of the
rich market resources of the entire world, including outsourcing businesses to professional partners to
reduce production cost and extending markets to seek more customers to make more profit [1–3]. As a
result, international freight transportation has a positive trend and its volume will increase fourfold by
2050 [4]. Although the international trade and global commodity circulation bring great opportunities
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for the growth of companies, challenges also exist. One of the biggest of these is from the transportation
industry [5,6]. With the rapid expansion of the companies’ businesses, the distribution channels for
their raw materials and products are extended significantly [7]. The long-distance distribution channels
enhance the difficulty of transportation organizations, and thereby increase both the cost of logistics
and time of accomplishing the transportation orders of companies. As a result, improving the logistics
performance is widely acknowledged to be a crucial approach for companies in order to maintain
competitiveness in the worldwide market [8,9].

In response to the increasing demand of companies for reducing the logistics cost and time,
an advanced transportation mode, namely intermodal transportation, has been widely adopted
by large numbers of companies to transport their goods in international trade [10]. Intermodal
transportation can be defined as the transportation of containerized cargoes from their origins to
associated destinations by using more than one transportation mode, including air, rail, road and
water [11,12]. The combination of various transportation modes can form a seamless door-to-door chain
that can fully make use of the respective advantages of different modes, which can help enterprises to
reduce the cost created in the transportation process [13]. Furthermore, by using the ISO standard
containers to carry goods, mechanized operations can be promoted in intermodal transportation.
Therefore, the timeliness can be enhanced to improve the service level of the transportation. Currently,
intermodal transportation has been widely used in North America [14] and Asia [15]. In Europe,
for example in Italy [16], although the road industry is still the main means of freight transportation,
freight volume accomplished by intermodal transportation is sustainably growing.

Intermodal transportation is considered as a promising means of efficiently improving the logistics
performance [17]. Among the diverse forms of transportation, road-rail intermodal transportation
integrates the time-flexible road transportation implemented by container trucks and scheduled rail
transportation. It therefore enjoys both the good mobility of trucks on short/medium-distance
collection and delivery and the cost efficiency as well as large capacity of rail transportation
on long-distance distribution [18,19]. Thus, the road-rail intermodal transportation is the most
representative form of the diverse intermodal transportation modes and gets more and more popular in
inland transportation. Therefore, in this study, we focus on road-rail intermodal transportation planning.
With the road-rail intermodal transportation network becoming mature, how to optimally utilize the
existing transportation facilities and equipment in the network to accomplish the transportation orders
draws considerable attention from both transportation demanders (e.g., companies with transportation
demands) and transportation managers (e.g., intermodal transportation operators) [20]. Consequently,
the road-rail intermodal routing problem becomes the forefront in the intermodal transportation
planning field [18].

The road-rail intermodal routing problem aims at designing the best origin-to-destination
routes that combine container trucks and container trains to enable customers to accomplish their
transportation orders. It is much more complex than the famous vehicle routing problem, since two
different transportation modes, i.e., road transportation (container trucks) and rail transportation
(container trains), should be optimized in a combinatorial way in the same transportation network [21].
Satisfying customer demands is the foundation of the routing optimization, especially when the
traditional transportation industry is trying its best to develop into the modern service industry [22].
Therefore, the road-rail intermodal routing investigated by this study is a customer-centred optimization.
Generally, the customer demands can be summarized as in Figure 1 [18].
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Figure 1. Customer demands in the road-rail intermodal routing.

First of all, since the cost created in the logistics activities research is up to nearly 30–50% of the
companies’ total production cost [5,8], reducing logistics cost is considered as an effective way for
companies to make profits. This motivates the minimization of the costs paid for accomplishing the
transportation orders as the optimization objective of the road-rail intermodal routing modelling. Such
an objective is established in the modelling by all the relative literature.

Secondly, improving the transportation timeliness to realize on-time transportation is important
for companies that need to distribute their materials or products through the extensive intermodal
transportation network. In the era when large numbers of companies resort to just-in-time (JIT)
strategy to minimize inventory, minimizing time does not always lead to the minimization of costs [23].
Therefore, besides reducing costs paid for accomplishing their transportation orders, they also expect
goods delivery at the right time instead of traditional delivery using the least time, i.e., avoiding both
early and late delivery [9]. Solving the question of how to formulate and further improve the customer
demand on timeliness is thus an important goal related to enhancing the service level of the intermodal
transportation and its routing optimization.

Last but not least, customers attach great importance to transportation reliability so that their
transportation orders can be accomplished without disruptions, in order that they can reduce
opportunity costs. Transportation reliability is significantly influenced by the uncertainty of the
operations of the intermodal transportation network [24]. The operation uncertainty leads to time
uncertainty. In the road-rail intermodal transportation network, the container trains are operated
strictly by fixed schedules and usually get less disruptions [1,25,26]. Consequently, the time uncertainty
of rail transportation can be neglected. As a result, in this study, road travel time and loading/unloading
time are considered as the sources of time uncertainty. Road travel time uncertainty emerges due
to traffic congestion, bad weather and accidents [1,27,28], while loading/unloading time uncertainty
results from the unstable proficiency and state of staff that conduct loading/unloading operations,
technical issues of the loading/unloading equipment and unpredictable tasks that occupy staff and
equipment. These two sources of time uncertainty will not only influence the goods delivery but also
disrupt the transshipment between road and rail. They should therefore be modeled in the road-rail
intermodal routing optimization to improve the routing reliability.

Above all, in this study, we explore the road-rail intermodal routing problem that is directly
oriented on satisfying the customer demands on reducing costs, improving timeliness and enhancing
reliability. The contributions made by this study are fivefold.
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(1) Fuzzy soft time windows are employed to model the due dates for accomplishing transportation
orders. Maximizing the service level associated with the fuzzy soft time windows is set as part of the
weighted objective of the road-rail intermodal routing model.

(2) Multiple sources of time uncertainty, i.e., road travel time uncertainty and loading/unloading
time uncertainty, are comprehensively modeled by using fuzzy set theory.

(3) A hub-and-spoke network is utilized to model the road-rail intermodal transportation system
with time-flexible container truck services and scheduled container train services.

(4) A fuzzy mixed integer nonlinear programming model is constructed to formulate the road-rail
intermodal routing problem with fuzzy soft time windows and multiple sources of time uncertainty,
and an exact solution approach combining defuzzification and linearization is developed.

(5) Sensitivity analysis and fuzzy simulation are adopted to quantify the effects of the fuzzy soft
time windows and the uncertainty of road travel time and loading/unloading time on the road-rail
intermodal routing optimization.

The remaining sections of this study are organized as follows. In Section 2, the existing literature
on the intermodal routing problem is reviewed to demonstrate our improvements. In Section 3,
we present the methods used to model the multiple sources of time uncertainty, the fuzzy soft time
windows with respect to the due dates of accomplishing transportation orders and the road-rail
intermodal hub-and-spoke transportation system. Based on the modelling foundation proposed in
Section 3, we establish a fuzzy mixed integer nonlinear programming model in Section 4 for the
road-rail intermodal routing problem that fully considers to satisfy the customer demands on costs,
timeliness and reliability. In Section 5, considering the fuzziness of the model, defuzzification is first of
all conducted to get a crisp model by using the fuzzy expect value model and fuzzy chance-constrained
programming, so that decision makers can obtain crisp road-rail intermodal route planning. Then
using the linearization technique developed in our previous study [1,25], linear reformulation of
the nonlinear model is realized, so that global optimal solutions to the road-rail intermodal routing
problem can be effectively obtained by using an exact solution algorithm that can be implemented by
standard mathematical programming software. In Section 6, computational experiment is designed
to verify the feasibility of the proposed methods. The effects of the fuzzy soft time windows and
the uncertainty of road travel time and loading/unloading time on the road-rail intermodal routing
optimization are discussed by using sensitivity analysis and fuzzy simulation. Finally, the conclusions
of this study are drawn in Section 7.

2. Literature Review

There are large numbers of research articles that focus on the intermodal routing optimization.
These studies have been very successful and so provide a solid foundation for us to continue this study.
In order to fully understand the current progress of the existing literature on the customer-centred
intermodal routing optimization, a systematic literature review on how existing literature deals with
the customer demands is presented. Additionally, how to model the intermodal transportation system
is a fundamental issue to optimize the associated routing problem. Consequently, the approaches for
such issue will also be reviewed in this section.

2.1. Review on Modeling Customer Demand on Economy in the Intermodal Routing

Lowering costs reflects the customer demand on improving transportation economy and is
always the most important objective of intermodal routing optimization. Even in the multi-objective
optimization on the intermodal routing problem, for example, the hazardous materials routing
problem [29,30] and fresh food routing problem [31], the economic objective plays an important
role in the optimization. A few studies on the intermodal routing problem, e.g., Chang [8] and
Moccia et al. [32], adopt a piecewise linear cost function that shows the effect of economies of scale to
calculate the economic objective. However, the piecewise linear cost function is only dependent on the
transported weight [8]. Actually, the costs are not only associated with transported weight, but also
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related to the time and distance. Moreover, it is difficult to determine the various parameters of the
piecewise linear cost function in transportation practice. Therefore, it is not completely applicable
to use the piecewise linear cost function to represent the economic objective function. Currently,
the majority of the existing studies employ generalized costs to formulate the charges for accomplishing
the transportation orders, e.g., Sun et al. [1,18,25,30], Ayar and Yaman [31], Hrušovský et al. [2] and
Demir et al. [3]. Generalized costs have a structure shown as Figure 2 [30,33,34] and thus cover all the
payment created in the activities of the intermodal transportation. In this study, we continue to use
generalized costs to formulate the economic objective of road-rail intermodal routing problem.
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2.2. Review on Modeling Customer Demand on Timeliness in the Intermodal Routing

As for the customer demand on improving transportation timeliness, there are various studies
on intermodal routing problem that consider the “less time, the better” concept, and hence set
minimizing the transportation time as their optimization objective, e.g., Chang [8], Vale and Ribeiro [21],
Sun and Chen [35], Cai et al. [36], Xiong and Wang [37] and Xiong and Dong [38]. In these studies,
a multi-objective optimization is used to deal with the intermodal routing problem, and minimizing
the transportation time is of one of the multiple objectives of the modelling. Tradeoff between
minimizing the transportation time and other objectives (e.g., minimizing transportation costs [8,35–38]
or minimizing carbon emissions [21]) is made by using Pareto analysis. However, as emphasized by Dua
and Sinha [9], minimizing transportation time is not always the best option to improve transportation
timeliness, since nowadays the customers highly expect that their goods can be delivered at the right
time to avoid both early and late delivery. In this case, the majority of the existing literature consider
improving transportation timeliness by formulating due dates of accomplishing transportation orders.
Currently, the methods to formulate the due dates can be summarized as in Figure 3.

As for the formulation methods shown in Figure 3, at the initial stage, using hard time points
to describe the due dates is very popular in the intermodal routing optimization. Sun et al. [19,39],
Verma and Verter [40] and Wang and Han [41] formulate the due date constraint based on the hard
time point formulation that requires that the instants of accomplishing transportation orders by
intermodal transportation should not be later than the prescribed due dates. Although using hard
time points to formulate the due date constraint can avoid lateness of the delivery, early delivery
might occur. Consequently, some studies on the intermodal routing problem propose the concept
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of soft due dates, so that penalty can be used to reduce the degree of both earliness and lateness of
the delivery. Hrušovský et al. [2] and Demir et al. [3] use soft time points to represent the due dates.
In their studies, the penalty cost is linear with the degree of the earliness or lateness. By lowering
the penalty cost caused by earliness and lateness of the delivery through minimizing the economic
objective, the on-time transportation can be enhanced.Mathematics 2019, 7, x FOR PEER REVIEW 6 of 40 
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As claimed by Sun et al. [42], time windows are more suitable and flexible to model the due
dates by using lower and upper bounds to describe the customers’ opinions on the delivery that
is neither too early nor too late. Currently, Zhang et al. [43] develop hard time windows to model
the due dates and require that the transportation time of each order must fall into the time window.
In fact, customers also accept the violation of the due date time windows to a certain degree [42,44,45].
Under this situation, soft time windows receive a lot of attention from the intermodal routing literature
when discussing the formulation of due dates. Sun et al. [1,18,30] and Fazayeli et al. [46] explore the
intermodal location-routing problem with due dates denoted by soft time windows. In Fazayeli et al.’s
study, the penalty cost strategy that is the same as that of Hrušovský et al. [2] and Demir et al. [3] is
used to optimize the timeliness of the intermodal transportation. In many cases, however, violation
of the soft due date time windows does not lead to a penalty cost [44]. Moreover, it is difficult to
determine the value of the unit penalty cost in transportation practice.

The due dates claimed by customers usually involve their subjective opinions [44]. The service
level of the intermodal routing on timeliness significantly influences the customer satisfaction. When
formulating soft time windows and the corresponding penalty cost strategy is infeasible, it is worthwhile
to try to model the service level of the intermodal routing in order to further improve the timeliness by
constructing an associated constraint or objective. The most popular method of building the function of
customer satisfaction associated with subjective opinions is fuzzy set theory [45]. From that viewpoint
of fuzzy set theory, the due dates can be modeled as fuzzy soft time windows that are expressed by
trapezoidal fuzzy numbers [44,45]. The customer satisfaction on the instants when the transportation
orders are accomplished can be measured by the fuzzy membership of the trapezoidal fuzzy numbers.
Such measurement quantifies the service level of the intermodal routing. Currently, to the best of
our knowledge, there is no existing literature that investigates the intermodal routing problem with
fuzzy soft time windows. But such an idea gets widely discussed in the vehicle routing problem,
e.g., Tang et al. [44], Lopez-Castro and Montoya-Torres [45], Ghannadpour et al. [47] and Xu et al. [48].
In this study, we will introduce the fuzzy soft time windows into the intermodal routing problem to
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improve the service level of the routing optimization. The optimization of the service level will be
realized by setting service objective and constructing service level constraint.

2.3. Review on Modeling Customer Demand on Reliability in the Intermodal Routing

Transportation reliability is a measure of the containers being successfully delivered to the
receivers by using the planned intermodal routes in actual transportation. It is highly influenced by
uncertainty [49]. As explained in Section 1, operational time is the main source of the uncertainty. In the
majority of the existing studies on the intermodal routing problem, travel time and loading/unloading
time are treated as deterministic parameters. Sun et al. [50] pointed out that both overestimation and
underestimation might exist if uncertain parameters are valued in a deterministic way, which will
reduce the reliability of the intermodal routing.

However, the intermodal routing problem with operational time uncertainty (specifically, road
travel time and loading/unloading time uncertainty in this study) does not receive enough of the
highlights it deserves. A few relative studies can be found so far. The current research progress
on the intermodal routing problem with operational time uncertainty is illustrated by Figure 4.
Hrušovský et al. [2] and Demir et al. [3] explore the green intermodal routing problem with travel
time uncertainty. Stochastic programming is employed by their study to model the uncertain travel
time. Similar study on the sea-rail intermodal routing problem with stochastic travel time is then
conducted by Zhao et al. [51], in which a chance-constrained stochastic approach is provided under
the assumption that the travel time follows a normal distribution. Uddin and Huynh [24,52] also
underline the importance of formulating road travel time uncertainty in improving the reliability of the
road-rail intermodal routing, and develop a multicommodity model based on stochastic programming.
Besides stochastic programming, Sun et al. [1] adopt the time-dependent travel time represented by
the continuous piecewise linear function to describe the road travel time uncertainty caused by traffic
congestion. Further they integrate the time-dependent road travel time with the intermodal routing
problem. Resat and Turkay [17], Liu et al. [26] and Tang et al. [53] use the classical BPR (Bureau of
Public Roads) equation to estimate the road travel time in road-rail intermodal transportation.
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The above studies only consider the uncertainty of travel time, while neglecting the
loading/unloading time uncertainty that also exists in the routing decision-making stage. Considering
multiple sources of uncertainty however might help decision makers find improved intermodal
routes [1]. As a result, in this study, we will consider both road travel time uncertainty and
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loading/unloading time uncertainty when modeling the road-rail intermodal routing, so that road-rail
intermodal routes with improved reliability can be provided to decision makers.

Moreover, as indicated by Figure 4, stochastic programming, time-dependent programming and
the BPR equation all have their own disadvantages in dealing with the uncertainty [27,54], which
considerably reduces their feasibility in dealing with the optimization problems with uncertainty.
To the best of our knowledge, fuzzy programming as an alternative method to address uncertainty
has not been considered in the intermodal routing literature that involves uncertain issues. Based on
the fuzzy set theory introduced by Zadeh [55], fuzzy programming has been widely considered as
a useful tool to deal with uncertainty [56]. In the fuzzy programming, the uncertain parameters or
variables can be effectively valued by the pessimistic, optimistic and most likely estimations from
experts and decision makers based on their knowledge and experience [50]. Consequently, compared
with the rest three methods, fuzzy programming does not rely on the size of the existing data or the
real-time information of a system and is hence more flexible in practical decision making. Although
less attention has been paid on the fuzzy programming in dealing with the intermodal routing problem
with time uncertainty, it has already been employed by Sun et al. [1] to model capacity uncertainty
and by Sun et al. [18] to formulate demand uncertainty in the intermodal routing problem, and shows
good feasibility. Additionally, it has been widely adopted by the vehicle routing problem with travel
time uncertainty, e.g., Zhang and Liu [27], Zarandi et al. [54] and Djadane et al. [57]. Since fuzzy
programming can combine limited historical data with the expert knowledge and experience to
effectively estimate the uncertainty, in this study, we will use fuzzy programming to model the multiple
sources of time uncertainty that exist in the road-rail intermodal routing problem.

2.4. Review on Modeling Intermodal Transportation System

How to model the intermodal transportation system is the foundation of the routing optimization.
First of all, an efficient intermodal transportation network where the routes are planned should be
constructed. The consolidation of the intermodal transportation network is the most important factor
that influences the efficiency of the transportation [6]. The four kinds of consolidation networks,
i.e., point-to-point, line, collection-and-distribution and hub-and-spoke networks, can be seen from
Macharis and Bontekoning’s work [6]. The hub-and-spoke network is widely acknowledged to be the
most suitable consolidation network to construct the road-rail intermodal transportation system [18].
The superiority of the road-rail intermodal hub-and-spoke network is its systematic integration of
the different advantages of the time-flexible road transportation and scheduled rail transportation
in the pre haul-long haul-end haul transportation chain, which is stressed by Wang et al. [19] and
Sun et al. [1,18,30].

However, modeling the road-rail transportation system as a hub-and-spoke network does
not receive enough attention from researchers in the intermodal routing field. A few studies,
e.g., Sun et al. [1,18] and Uddin Huynh [24], consider the hub-and-spoke structure as part of the
transportation network when modeling the intermodal transportation system. Sun et al. [30] adopted
the hub-and-spoke network to represent the road-rail intermodal transportation network when
exploring the bi-objective optimization on the hazardous materials routing problem. Although such
consolidation network is not very popular in the road-rail intermodal routing problem, it has had great
importance attached to the intermodal transportation design problem, e.g., Wang et al. [19], Meng and
Wang [58], Yang et al. [59], Lin and Chen [60,61] and Konings et al. [62]. Consequently, in this study,
we will model the road-rail intermodal transportation system as a hub-and-spoke network and further
optimize the associated road-rail intermodal routing problem.

Furthermore, the routing optimization is used to support the practical decision making on the
transportation organization. As a result, the modeling of the road-rail intermodal transportation
system should match the real world. As stated in Section 1, the intermodal routing problem is more
complex than the vehicle routing problem, since it involves more than one transportation mode
and different transportation modes are operated in different ways. In the road-rail transportation
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system, road transportation is time flexible, while rail transportation should be operated with fixed
schedules [6,8]. Therefore, when modeling the road-rail intermodal routing problem, a combination
of the two different transportation modes by transshipping operations at rail terminal (hubs) in the
road-rail intermodal hub-and-spoke network should therefore follow the restrictions of the schedules
of the selected container trains. Moreover, the arrival and departure of the containers carried by
container trains should also observe the schedules.

At the beginning of the intermodal routing optimization, schedules are not formulated in the
intermodal routing problem. The majority of the existing studies, e.g., Yiping et al. [36], Xiong
and Wang [37], Xiong and Dong [38], Zhang et al. [43], Çakır [63], Chang et al. [64], consider that
after arriving at the transshipping node by one transportation mode, the containers are immediately
unloaded, then loaded on to another transportation mode once the unloading operation is finished, and
finally depart from the transshipping node when the loading operation is finished. Since the schedules
of some transportation modes really exist in the transportation practice and need to be modeled in
the intermodal routing problem, modeling schedules become part of the routing optimization. A few
studies, e.g., Hrušovský et al. [2], Demir et al. [3], Liu et al. [65] and Lin [66], formulate the scheduled
departure instant constraint that the arrival instant of containers at the transshipping node should not
be later than the scheduled departure instant of the successive transportation mode with schedules.
Limited studies can be found that consider the scheduled service time window of transportation
modes with schedules when optimizing the intermodal routing problem, e.g., Chang [8], Ayar and
Yaman [31] and Moccia et al. [32]. In transportation practice, schedules regulate more than the departure
instant and service/operation time window. As summarized by our previous study [1,25,30], in the
road-rail intermodal transportation scenario, the schedules of rail transportation contain operation
time windows, arrival instants and departure instants of freight trains at and from the rail terminals
covered on their running routes as well as their operational periods. Therefore, in order to establish a
road-rail intermodal transportation system that represents the real-world transportation organization,
we will model the above-mentioned contents of schedules by referring to our previous study.

2.5. Review Summaries

As we can see from Sections 2.1–2.4, the existing literature on the intermodal routing problem has
shown that sustainable accomplishments have been achieved, especially in optimizing the customer
demand on transportation economy. But as we can see from the literature review, research gaps still
exist in the following aspects:

(1) Optimizing the customer demand on transportation efficiency by formulating due dates of
accomplishing transportation orders in a more applicable way.

(2) Optimizing the customer demand on transportation reliability by modeling multiple sources
of time uncertainty, i.e., road travel time uncertainty and loading/unloading time uncertainty, in a more
feasible programming method.

(3) Modeling an efficient road-rail intermodal transportation system that also matches the
real-world transportation organization to provide a solid foundation for the routing modelling.

In this study, we focus on the customer-centred freight routing optimization in the road-rail
intermodal transportation network and aim at bridging these research gaps through the way that is
presented in Section 1 (see the fivefold contributions made by this study).

3. Methodology

In this study, we extend the road-rail intermodal routing problem by modeling multiple sources of
time uncertainty, i.e., road travel time and loading/unloading time uncertainty, to improve reliability and
considering fuzzy soft time windows to improve service level associated with timeliness. The routing
problem is further oriented on a road-rail intermodal hub-and-spoke transportation system. In this
section, we present the methods for modeling time uncertainty, fuzzy soft time windows and the
road-rail intermodal transportation system.
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3.1. Modeling Time Uncertainty by Fuzzy Set Theory

As mentioned in Section 1, considering the limitation of using stochastic programming to deal
with uncertainty, in this study, we adopt fuzzy set theory to model the two kinds of time uncertainty
by using fuzzy numbers. In practical decision-making, different decision makers might hold different
viewpoints on estimating the values of fuzzy parameters, including pessimistic, optimistic and most
likely estimations [30,67].

Interval, triangular and trapezoidal fuzzy numbers can be used to represent fuzzy
parameters [18,68]. In this study, we select triangular fuzzy numbers to model the above characteristics
of the estimation of the fuzzy parameters (specifically, road travel time and loading/unloading time in
this study) due to the following two reasons.

(1) Triangular fuzzy numbers are simpler and more flexible in the fuzzy arithmetic operations
than the other two kinds of fuzzy numbers [69,70].

(2) Triangular fuzzy numbers can match the estimations held by different decision makers to fully
reflect the practical decision-making scenario under fuzzy environment, which can be seen in Figure 5.
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For a triangular fuzzy number t̃ = (t1, t2, t3) representing fuzzy road travel time or fuzzy
loading/unloading time, its three prominent points are defined as follows.

(1) t1 is the most optimistic estimation, and corresponds to the best case that the traffic conditions
of the road transportation are extremely good, or the loading/loading operations are conducted
quite smoothly.

(2) t2 is the most likely estimation, and corresponds to the most likely case that shows what the
traffic conditions of the road transportation or the loading/unloading operations usually are.

(3) t3 is the most pessimistic estimation, and corresponds to the worst case that the traffic conditions
of the road transportation are extremely bad (for example, severe congestion occurs), or there are severe
technical or operational issues that happen to disrupt the loading/unloading operations (for example,
equipment breakdown happens).

3.2. Modeling the Due Dates of Transportation Orders by Fuzzy Soft Time Windows

As stated in Section 1, in this study, we employ fuzzy soft time windows to model the due dates
of accomplishing transportation orders, so that the timeliness of road-rail intermodal routing can be
effectively improved. First of all, there need time intervals to represent the instants of accomplishing
transportation orders that are neither too early nor too late for customers. When the instant of
accomplishing a transportation order falls into such a time interval, the satisfaction of the customer
reaches the highest. Otherwise the satisfaction will be reduced. Moreover, since the customers cannot
accept that the transportation orders are accomplished too early or too lately. Therefore, the fuzzy soft
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time windows have lower bounds and upper bounds separately representing the earliest and latest
instants that the customers can accept. Above all, the fuzzy soft time window has four prominent
points, and shows the same representation as the trapezoidal fuzzy numbers. The fuzzy membership
function of the trapezoidal fuzzy number can therefore be used to measure the customers’ satisfaction
level [44]. A fuzzy soft time window can be denoted by T̃ = (T1, T2, T3, T4) the fuzzy membership of
which is illustrated by Figure 6. The four prominent points of a fuzzy soft time window are given
as follows.
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(1) T1 is the endurable earliest instant of accomplishing a transportation order. The customer
cannot accept the instant of accomplishing a transportation order that is earlier than T1.

(2) [T2, T3] is the preferred instant range of accomplishing a transportation order. The customer
considers the transportation timeliness reaches its maximum, in other words, his or her satisfaction
level reaches maximum (100%), if the instant of accomplishing a transportation order falls into [T2, T3].

(3) T4 is the endurable latest instant of accomplishing a transportation order. The customer cannot
accept the instant of accomplishing a transportation order that is later than T4.

Given an instant of accomplishing a transportation order denoted by T, the corresponding
satisfaction level µ(T) is calculated by Equation (1) [44].

µ(T) =


T−T1
T2−T1

T1 ≤ T < T2

1 T2 ≤ T ≤ T3
T4−T
T4−T3

T3 < T ≤ T4

0 otherwise

(1)

Under the above setting, it is acceptable that the instant of accomplishing a transportation order
falls into [T1, T2] or [T3, T4], which however reduces the customer’s satisfaction level. If the customer
requires a satisfaction level that is no less than η, the endurable instant range of accomplishing the
transportation order is

[
T2η, T3η

]
(see Figure 6), where T2η = η·(T2 − T1)+T1 and T3η = T4−η·(T4 − T3)

according to Equation (1).
In this study, the service level associated with fuzzy soft time windows in the road-rail intermodal

routing is optimized by the following two aspects.
(1) Maximizing the total service levels of all the transportation orders is set as part of the weighted

objective of the routing model.
(2) A service level constraint is established to ensure the service level of each transportation order

is not lower than a satisfaction degree requested by corresponding customer.
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3.3. Modeling the Road-Rail Intermodal Transportartion System

As claimed in Section 2, a hub-and-spoke network shown as Figure 7 is used to model
the road-rail intermodal transportation system. Rail terminals installed with loading/unloading
equipment are the hub where transshipment between container trucks and container trains is realized.
Origins and destinations are the spokes, and are connected with rail terminals by container truck
transportation [19,30]. If containers from various transportation orders at a rail terminal are gathered
together, the operations of the rail terminal can be centralized to lead to economies of scale [19], which
is the main advantage of the road-rail intermodal hub-and-spoke network.
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Another issue is how to coordinate various transportation modes with different operational
characteristics by routing to generate origin-to-destination intermodal routes that are feasible in both
space and time. In the road-rail intermodal transportation system, road transportation is time flexible
and thus offers good mobility, while rail transportation is operated by fixed schedules that regulate
the operation time windows, arrival and departure instants of a container train at the rail terminals
covered on its running route as well as its operational period [1,25,30].

Therefore, in order to design feasible road-rail intermodal routes, the operations of container
trucks should coordinate with the schedules of the container trains, especially during the “Arriving
→ Transshipping→ Departing” operation process at rail terminals. Figure 8 indicates the road-rail
intermodal transportation process in a hub-and-spoke network that captures the operational
characteristics of road and rail transportation [30]. Such process will be formulated in the modelling.

In the transportation process illustrated by Figure 8, there are three kinds of costs that are created
in the road-rail intermodal transportation, i.e., travel costs, loading and unloading costs and storage
costs. The economic objective of the road-rail intermodal routing optimization is also to minimize the
sum of these costs paid for accomplishing all the transportation orders.

As we can see from Figure 8, the arrival instants of containers by trucks are related to the road
travel time, and the storage time of containers at rail terminals are determined by the arrival instants
of containers and the loading/unloading time. Obviously, the uncertainty of road travel time and
loading/unloading time lead to uncertainty of the arrival instant and storage time. Therefore, there
are two parameters (i.e., road travel time and loading/unloading time) and two decision variables
(i.e., arrival instants of containers by trucks and storage time of containers at rail terminals) in the
optimization model that are uncertain.
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4. A Fuzzy Mixed Integer Nonlinear Programming Model

4.1. Modelling Characteristics

The optimization on the routing problem is based on a given framework that contains a series of
modelling characteristics [10,30,71]. According to Sun et al. [30,71] and Kumar et al. [10], the modelling
of a freight routing problem should comprehensively consider the characteristics listed in Figure 9. It also
systematically indicates how we select the modelling characteristics to establish our optimization model.
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Figure 9. Modelling characteristics of the freight routing problem.

4.2. Symbols Used to Establish the Model

The symbols used to establish the optimization model are similar to the ones presented in our
previous study that provides a solid modelling foundation for us to carry out this study [30] and are
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introduced in Table 1. It should be noted that there are two fuzzy decision variables in the model,
and the their fuzziness has been explained in Section 3.3.

Table 1. Notations.

Categories Symbols Representations

TRANSPORTATION
ORDERS

P Transportation order sets served by the road-rail
intermodal routing.

p ∈ P Index of transportation orders.

op & dp
Indexes of the origin and destination of the container
transportation, respectively.

qp Volume in TEU of transportation order p.

t0
p

Release instant of the containers of transportation order p
at origin op (also the instant when the containers of
transportation order p is prepared to get loaded to start the
pre-haul process).[

TW1
p , TW2

p , TW3
p , TW4

p

] Fuzzy soft time window of transportation order p claimed
by the customer that requests this transportation order.

µp(∗)
Service level of transportation order p whose input is the
loading completion instant of containers of transportation
order p at its destination.

ηp ∈ [0, 1] Endurable lowest service level of transportation order p.

ROAD-RAIL
INTERMODAL

TRANSPORTATION
NETWORK

V = (N, A, S) Node-arc-based network, where N, A and S are the node
set, arc set and transportation service set of the network.

i, j & k ∈ N Indexes of the nodes.

m & n ∈ S Indexes of transportation services.

(i, j) ∈ A A direct arc from i and j, on which there are transportation
services.

Si j, Trucki j & Raili j

Transportation service set, road (container truck) service
set and rail (container train) service set on arc (i, j),
respectively, and Si j = Trucki j ∪Raili j ⊆ S.

N−i & N+
i ⊆ N Predecessor node set and successor node set to node i,

respectively.

PARAMETERS

di jm
Travel distance in km in TEU of transportation service m
on arc (i, j)

capi jm
Transportation capacity in TEU of transportation service m
on arc (i, j).

t̃m
i =

(
t1

m
i , t2

m
i , t3

m
i

) Fuzzy loading/unloading time in hour per TEU of
transportation m at node i.

[
twm−

i , twm+
i

]
Operation time window of rail service m at rail terminal i,
where twm−

i is the operation start instant of the
loading/unloading operation and twm+

i is the
corresponding operation cutoff instant (as we can see in
Figure 8, although schedules of container trains regulate
many parameters that control their operations, only
operation time windows of container trains at rail
terminals influence the routing).

t̃i jm =
(
t1
i jm, t2

i jm, t3
i jm

)
Fuzzy travel time of road service m in hour on arc (i, j).

cm Travel costs per TEU per km of transportation service m,

em
Separate loading/unloading costs per TEU of
transportation service m.

fstore Storage costs per TEU per hour at rail terminal.
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Table 1. Cont.

Categories Symbols Representations

DECISION
VARIABLES

xp
ijm

If transportation service m on arc (i, j) is used to move
containers of transportation order p, xp

ijm = 1, otherwise

xp
ijm = 0.

ỹp
i =

(
y1

p
i , y2

p
i , y3

p
i

) Non-negative fuzzy variable: fuzzy arrival instant of the
containers of transportation order p at node i by container
trucks.

z̃p
ijm =

(
z1

p
ijm, z2

p
ijm, z3

p
ijm

) Non-negative fuzzy variable: fuzzy storage time of
container of transportation order p at node i before being
moved by container train m on arc (i, j).

4.3. Objective Functions of the Road-Rail Intermodal Routing Problem

• Economic Objective

minimize
∑

p∈P

∑
(i, j)∈A

∑
m∈Si j

cm·qp·di jm·x
p
ijm

+
∑

p∈P

∑
j∈N

∑
i∈N−i

∑
m∈Si j

em·qp·x
p
ijm +

∑
p∈P

∑
j∈N

∑
k∈N+

i

∑
n∈S jk

en·qp·x
p
jkn

+
∑

p∈P

∑
(i, j)∈A

∑
m∈Raili j

fstore·qp ·̃z
p
ijm

(2)

The economic objective is to minimize the total generalized costs of accomplishing all the
transportation orders that contains travel costs, loading and unloading costs and storage cost.

• Service Objective

maximize
∑
p∈P

µp

E

ỹp
dp
+

∑
i∈N−dp

∑
m∈Truckidp

t̃m
dp
·qp·x

p
idpm


 (3)

The service objective is to maximize the service levels of all the transportation orders to improve
the customers’ satisfaction degrees. Since the road travel time and unloading time are fuzzy,
the instants of accomplishing transportation orders are also fuzzy. In this study, we use the fuzzy
expected value of the instant of accomplishing a transportation order as the input to calculate the
service level.

• Weighted Objective

minimize
∑

p∈P

∑
(i, j)∈A

∑
m∈Si j

cm·qp·di jm·x
p
ijm

+
∑

p∈P

∑
j∈N

∑
i∈N−i

∑
m∈Si j

em·qp·x
p
ijm +

∑
p∈P

∑
j∈N

∑
k∈N+

i

∑
n∈S jk

en·qp·x
p
jkn

+
∑

p∈P

∑
(i, j)∈A

∑
m∈Raili j

fstore·qp ·̃z
p
ijm

−W·
∑

p∈P
µp

E

ỹp
dp
+

∑
i∈N−dp

∑
m∈Truckidp

t̃m
dp
·qp·x

p
idpm




(4)

The economic objective and service objective can be linearly combined together by distributing
a weight to the service objective. The combination is shown as Equation (4). The value of the
weight is determined by the decision makers according to their preference to the service objective.



Mathematics 2019, 7, 739 17 of 40

4.4. Constraints of the Road-Rail Intermodal Routing Problem

∑
i∈N−i

∑
m∈Si j

xp
ijm −

∑
k∈N+

i

∑
n∈S jk

xp
jkn =


−1 ∀ j = op

0 ∀ j ∈ N\
{
op, dp

}
1 ∀ j = dp

∀p ∈ P (5)

∑
m∈Si j

xp
ijm ≤ 1 ∀p ∈ P ∀(i, j) ∈ A (6)

Equation (5) is the flow conservation constraint to ensure the integrity of an origin-to-destination
route for each transportation order. The combination of Equation (5) and Equation (6) ensures the
containers in each transportation order are unsplittable.(

t0
p + t1

n
op ·qp + t1

opkn − y1
p
k

)
·xp

opkn = 0 ∀p ∈ P ∀k ∈ N+
op ∀n ∈ Truckopk (7)

(
t0
p + t2

n
op ·qp + t2

opkn − y2
p
k

)
·xp

opkn = 0 ∀p ∈ P ∀k ∈ N+
op ∀n ∈ Truckopk (8)(

t0
p + t3

n
op ·qp + t3

opkn − y3
p
k

)
·xp

opkn = 0 ∀p ∈ P ∀k ∈ N+
op ∀n ∈ Truckopk (9) ∑

i∈N−j

∑
m∈Raili j

(
twm−

j + t1
m
j ·qp

)
·xp

ijm + t1
n
j ·qp + t1

jdpn − y1
p
dp

·xp
jdpn = 0

∀p ∈ P ∀ j ∈ N−dp
∀n ∈ Truck jdp

(10)

 ∑
i∈N−j

∑
m∈Raili j

(
twm−

j + t2
m
j ·qp

)
·xp

ijm + t2
n
j ·qp + t2

jdpn − y2
p
dp

·xp
jdpn = 0

∀p ∈ P ∀ j ∈ N−dp
∀n ∈ Truck jdp

(11)

 ∑
i∈N−j

∑
m∈Raili j

(
twm−

j + t3
m
j ·qp

)
·xp

ijm + t3
n
j ·qp + t3

jdpn − y3
p
dp

·xp
jdpn = 0

∀p ∈ P ∀ j ∈ N−dp
∀n ∈ Truck jdp

(12)

ỹp
k =

(
y1

p
k , y2

p
k , y3

p
k

)
∀p ∈ P ∀k ∈ N/

({
op

}
∪N−dp

)
(13)

Equations (7)–(9) are used to calculate the three prominent points of the fuzzy arrival instant of
containers at the rail terminal by container trucks after departing from the origin (pre-haul). Equations
(10)–(13) calculate the three prominent points of the fuzzy arrival instant of containers at the destination
by container trucks after departing from the rail terminal (end-haul). After obtaining the prominent
points, the fuzzy arrival instant represented by a triangular fuzzy number can be determined by
Equation (13). max

twn−
j −

y1
p
j +

∑
i∈N−j

∑
m∈Si j

t1
m
j ·qp·x

p
ijm

, 0

− z3
p
jkn

·xp
jkn = 0

∀p ∈ P ∀( j, k) ∈ A ∀n ∈ Raili j

(14)

max

twn−
j −

y2
p
j +

∑
i∈N−j

∑
m∈Si j

t2
m
j ·qp·x

p
ijm

, 0

− z2
p
jkn

·xp
jkn = 0

∀p ∈ P ∀( j, k) ∈ A ∀n ∈ Raili j

(15)



Mathematics 2019, 7, 739 18 of 40

max

twn−
j −

y3
p
j +

∑
i∈N−j

∑
m∈Si j

t3
m
j ·qp·x

p
ijm

, 0

− z1
p
jkn

·xp
jkn = 0

∀p ∈ P ∀( j, k) ∈ A ∀n ∈ Raili j

(16)

z̃p
jkn =

(
z1

p
jkn, z2

p
jkn, z3

p
jkn

)
∀p ∈ P ∀( j, k) ∈ A ∀n ∈ Ri j (17)

The three prominent points of the fuzzy storage time at the rail terminal can be further calculated
by Equations (14)–(16) to obtain the triangular fuzzy number representation of the fuzzy storage time
by Equation (17).

ỹp
j +

∑
i∈N−j

∑
m∈Si j

t̃m
j ·qp·x

p
ijm + z̃p

jkn + t̃n
j ·qp ≤ twn+

j ·x
p
jkn + ε·

(
1− xp

jkn

)
∀p ∈ P ∀( j, k) ∈ A ∀n ∈ Raili j

(18)

In Equation (18), ε is a large enough positive constant. Equation (18) ensures that the loading
completion instant of the containers at the rail terminal should not be later than the operation cutoff

instant (upper bound of the operation time window) of the selected container train. Obviously,
Equation (18) is a fuzzy constraint.∑

p∈P
qp·x

p
ijm ≤ capi jm ∀(i, j) ∈ A ∀m ∈ Si j (19)

Equation (19) is the transportation capacity constraint that ensures the total volume loaded on a
common container train or a common group of truck fleets does not exceed the allowable capacity.

µp

E

ỹp
dp
+

∑
i∈N−dp

∑
m∈Truckidp

t̃m
dp
·qp·x

p
idpm


 ≥ ηp ∀p ∈ P (20)

Equation (20) is the service level constraint that ensures the service level associated with the
expected instant of accomplishing each transportation order should not be lower than the customer’s
satisfaction degree.

xp
ijm ∈ {0, 1} ∀p ∈ P ∀(i, j) ∈ A ∀m ∈ Si j (21)

y3
p
i ≥ y2

p
i ≥ y1

p
i ≥ 0 ∀p ∈ P ∀i ∈ N (22)

z3
p
jkn ≥ z2

p
jkn ≥ z1

p
jkn ≥ 0 ∀p ∈ P ∀(i, j) ∈ A ∀m ∈ Raili j (23)

Equations (21)–(23) are the domain constraints of the variables.

5. Solution Approaches

The aim of designing the approaches is to generate an equivalent mixed integer linear programming
model, so that the global optimal solutions to the road-rail intermodal routing problem can be obtained
by using an exact solution algorithm run by mathematical programming software. Consequently,
the solution approaches contain the following two parts:

(1) Defuzzification that is used to generate a crisp optimization model that can provide decision
makers with crisp route planning.

(2) Linearization that is used to generate an equivalent linear programming model that can be
effectively solved by using an exact solution algorithm to get the global optimal solutions.
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5.1. Defuzzification of the Fuzzy Constraint

Equation (18) is a fuzzy constraint, since it contains fuzzy decision variables ỹp
j and z̃p

jkn as well as

fuzzy parameters t̃m
j and t̃n

j . To realize the defuzzification of Equation (18), fuzzy chance-constrained
programming is applied in this study to reformulate the fuzzy constraint. Compared with the fuzzy
possibility and fuzzy necessity measures, the fuzzy credibility measure is self-dual and can ensure that
a fuzzy event must hold if its credibility equals 1 while it must fail if its credibility equals 0 [27,50].
Therefore, fuzzy credibility is more suitable than the other two measures to be used to construct a
fuzzy chance constraint.

Based on the fuzzy credibility measure, the fuzzy chance constraint of Equation (18) is as Equation
(24). In this equation, α is a confidence level determined by decision makers subjectively. Equation (24)
ensures the credibility of the fuzzy event in Cr{∗} should not be lower than a given credibility level.

Cr

ỹp
j +

∑
i∈N−j

∑
m∈Si j

t̃m
j ·qp·x

p
ijm + z̃p

jkn + t̃n
j ·qp ≤ twn+

j ·x
p
jkn + ε·

(
1− xp

jkn

) ≥ α

∀p ∈ P ∀( j, k) ∈ A ∀n ∈ Raili j

(24)

The left-hand function of Equation (24) can be rewritten as Equation (25).

Cr





twn+
j ·x

p
jkn + ε·

(
1− xp

jkn

)
−

y3
p
j +

∑
i∈N−j

∑
m∈Si j

t3
m
j ·qp·x

p
ijm + z3

p
jkn + t3

n
j ·qp

,

twn+
j ·x

p
jkn + ε·

(
1− xp

jkn

)
−

y2
p
j +

∑
i∈N−j

∑
m∈Si j

t2
m
j ·qp·x

p
ijm + z2

p
jkn + t2

n
j ·qp

,

twn+
j ·x

p
jkn + ε·

(
1− xp

jkn

)
−

y1
p
j +

∑
i∈N−j

∑
m∈Si j

t1
m
j ·qp·x

p
ijm + z1

p
jkn + t1

n
j ·qp




≥ 0


(25)

As indicated by Cao and Lai [72] and Zheng and Liu [27], given a deterministic number r and a
triangular fuzzy number d̃ = (d1, d2, d3), there exists Equation (26).

Cr
{
d̃ ≥ r

}
=


1 if r ≤ d1

2d2−d1−r
2(d2−d1)

if d1 ≤ r ≤ d2
d3−r

2(d3−d2)
if d2 ≤ r ≤ d3

0 if r ≥ d3

(26)

Furthermore, based on Equation (26), Cr
{
d̃ ≥ r

}
≥ α equals Equations (27) and (28) according to

proof proposed by Sun et al. [1] and Wang et al. [19].

2α·d2 − (2α− 1)·d3 ≥ a if 0 ≤ α ≤ 1
2 (27)

2(1−α)·d2 + (2α− 1)·d1 ≥ a if 1
2 < α ≤ 1 (28)

Accordingly, the fuzzy chance constraint Equation (24) can be reformulated as Equations (29) and
(30) that are crisp and linear.

2α·

twn+
j ·x

p
jkn + ε·

(
1− xp

jkn

)
−

y2
p
j +

∑
i∈N−j

∑
m∈Si j

t2
m
j ·qp·x

p
ijm + z2

p
jkn + t2

n
j ·qp




≥ (2α− 1)·

twn+
j ·x

p
jkn + ε·

(
1− xp

jkn

)
−

y1
p
j +

∑
i∈N−j

∑
m∈Si j

t1
m
j ·qp·x

p
ijm + z1

p
jkn + t1

n
j ·qp




if 0 ≤ α ≤ 1
2 ∀p ∈ P ∀( j, k) ∈ A ∀n ∈ Raili j

(29)
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2(1−α)·

twn+
j ·x

p
jkn + ε·

(
1− xp

jkn

)
−

y2
p
j +

∑
i∈N−j

∑
m∈Si j

t2
m
j ·qp·x

p
ijm + z2

p
jkn + t2

n
j ·qp




≥ (1− 2α)·

twn+
j ·x

p
jkn + ε·

(
1− xp

jkn

)
−

y3
p
j +

∑
i∈N−j

∑
m∈Si j

t3
m
j ·qp·x

p
ijm + z3

p
jkn + t3

n
j ·qp




if 1
2 < α ≤ 1 ∀p ∈ P ∀( j, k) ∈ A ∀n ∈ Raili j

(30)

5.2. Defuzzification of the Fuzzy Objective

The optimization objective is fuzzy, because it contains fuzzy decision variables ỹp
j and z̃p

jkn.
Therefore, it is also necessary to realize the defuzzification of the fuzzy objective in order to obtain
crisp solutions to the road-rail intermodal routing problem. Currently, there are two defuzzification
methods that can be used to deal with the fuzzy objective, including fuzzy expected value model
and the fuzzy chance-constrained programming. However, there is no solid evidence demonstrating
that one method is better than the other or the two methods have same performance. As a result,
in this study, we will use both defuzzification methods to address the fuzzy objective and also test
their performance in dealing with the road-rail intermodal routing problem with time uncertainty in
the case study section.

5.2.1. Using the Fuzzy Expected Value Model

The expected value of a triangular fuzzy number d̃ = (d1, d2, d3) is expressed by Equation (31) [73].

E
[
d̃
]
=

d1 + 2d2 + d3

4
(31)

The fuzzy expected value model is widely acknowledged to be an effective approach to deal with
a fuzzy objective [18]. It aims at minimizing or maximizing the expected value of the fuzzy objective.
According to Equation (30), the fuzzy expected value of the total storage costs for all transportation
orders can be obtained by Equation (32).

E

 ∑p∈P ∑
(i, j)∈A

∑
m∈Raili j

fstore·qp ·̃z
p
ijm


=

∑
p∈P

∑
(i, j)∈A

∑
m∈Raili j

fstore·qp·E
[̃
zp

ijm

]
=

∑
p∈P

∑
(i, j)∈A

∑
m∈Raili j

fstore·qp·
z1

p
jkn+2z2

p
jkn+z3

p
jkn

4

(32)

The fuzzy expected value of the weighted objective is therefore given by Equations (33) and (34)
by replacing the fuzzy storage costs with the corresponding fuzzy expected value.

minimize
∑

p∈P

∑
(i, j)∈A

∑
m∈Si j

cm·qp·di jm·x
p
ijm

+
∑

p∈P

∑
j∈N

∑
i∈N−i

∑
m∈Si j

em·qp·x
p
ijm +

∑
p∈P

∑
j∈N

∑
k∈N+

i

∑
n∈S jk

en·qp·x
p
jkn

+
∑

p∈P

∑
(i, j)∈A

∑
m∈Raili j

fstore·qp·
z1

p
jkn+2z2

p
jkn+z3

p
jkn

4 −W·
∑

p∈P
µp

( vp
4

) (33)

vp = y1
p
dp
+

∑
i∈N−dp

∑
m∈Truckidp

t1
m
dp
·qp·x

p
idpm + 2

y2
p
dp
+

∑
i∈N−dp

∑
m∈Truckidp

t2
m
dp
·qp·x

p
idpm


+y3

p
dp
+

∑
i∈N−dp

∑
m∈Truckidp

t3
m
dp
·qp·x

p
idpm ∀p ∈ P

(34)
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5.2.2. Using Fuzzy Chance-Constrained Programming

Fuzzy chance-constrained programming can be also used to deal with the fuzzy objective [74].
In this case, Equation (4) can be reformulated as Equations (35) and (36) where ψ is a non-negative
auxiliary variable.

minimize
∑

p∈P

∑
(i, j)∈A

∑
m∈Si j

cm·qp·di jm·x
p
ijm

+
∑

p∈P

∑
j∈N

∑
i∈N−i

∑
m∈Si j

em·qp·x
p
ijm +

∑
p∈P

∑
j∈N

∑
k∈N+

i

∑
n∈S jk

en·qp·x
p
jkn

+ψ−W·
∑

p∈P
µp

( vp
4

) (35)

Cr


∑
p∈P

∑
(i, j)∈A

∑
m∈Raili j

fstore·qp ·̃z
p
ijm ≤ ψ

 ≥ α (36)

Similar to the crisp reformulation of Equation (24), Equation (36) is equivalent to Equations (37)
and (38).

2α·
∑

p∈P

∑
(i, j)∈A

∑
m∈Raili j

fstore·qp·z2
p
ijm + (1− 2α)·

∑
p∈P

∑
(i, j)∈A

∑
m∈Raili j

fstore·qp·z1
p
ijm ≤ ψ if 0 ≤ α ≤ 1

2 (37)

2(1−α)·
∑

p∈P

∑
(i, j)∈A

∑
m∈Raili j

fstore·qp·z2
p
ijm + (2α− 1)·

∑
p∈P

∑
(i, j)∈A

∑
m∈Raili j

fstore·qp·z3
p
ijm ≤ ψ if 1

2 < α ≤ 1

(38)

5.3. Linear Reformulation of the Service Objective

The service level function µp
( vp

4

)
is a continuous piecewise linear function. Therefore, the service

objective function
∑

p∈P µp
( vp

4

)
is nonlinear.

Constrained by Equation (20), for ∀p ∈ P,
vp
4 must fall into range

[
TW1

p , TW4
p

]
, and can only fall

into only one of its three sub ranges shown as Figure 10. First of all, we define a 0–1 auxiliary variable
wp

g: if
vp
4 falls into range g (g ∈ G = {1, 2, 3}), wp

g = 1, otherwise, wp
g = 0. Hence we have Equations (39)

and (40). ∑
g∈G

wp
g = 1 ∀p ∈ P (39)

wp
g ∈ {0, 1} ∀p ∈ P ∀g ∈ {1, 2, 3} (40)

Then we distribute non-negative auxiliary variables ξp−
g and ξp+

g to the lower bound and upper
bound of range g, and so we have Equations (41)–(43).

ξ
p−
g + ξ

p+
g = wp

g ∀p ∈ P ∀g ∈ {1, 2, 3} (41)

ξ
p−
g ≥ 0 ∀p ∈ P ∀g ∈ {1, 2, 3} (42)

ξ
p+
g ≥ 0 ∀p ∈ P ∀g ∈ {1, 2, 3} (43)

Furthermore,
vp
4 can be expressed by Equation (44).

vp
4 =

∑
g∈G

(
ξ

p−
g ·TWg

p + ξ
p+
g ·TWg+1

p

)
∀p ∈ P (44)
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By using Equation (44) to replace
vp
4 in the service objective function

∑
p∈P µp

( vp
4

)
, we have the

following formula.

∑
p∈P

µp
( vp

4

)
=

∑
p∈P

µp

 ∑
g∈G

(
ξ

p−
g ·TWg

p + ξ
p+
g ·TWg+1

p

)
=

∑
p∈P

∑
g∈G

µp
(
ξ

p−
g ·TWg

p + ξ
p+
g ·TWg+1

p

)
=

∑
p∈P

∑
g∈G

[
µp

(
ξ

p−
g ·TWg

p

)
+ µp

(
ξ

p+
g ·TWg+1

p

)]
=

∑
p∈P

∑
g∈G

[
ξ

p−
g ·µp

(
TWg

p

)
+ ξ

p+
g ·µp

(
TWg+1

p

)]
=

∑
p∈P

(
ξ

p+
1 + ξ

p−
2 + ξ

p+
2 + ξ

p−
3

) (45)
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As a result, the linearized crisp weighted objective function under the fuzzy expected value model
is as in Equation (46).

minimize
∑

p∈P

∑
(i, j)∈A

∑
m∈Si j

cm·qp·di jm·x
p
ijm

+
∑

p∈P

∑
j∈N

∑
i∈N−i

∑
m∈Si j

em·qp·x
p
ijm +

∑
p∈P

∑
j∈N

∑
k∈N+

i

∑
n∈S jk

en·qp·x
p
jkn

+
∑

p∈P

∑
(i, j)∈A

∑
m∈Raili j

fstore·qp·
z1

p
jkn+2z2

p
jkn+z3

p
jkn

4 −W·
∑

p∈P

(
ξ

p+
1 + ξ

p−
2 + ξ

p+
2 + ξ

p−
3

) (46)

Under fuzzy chance-constrained programming, the linearized crisp weighted objective function
is as in Equation (47).

minimize
∑

p∈P

∑
(i, j)∈A

∑
m∈Si j

cm·qp·di jm·x
p
ijm

+
∑

p∈P

∑
j∈N

∑
i∈N−i

∑
m∈Si j

em·qp·x
p
ijm +

∑
p∈P

∑
j∈N

∑
k∈N+

i

∑
n∈S jk

en·qp·x
p
jkn

+ψ−W·
∑

p∈P

(
ξ

p+
1 + ξ

p−
2 + ξ

p+
2 + ξ

p−
3

) (47)
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5.4. Linear Reformulation of the Nonlinear Constraints

According to Sun et al. [25], nonlinear constraints Equations (7)–(12) can be linearized as
Equations (48)–(59).

t0
p + t1

n
op ·qp + t1

opkn − y1
p
k ≥ ε·

(
xp

opkn − 1
)
∀p ∈ P ∀k ∈ N+

op ∀n ∈ Truckopk (48)

t0
p + t1

n
op ·qp + t1

opkn − y1
p
k ≤ ε·

(
1− xp

opkn

)
∀p ∈ P ∀k ∈ N+

op ∀n ∈ Truckopk (49)
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p + t2

n
op ·qp + t2

opkn − y2
p
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(
xp

opkn − 1
)
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n
op ·qp + t2
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p
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(
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n
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(
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(
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)
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According to Sun et al. [25], nonlinear constraints Equations (14)–(16) are equivalent to the
following linear equations.

z3
p
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p
j +

∑
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∑
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m
j ·qp·x

p
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(
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)
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p
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p
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z2
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p
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∑
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∑
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m
j ·qp·x

p
ijm
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(
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)
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p
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∑
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t3
m
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p
ijm
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(
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)
∀p ∈ P ∀( j, k) ∈ A ∀n ∈ Raili j (64)

z1
p
jkn ≤ ε·x

p
jkn ∀p ∈ P ∀( j, k) ∈ A ∀n ∈ Raili j (65)

The service level constraint Equation (20) is also nonlinear, since it contains continuous piecewise
linear function. Based on the description in Section 3.2, it can be reformulated as the following two
equations that are both linear.

vp
4 ≥ ηp·

(
TW2

p − TW1
p

)
+ TW1

p ∀p ∈ P (66)

vp
4 ≤ TW4

p − ηp·
(
TW4

p − TW3
p

)
∀p ∈ P (67)

5.5. Equivalent Mixed Integer Linear Programming Model

After defuzzification and linearization, the fuzzy mixed integer nonlinear model can be modified
into two kinds of MILP models. The process that generates the two models is illustrated by Figure 11.

As we can see from Figure 11, two different crisp linear programming models can be obtained
after using two different defuzzification methods to deal with the fuzzy objective and employing same
linearization techniques to remove the nonlinearity. We use the fuzzy expected value model to defuzzy
the initial fuzzy objective to obtain the MILP model I, and the fuzzy chance-constrained programming
to generate the MILP model II. The differences of the two models are that they have different crisp
objective functions and the MILP model II has two more auxiliary constraints (i.e., Equations (37) and
(38)) deriving from the process of using fuzzy chance-constrained programming to deal with the fuzzy
objective. Apart from Equations (37) and (38), the two MILP models share the same constraints.
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6. Computational Experiment

We modify the numerical case designed in our previous study [30] to make it match the specific
routing problem discussed by this study, and use the modified case to demonstrate the feasibility
of proposed methods in dealing with the road-rail intermodal routing problem with fuzzy soft time
windows and multiple sources of time uncertainty. The detailed description of the modified numerical
case is presented in Appendix A (see Figure A1 and Tables A1–A3 for details). The following works
will also be untaken in this section in addition to demonstrating the feasibility:
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(1) Exploring whether and how fuzzy soft time windows and fuzziness of both road travel time
and loading/unloading time influence the road-rail intermodal routing optimization.

(2) Comparing the fuzzy expected value model and fuzzy chance-constrained programming in
dealing with the fuzzy objective.

(3) Helping decision makers to identify the optimal value of confidence level α, so that a crisp
road-rail intermodal transportation scheme can be provided to them.

6.1. Computational Environment

In this study, we use the standard Branch-and-Bound algorithm that is a famous exact solution
algorithm in operations research to solve the two equivalent MILP models that formulate the specific
routing problem discussed by this study. The Branch-and-Bound algorithm is run by the mathematical
programming software LINGO version 12.0 [75]. All the computation is performed on a ThinkPad
Laptop with Intel Core i5-5200U, 2.20 GHz CPU, and 8 GB RAM.

In this study, we provide two MILP models to solve problem. MILP model I uses fuzzy expected
value model to deal with the fuzzy objective, while MILP model II employs fuzzy chance-constrained
programming. Apart from the differences deriving from the defuzzification of the fuzzy objective,
the two MILP models yield the same formulations. When using two MILP models to optimize the
road-rail intermodal problem, the computational scale is shown in Table 2. As we can see from Table 2,
MILP model II has two more variables than MILP model I, because non-negative auxiliary variable ψ
emerges twice (one in the crisp objective Equation (47), and one in constraint Equation (37) or (38))
during the defuzzification of the fuzzy objective to obtain MILP model II, while there is no auxiliary
variable generated when obtaining the crisp objective of MILP model I. Moreover, MILP model II has
two more constraints than MILP model I, since the defuzzification for generating the crisp objective of
MILP model II lead to two auxiliary constraints, including the constraint regarding the non-negativity
of auxiliary variable ψ and the auxiliary constraint Equation (37) (or (38)). However, MILP model I
does not generate any auxiliary constraints during the defuzzification of fuzzy objective.

Table 2. Computational scale of the routing problem formulated by two MILP models.

Models Variables Integer Variables Constraints

MILP model I 2547 696 5999
MILP model II 2549 696 6001

When the confidence level α is set to 0.9, the service levels ηp (∀p ∈ P) are set to 0.7 and the weight
distributed to the service objective is set to 1000, the computational times of the models in 10 times
computation are presented as follows. MILP model I has computational times that vary from 33 s to
34 s with an average value of 33.4 s in the 10 times computation. As for MILP model II, the maximum
and minimum computational times are 26 s and 25 s, respectively. The average computational time of
MILP model II is 25.6 s, which saves ~23.4% of the computational time compared with MILP model I.
Therefore, using the Branch-and-Bound algorithm to solve the two MILP models to generate the best
solutions to the routing problem can be accomplished within quite a short time. MILP model II that
uses fuzzy chance-constrained programming to deal with the fuzzy objective shows better efficiency
than MILP model I that uses the fuzzy expect value model to address the fuzzy objective.

6.2. Sensitivity Analysis of the Routing Optimization with Respect to the Weight of the Service Objective

The weight distributed to the service objective reflects the decision makers’ preference for the
improvement on the transportation timeliness. In this study, we analyze the sensitivity of the routing
optimization with respect to the weight associated with the service objective to reveal the relationship
between the two optimization objectives. The following analysis is under the setting that confidence
level α is set to 0.9 and service levels ηp (∀p ∈ P) are set to 0.7. The changes of the two objectives



Mathematics 2019, 7, 739 27 of 40

with respect to the weight, i.e., the Pareto frontiers to the bi-objective optimization on the road-rail
intermodal routing problem, are indicated by Figure 12.
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Figure 12. Pareto frontier to the routing problem by solving MILP models (α = 0.9 and ηp = 0.7).

It can be observed from Figure 12 that by enhancing the weight distributed to the service objective,
the value of the economic objective increases, which means that the transportation economy is reduced.
Contrary to the transportation economy, the increase of the weight leads to the improved transportation
timeliness, since the value of the service objective increases. Consequently, the economic objective and
service objective of the road-rail intermodal routing problem cannot reach their respective optimum
simultaneously, and enhancing one objective will worsen the other. A solution with minimum costs
does not yield maximum service level. As a result, the road-rail intermodal routing problem yields
non dominated solutions (i.e., Pareto solutions) instead of dominated solutions.

As shown in Figure 12, it is impossible to simultaneously satisfy the customer demands on
transportation economy and timeliness by planning the road-rail intermodal routes. A tradeoff

should therefore be made between the economic and service objectives based on the decision makers’
preference for the service improvement when planning the road-rail intermodal routes. The Pareto
frontiers shown in Figure 12 can help decision makers to select the preferred solution. In practical
decision making, decision makers can utilize the multiple-criteria decision-making methods, e.g., AHP
method [76] and TOPSIS method [77], to preciously select the Pareto solution that best matches the
decision-making situation.

Moreover, it can be noticed that MILP model II yields larger values of the economic objective than
MILP model I, while the two models have the same values of the service objective. Although the two
models have different values of the economic objective, the planned best road-rail intermodal routes
given by them are exactly the same, which is demonstrated in the following Section 6.5.2. This leads to
the same values of the service objective of the two models, since they share the same service objective
function. However, the economic objective functions of the two models are different, which results in
the difference of the values of the economic objective between the two models.
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6.3. Sensitivity Analysis of the Routing Optimization with Respect to the Service Level

Besides the weight distributed to the service objective, the service level is also set by the decision
makers manually. Its settings might influence the optimization results. In this study, we also use
sensitivity analysis to explore its effect on the routing. We first of all set the weight as 1000 and the
confidence level as 0.9. Then we modify service levels ηp (∀p ∈ P) from 0.1 to 1.0 with a step of 0.1,
and calculate the best solutions corresponding to each value of the service level by solving MILP model
I and MILP model II. The results of the sensitivity analysis are shown as Figure 13.
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Figure 13. Sensitivity of the routing optimization with respect to the service level (α= 0.9 and W = 1000).

Figure 13 indicates that the road-rail intermodal routing optimization is sensitive to the service
level. As we can see from Figure 13, by increasing the service level ηp, both the values of the economic
objective and service objectives show a growth tendency, which means that the transportation timeliness
of the routing is getting improved, while its transportation economy is getting worse. Enhancing the
service level shows an effect on the routing optimization that is the same as improving the weight
distributed to the service objective.

Therefore, when customers prefer or propose a higher service level for accomplishing their
transportation orders, enhancing the service level ηp will help decision makers to find the best road-rail
intermodal routes with improved transportation timeliness, on condition that customers could accept
more costs paid for accomplishing transportation orders. With the help of Figure 13, decision makers
can determine the value of the service level ηp in a more objective way in order to avoid that the service
level is overestimated and the economy of the routing is considerably reduced.

As well as the tendency shown in Figure 12, Figure 13 also shows that MILP model II provides
larger values of the economic objective than MILP model I and the two models have same values of
service objective. The reasons that lead to the tendency indicated by Figure 13 are same to the ones
that result in Figure 12. Figure 13 points out that although the variation of the service level ηp leads to
the modification of the planned best routes, the two models always generate the same solutions under
each value of the service level ηp.
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6.4. Sensitivity Analysis of the Routing Optimization with Respect to the Confidence Level

The confidence level α is another important parameter that is determined by decision makers
according to their subjective preference. In this study, we set the weight distributed to the service
objective as 1000 and the service level ηp (∀p ∈ P) as 0.5. Under the above situation, we analyze the
sensitivity of the routing optimization with respect to the confidence level. We vary the confidence level
α from 0.3 to 0.9 with a step of 0.1, and generate the best solutions to the routing problem by solving
the two MILP models. The results of the sensitivity analysis are illustrated by Figure 14. It should be
noted that there is no feasible solution that can be found when the confidence level α is set to 1.0.
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Figure 14. Sensitivity of the routing optimization with respect to the confidence level (ηp = 0.5 and
W = 1000).

As we can see from Figure 14, the road-rail intermodal routing optimization is sensitive to the
confidence level, and increasing the confidence level leads to the increase of both economic objective and
service objective. Since the larger confidence level means higher transportation reliability, Figure 14 also
reveals that improving the transportation reliability will help to improve its transportation timeliness.

However, the value of the economic objective also increases with respect to the confidence level,
which means that the transportation economy of the routing is in conflict with its transportation
reliability. If customers prefer a road-rail intermodal route plan with higher transportation reliability,
they should spend more on accomplishing their transportation orders. Figure 14 provides a solid
foundation for decision makers to make effective tradeoffs among the economic objective, service
objective and transportation reliability in order to avoid that the overestimation of one objective
significantly reduces other objectives in the practical decision making.

Moreover, similar to Figures 12 and 13, in the sensitivity analysis summarized in Figure 14, the two
MILP models yield same service objective. However, their economic objectives do not provide the same
value, and the value of the economic objective of MILP model II is not always larger than that of MILP
model I. Figure 14 shows such tendency due to the same reasons that motivate the tendencies shown
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in Figures 12 and 13. Moreover, as we can see from Figure 14, the two models yield the same route
plan under each value of the confidence level, which is similar to the tendency shown in Figure 13.

6.5. Fuzzy Simulation to Gain the Crisp Road-Rail Intermodal Route Plan

In practical routing decision making, the decision makers who include transportation experts,
transportation companies and customers will first of all determine the weight distributed to the service
objective and the lowest service level that customers can accept. In this case, we set ηp as 0.5 and W as
1000. Then if they want to obtain a crisp road-rail intermodal route plan, the confidence level that
influences whether the routes are feasible in practice should be determined. Furthermore, the decision
makers also need to determine which MILP model is more suitable. Considering the above decision
making requirements, we design a fuzzy simulation method to help decision makers overcome the
above issues in order to generate the best crisp road-rail intermodal route plan.

In this study, we randomly generate 10 sets of the deterministic road travel times and
loading/unloading times according to the fuzzy membership function of the triangular fuzzy number as
shown in Figure 5. Then we can obtain 10 deterministic cases that can be used to test the performances
of different confidence levels and the two MILP models. The fuzzy simulation is run according to
Figure 15 [1,50].
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6.5.1. Testing the Feasibility of the Planned Best Road-Rail Intermodal Routes in the Deterministic Cases

In this study, we first of all test the feasibility of the road-rail intermodal routes provided by the
fuzzy programming models under different confidence levels in the 10 deterministic cases. When
moving the containers along the planned road-rail intermodal routes in the deterministic cases, the route
plan is feasible if the constraints of the upper bounds of the operation time windows of covered
container trains (i.e., the deterministic formulation of Equation (18)) and the capacity constraints are
satisfied. Otherwise, the route plan is infeasible and failed, which means that the transportation orders
cannot be accomplished by using the planned routes. The feasible ratios of the route plans provided by
the two MILP models under difference confidence levels in the 10 deterministic cases are shown in
Figure 16.
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Figure 16. Feasible ratio of the route plans provided by the fuzzy programming models under different
confidence levels in the 10 deterministic cases.

As we can see from Figure 16, the route plans generated by solving the two MILP models show
the same feasibility ratios in the 10 deterministic cases, regardless of the values of the confidence level.
Furthermore, Figure 16 shows that with the increase of the confidence level, the feasibility ratios of the
route plans, i.e., the transportation reliability of the routing, tend to be improved. However, in the
cases set by this study, the improvement is not very sensitive.

When the confidence level is set to 0.5, 0.6, 0.7, 0.8 or 0.9, the route plans are feasible in all the
deterministic cases. In the practical routing decision making, customers always demand that their
transportation orders can be accomplished successfully by the planned routes to avoid rerouting that
might cause much higher costs [1]. Therefore, as for the case study in this article, considering the
customer demand on transportation reliability, the confidence level can be 0.5, 0.6, 0.7, 0.8 or 0.9.

6.5.2. Analyzing the Gaps Between the Planned Best Road-Rail Intermodal Routes and the Actual Best
Routes in the Deterministic Cases

In the 10 deterministic cases, we replace the fuzzy parameters and fuzzy variables in the
model presented in Section 4 with their deterministic forms, and thus get a deterministic road-rail
intermodal routing model that can be linearized by using the linearization techniques given in Section 5.
Consequently, the actual best road-rail intermodal routes in the 10 deterministic cases can be generated
by solving the deterministic model.

We can also calculate the values of the economic objective and the service objective of the planned
best road-rail intermodal routes when they are used to move containers in the 10 deterministic cases.
Then we can compare the gaps between planned best road-rail intermodal routes with the actual best
routes in the 10 deterministic cases. The computational results are indicated by Figures 17 and 18.

Shown as Figures 17 and 18, we notice that the two MILP models yield the same computational
results. Consequently, we can draw the conclusion that the performances of the two MILP models
in dealing with the specific routing problem are the same. Either of them can be used to optimize
the problem.
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and the actual best routes in the deterministic cases.
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the actual best routes in the deterministic cases.

Based on the computation results shown in Figures 17 and 18, we can calculate the root mean
square (RMS) of the objectives of the planned best routes provided by MILP model I with respect to
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the objectives of the actual best routes in the 10 deterministic cases. The calculation results which are
based on the associated RMS are given in Table 3.

Table 3. Objective gaps between the planned best routes provided by MILP model I and the actual
best routes.

Confidence Levels RMS in 10 Thousand CNY
Regarding Economic Objective

RMS Regarding Service
Objective

0.5 and 0.6 1.112 0.981
0.7, 0.8 and 0.9 0.384 1.047

Compared with the confidence level of 0.5 and 0.6, the MILP model I with the confidence levels of
0.7, 0.8 or 0.9 can significantly bridge the economic objective gap by ~65.5% by slightly extending the
service objective gap by ~6.7%. As a result, when using the MILP model I to optimize the road-rail
intermodal routing problem, the confidence level is recommended to be 0.7, 0.8 or 0.9. Above all, as for
the numerical case introduced in the Appendix A, the best road-rail intermodal routes that can be used
in the real-world transportation under ηp = 0.5 and W = 1000 can be planned by solving any one of the
two MILP models illustrated by Figure 11 with confidence level of 0.7, 0.8 or 0.9.

Furthermore, when confidence level is set to 0.5, MILP model II is converted into the deterministic
optimization model used by the existing literature to deal with the road-rail intermodal routing
with time certainty [25]. In the studies on the deterministic intermodal routing problem, the road
travel time and loading/unloading time are valued in a deterministic way, i.e., by most likely
estimations [18,23,25,30,37,43]. Therefore, indicated by Table 3, compared with the solutions generated
by the deterministic optimization model, MILP models (i.e., models for the road-rail intermodal routing
problem with time fuzziness) can obtain the crisp best road-rail intermodal routes that better match
the actual best situation in the transportation practice. And considering the multiple sources of time
uncertainty helps to improve the overall performance of the road-rail intermodal routing.

7. Conclusions

In this study, we focus on modeling and optimizing a customer-centred freight routing problem in
the road-rail intermodal hub-and-spoke network with fuzzy soft time windows and multiple sources
of time uncertainty. The following contributions are made by this study in order to improve the
problem optimization:

(1) We employ fuzzy soft time windows to represent the due dates of accomplishing transportation
orders. Maximizing the service level associated with the fuzzy soft time windows is set as the
optimization objective and a service level constraint is also established, so that the transportation
timeliness can be improved.

(2) We simultaneously consider the road travel time uncertainty and loading/unloading time
uncertainty in the road-rail intermodal routing problem. The combination of the multiple sources of
time uncertainty helps to enhance the transportation reliability of the routing.

(3) We model the road-rail intermodal transportation system as a hub-and-spoke network that
contains time-flexible road transportation and scheduled rail transportation.

(4) We propose a bi-objective mixed integer nonlinear programming model the objectives of
which are addressed by a weighting method to formulate the specific routing problem discussed in
this study. By using the fuzzy expected value model, fuzzy chance-constrained programming and
linearization techniques, two equivalent mixed integer linear programming models are generated and
can be effectively solved by mathematical programming software.

In the case study, we make full use of sensitivity analysis and fuzzy simulation to quantify the
effects of the fuzzy soft time windows and time uncertainty on the routing optimization. The following
managerial implications can be deduced.
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(1) The economic objective and service objective are in conflict with each other, i.e., the routing
optimization cannot satisfy the customer demands on economy and timeliness simultaneously.
An effective tradeoff between the two objectives can be made by using the Pareto frontier to the
bi-objective optimization problem.

(2) When customers prefer or propose higher service levels for accomplishing their transportation
orders, enhancing service level ηp will help decision makers to find the best road-rail intermodal routes
with improved transportation timeliness, on condition that customers could accept more costs paid for
accomplishing transportation orders.

(3) Time uncertainty (fuzziness in this study) has significant effect on the routing optimization.
A larger confidence level that means higher transportation reliability leads to improved service level
(i.e., transportation timeliness), however, worsens the transportation economy of the routing.

(4) The fuzzy expected value model has the same performance as the fuzzy chance-constrained
programming in dealing with the fuzzy objectives.

(5) By using the sensitivity analysis and fuzzy simulation designed in this study, decision makers
can identify the best value(s) of the confidence level to provide a crisp road-rail intermodal route plan
to the customers.

In the future work, we will first devote to exploring the green road-rail intermodal routing problem
that considers to optimize the carbon dioxide emissions. We will discuss the green routing problem
under different carbon emission regulations, including carbon tax regulation and carbon cap-and-trade
regulation. The performances of the two regulations will be compared. Additionally, we will try to
add other sources of uncertainty, e.g., demand uncertainty and capacity uncertainty, into the routing
problem to further enhance the transportation reliability. Last but not least, developing a heuristic
algorithm to efficiently solve the large-scale road-rail intermodal routing problem that is an NP-hard
problem is also a direction of our future work.
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Appendix A

The numerical case used in this study is modified from our previous study [30]. The detailed
description of the case is presented as follows. It should be noted that the same container trains in
different periods are treated as different transportation services and are indexed by different indexes.
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Table A1. The schedules of the container trains in the network.

Container
Trains

Train
Routes

Operation
Start

Instants at
Origins

Operation
Cutoff

Instants at
Origins

Operation
Start

Instants at
Destinations

Capacities
in TEU

Periods in
Train per

Day

Travel
Distances

in km

1 (4, 7) 15 30 40 300 1 184
2 (4, 7) 6 23 32 350 1 184
3 (4, 8) 5 20 31 380 1 210
4 (4, 8) 3 21 34 400 1 210
5 (4, 9) 9 26 42 320 1 280
6 (4, 9) 14 31 46 300 1 280
7 (5, 7) 8 24 35 335 1 193
8 (5, 7) 13 29 41 355 1 193
9 (5, 8) 7 25 35 400 1 185

10 (5, 8) 10 26 37 325 1 185
11 (5, 9) 0 18 32 292 1 178
12 (5, 9) 6 25 35 270 1 178
13 (6, 7) 11 30 47 290 1 315
14 (6, 7) 14 29 50 315 1 315
15 (6, 8) 4 21 32 362 1 236
16 (6, 8) 8 26 40 345 1 236
17 (6, 9) 12 27 39 262 1 291
18 (6, 9) 15 33 45 285 1 291
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Table A2. The capacities, travel times, and travel costs of the container truck fleet groups in the network.

Container Truck
Fleet Groups Arcs Capacities in TEU Fuzzy Travel

Times in Hour
Travel Distances

in km

19 (1, 4) 150 1.0, 1.5, 2.8 68
20 (1, 5) 245 1.4, 2.0, 4.2 85
21 (1, 6) 200 3.6, 5.0, 8.3 120
22 (2, 4) 190 2.4, 3.0, 4.8 90
23 (2, 5) 230 1.7, 2.8, 5.2 105
24 (2, 6) 145 1.2, 1.8, 3.8 75
25 (3, 4) 160 3.3, 5.6, 6.5 114
26 (3, 5) 205 1.6, 2.2, 3.6 94
27 (3, 6) 170 0.8, 2.0, 3.8 100
28 (7, 10) 165 1.7, 2.3, 3.5 95
29 (7, 11) 205 2.5, 3.2, 5.5 118
30 (7, 12) 150 4.6, 6.0, 9.2 130
31 (8, 10) 175 3.5, 4.3, 5.5 106
32 (8, 11) 210 1.0, 1.7, 3.1 64
33 (8, 12) 221 1.6, 2.4, 4.0 93
34 (9, 10) 144 4.6, 6.2, 8.5 122
35 (9, 11) 195 2.1, 3.7, 5.8 102
36 (9, 12) 132 0.9, 1.4, 3.1 70

Table A3. The values of the cost and operation parameters defined in Table 3.

Transportation
Mode

Transportation
Costs in CNY per

TEU per km

Separate Loading
and Unloading

Costs in CNY per
TEU

Storage Costs in
CNY per TEU per

Hour

Separate Fuzzy
Loading and

Unloading Time
in CNY per TEU

Rail 2.025 195 3.125 0.05, 0.1, 0.15
Road 6 25 - 0.1, 0.2, 0.25

Table A4. Information on the transportation orders of the numerical case.

Transportation
Orders Origins Destinations Volumes in

TEU
Release
Instants Due Dates

1 1 10 15 4 44, 50, 56, 62
2 1 11 20 8 54, 64, 70, 78
3 1 11 26 10 69, 75, 86, 95
4 1 12 18 16 53, 58, 65, 71
5 2 10 31 3 50, 55, 64, 70
6 2 10 23 10 65, 77, 82, 95
7 2 11 33 9 54, 59, 65, 77
8 2 12 24 14 58, 70, 85, 91
9 3 10 35 7 52, 61, 66, 72
10 3 11 30 13 65, 74, 78, 89
11 3 12 21 3 42, 50, 56, 60
12 3 12 31 17 60, 70, 80, 85
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