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Abstract: This work is concerned with the delay-dependent criteria for exponential stability analysis
of neutral differential equation with a more generally interval-distributed and discrete time-varying
delays. By using a novel Lyapunov—Krasovkii functional, descriptor model transformation, utilization
of the Newton-Leibniz formula, and the zero equation, the criteria for exponential stability are in
the form of linear matrix inequalities (LMIs). Finally, we present the effectiveness of the theoretical
results in numerical examples to show less conservative conditions than the others in the literature.

Keywords: exponential stability; certain nonlinear neutral differential equations; mixed
time-varying delays

1. Introduction

Many scientists have worked on the stability criteria for the problem of neutral delayed differential
equation (NDE) with constant delays [1-9] as follows:

%[x(t) 4 px(t—7)] +ax(t) —btanhx(t—0) =0, t3>0, (1)
where |p| < 1 and 4, T, b, 0 are real positive constants. With each solution x(t) of (1), the initial
condition is satisfied:

x(s) =¢(s), se[-r0], where ¢ € C([-r,0],R), r=max{7, 0}

The NDE (1) as a special case has been considered by many researchers for the study of the
dynamical characteristics of the neural networks of the Hopfield type; see [10-13] and the references
cited therein. As we all know, a small change in delay may destabilize a system [3,5-7,9]. Hence,
many researchers increased their study of the stabilization of the system by proposing the criteria in
several forms.

In [6], the delay-dependent stability criterion of certain neutral differential equations was
considered by the integral inequalities approaches. However, the sufficient condition only depends on
the discrete delay o and does not depend on the neutral delay 7. An improved stability criterion for a
class of neutral differential equations was studied in [8] by introducing a new Lyapunov functional
and avoiding the use of the stability assumption on the main operators. In [1], the authors considered
using a Lyapunov-Krasovskii functional technique and a descriptor model transformation approach to
transform the system with distributed and discrete delays. The issue of exponential stability analysis
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of the neutral differential equation as in (1) has been presented [4,5] by utilizing the descriptor form,
Lyapunov—-Krasovskii functionals, and model transformation.

In the past few years, many researches have studied several methods in time-varying delay,s
which can be considered as closer way to reflect the realistic situation because the time delays are
usually not constant. In [1,14,15], the authors considered the problem of NDE for exponential stability
with time-varying delays as follows:

%[x(t) +px(t —7(t))] +ax(t) —btanhx(t —o(t)) =0, >0, 2)

where |p| < 1and g, b are real positive constants and () and 7(t) are discrete and neutral time-varying
delays, respectively,

0 <7(t)
0<o(t)

t(t) < 14

IN A

T,
g, U(t) < 0y,

where T and ¢ are given real positive constants. For each solution x(t) of (2), the initial condition
is satisfied:

xo(t) = ¢(t), where ¢ € C([-r,0],R), r =max{7,0}.

In [14], the sufficient conditions were presented with the use of descriptor form, Lyapunov
functions, the Leibniz—Newton formula, and radially-unbounded function.

On the other hand, distributed delays, as one of the most common types, have received
considerable attention in recent years. In a practical system, the distributed delay is often useful
in modeling processes that are (i) described by flow rates (aggregates) of entities that move at different
rates through the given irreversible process (ii). Recently, a certain neutral differential equation with
distributed and discrete time-varying delays was considered in [16] as follows:

d 't

E[x(t) + px(t —7(t))] +ax(t) — btanhx(t —o(t)) — ¢ /t_p(t) x(s)ds =0,t >0, ©)]
where |p| < 1and 4, b, ¢ are real positive constants. o (t), p(t), and 7(t) are discrete, distributed, and
neutral time-varying delays, respectively.

In practice, distributed time delays arise in models for a variety of applications including
population dynamic [17], the predator-prey model [18,19], the neuronal model [20,21], neural
networks [22-25], and a nonlinear system [26], which considered the distributed delay of the activation
function [24]. From the discussions above, there still exists room for further improvement in NDE, and
it might occur that there are connection between the distributed time-varying delay and tanh x(s). As a
result, it is more natural to consider NDE with the distributed delay of tanh x(s). However, in recent
works, there were no models [1-9,14,15,27-30] that include distributed time-varying delays.

Our main contributions can be summarized as the following aspects. First, our work is the
first attempt to study for the problem of new certain nonlinear neutral differential equation for
exponential stability with a more generally interval-distributed and discrete time-varying delays. The
Lyapunov—Krasovkii functional, descriptor model transformation, the Newton-Leibniz formula, and
utilization of the zero equation are applied. The exponential stability criteria are in the form of linear
matrix inequalities (LMIs). Second, note that most of the existing NDE results [1,9,14-16] cannot be
applied to the situation when there are two distributed time-varying delays. Finally, a comparison of
the maximum delay bounds obtained by our proposed methods with those in many existing literature
works [1,9,14,15] is conducted, which supports that the exponential stability criteria provided in this
paper can enhance the feasible region effectively and significantly.
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The rest of this paper is arranged as follows. Section 2 shows the definitions, notations,
and lemmas for applying the main results of the paper. The exponential stability criteria for
delay-dependent sufficient conditions are shown in Section 3. Numerical examples presented for
effectiveness obtained consequences that are manifested in Section 4. This work ends with the
conclusion in Section 5.

Notation: The following notations will be used throughout this manuscript. BT denotes the
transpose of matrix B; B > 0 (B > 0) means that B is semi-positive definite (positive definite); || - ||

denotes the Euclidean norm of the vector or matrix, ||x|s = sup |[[x(s)||and [|X|; = sup [%(s)]|;-
—r<s<0 —r<s<0
The symbol * stands for the transposed elements in the symmetric positions.

2. Problem Formulation and Preliminary
Consider the neutral differential equation with time-varying delays as follows:
d t ot
E[x(t) + px(t —(t))] +ax(t) —btanhx(t —o(t)) —e / - x(s)ds — f ' )tanhx(s)ds =0, 4
Jt—n(t t—I(t

where [p| < 1and 4, b, ¢, f are real positive constants. h(t), I(t), and o(t) are distributed and discrete
interval time-varying delays, and 7(t) is a neutral interval time-varying delay, satisfying,

0<7m <7(t) <, *(t) <1y ®)
0<0 <o(t) <o, 0(t) <oy, (6)
0<h <h(t) <hy, @)
0<h <I(t) <l 8

where 71, T, 01, 02, Iy, ho,11, I, T4, and 0 are given positive real constants. For each solution x(t) of
(4), the initial condition is satisfied:

where ¢ € C([—7,0];R) and r = max{1, 02, hp, 15 }.
Definition 1 ([14]). If there exist real positive constants A, K such that:

[x(£)[| < Ke™™ sup ||x(s)[| = Ke ™ |lx[ls,
—r<s<0

then the equilibrium point of Equation (2) is exponentially stable.

Lemma 1. (Jensen’s inequality [31]). For positive real number h, any symmetric positive definite matrix Q
and vector function x(t) : [—h,0] — R" such that the following inequality holds:

—h[oth(s+t)QX(s+t)ds+ (ﬁohx(s+t)ds)TQ(/jlx(s—i—t)ds) <o.

Lemma 2. (Cauchy’s inequality [31]). If there exists constant symmetric positive definite matrix P € R"*"
and a,b € R", we have:

+247p < aTPa + bTPb.
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Lemma 3 ([16]). For any constant Q € R"™ " is a symmetric positive definite matrix, h(t) is a discrete
time-varying delay with (7), and vector function w : [—hy, 0] — R" such that the following inequality holds:

i) [ T 6 Qus)as

hy

—Iy i —h(t) “h(t)
< = T _ T )
< lh(t) w" (s)dsQ /w(;e) w(s)ds /fhz w" (s)dsQ /fhz w(s)ds

Lemma 4. (Peng—Park’s integral inequality [32]). For positive scalars T and T(t) satisfying 0 < 7(t) < T,

vector function x(s) : [~7,0] — R", any matrix Z € R™", Z = ZT, matrix S € R"™", and any matrix
f > 0 such that the following concerned inequality holds:
t
—T/ 1 (5)Z%(s)ds < w (£) © w(t)
t—t
—Z Z-S S
where w = [xT(t),xT(t —7(t)),xT(t —T)]and © = | x 2Z+S+ST Z-5]|.
* * —Z

Remark 1. It should be pointed out that the problem of the delay differential equation with distributed delay
function of tanh x(s) is more general than [16], where the delay is not considered. Generally applicable nonlinear
system contain with mixed time-varying delays, for instance the population dynamics and predator-prey
model that were studied in [17-19]. It should be noted that this is the first encountered when the distributed
time-varying delay function of tanh x(s) is studied, which includes both distributed and discrete delays for the
system.

3. Stability Analysis

For this part, we analyze the issue of the exponential stability criteria for the neutral differential
Equation (4) with time-varying delays. From the model transformation technique, we get the
Newton-Leibniz formula as follows:

[ ¥e)ds = x(t) =t x(0) ©
By utilizing the zero equation, we obtain:
t
d /t gy K65 = dx(t) — dux(t - 7(1), (10)
(1=dy) [ x(s)ds = (1= dp)x(t) = (1= o)t = (1)), an

where dy,d; € R will be selected to guarantee the exponential stability of Equation (4).
By (9)—(11), Equation (4) can be formulated as follows:

2(t) =(dy — a)x(t) + btanhx(t — o () — (p + (t) — dt(t))2(t — (1))

dyx(t— (1) — dy /t x(s)ds+e/tih(t)x(s)ds

t—1(t)

ot
+f/til(t) tanh x(s)ds. (12)
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The following theorem presents the exponential stability for the neutral differential equation with

time-varying delays in Equation (4).

Theorem 1. Consider dy,d, € R and positive real constants oy, 09,04, T1, T2, T4, 11, ha, 11, lo. Equation (4) is

exponentially stable with a delay rate & > 0. For any positive real constants B;,1;,i =1,2,...,

constants wy, yx, k =1,2,...,10 such that:

—-

=<0,

where & = [@(; ] and @; 5 = Dy; j),

D@11y = 2ap1 +2P1d1 — 2B1a + 2widy — 2wia + B + B3 + 11 + 112 + PeTs + Bros

+113T¢ + 17407 — Bs + Bo + B1005 + 1607 + 2y2 + 11715 + 185 + noht + 11017
D(12) = —wy +wody —wra + Yy,

)
D(13) = P1b +wib + wsdy — wsa + ys,
D(14) = —Prdr —wrd1 + s — s — Y2+ V3,
CID(l 5) = —P1p — P17a + 1Ty — w1p — w1 Ty + widaTy + wady — waa,
D(1,6) = —P1d1 — wrdy + wsdy — wsa — Y2 + Y,
CP 17) = = Bie + wye,
q’(1 g) = Bif +wif,
q)(1,9) =S,
D(1,19) = Ve
cI’(1 20) = Y7,
( 2) = —2wy + Pa + Bs + P87 + 11571,
( 3) = ZUzb w3,
Dy = —w2d1 — 1,
D(y5) = —wop — WaTy + Wada Ty — Wy,
q)(Z 6) — —del ws — Y1,
( 7) = Wwae
28) = Wsf,
( 3) = = 2w3b — Boe™ 200 4 Booy,
( 4) = —wsdy — Y5,
( 5) = —W3p — W3Ty + w3dr Ty + wyb,
D(34) = —wsdy + wsb —ys5,
@(3 7) = = wse,
38) = Wsf,
( 4) = —2B8 + 25 — 2y3,
( 5) = —wady,
( 6) = —Wsd1 — Y3 — Ya,
49) =Ps —s
q’(4,19) = —Ye,
D400) = —Y7,
@(5 5) = = —2wap — 2waTy + 2wady Ty — ‘346_20”—2 + BaTy,
D(56) = —wady — Wsp — W5Ty — Wsda Ty,
CD(S 7) = Wye,
D58) = waf,
q>(6,6) = —ZZU5d1 — 2y4,
CD(6,7) = Wse,
Dg8) = wsf,
D619) = — VYo,
D(6,20) Y7,

10 and real

(13)
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D55 = —1se 22,
D99 = —Poe” 22 — g,
D(10,10) = —Pze—2a0y,
®@(11,11) = —H1e 2T,
D@(1210) = —Ie 2,
D@ (13,13) = —Bse 2?2 + P50y,
D@(1414) = —Pse 272,
®(15,15) = —pre 22,
q)(16 16) = —13e” 21,
(17 17) = *7746_2“‘71,
(18 18) = —1j5e” 2T,
(19 19) = —PB1oe 24,
D@ (20,00) = 16018 21,
q)(21 21) = —njze 202,
D) = —1jge 22,
D303 = —Tj9e” M,
D (2400) = —T10¢ 2N,
other terms are zero.
Proof. We study the following Lyapunov—Krasovskii functional for System (12):
7
V(t,xt) = 2 Vi(t,xt), (14)

where:

Vl(l’, xt)

Va(t, x¢)

V3(t/ xt)

V4(tr Xt)

(l’ xt)

V6(t/ Xt

V7 (t, x¢)

i=1

:ﬁ1€2atx2(t),

=B /tt e?x2 (s )ds+ﬁ3/ 2 x2 (s )ds+ﬁ4/ 252 (s)ds

t—7(t)

- t
+ Bs / 232 ( ds+171/ ez“sxz(s)ds+172/ e?x%(s)ds,
t T

t*U’l

0t
:ﬁ672/ / e?x2(s)dsd6 + ,37(72/ / e?x%(s)dsd6
—T t+6 —02 t+6

0 t 0 t
+ 773T1/ / 25 x%(s)dsd + 1401 / / e?*x%(s)dsde,
-1 t+6 —01 t+6

0 gt 0 gt
:/38772/ / 2552 (s)dsd + 1757 / / 2552 (s)dsd®,
—T t+6 -0 t+6

0t
=PBo / e?* tanh?® x(s)ds 4 B1902 / / ¢?* tanh? x(s)dsd6
t—o(t) —0op Jt+0

0 gt
+ 601 / / ¢?* tanh? x(s)dsd6,
—07 t+0

0t 0t
) :177h2/ / e?x2(s)dsdf + 17812/ / e tanh?® x(s)dsdf
—hy Jt+6 =l Jt+6

0 gt 0 gt
+ Hohy / / e?x%(s)dsdf + n10l1 / / e tanh?® x(s)dsd6,
—hy Jt+6 ~I Jt+6

:,YeZaztxZ(t),
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where 7 is a positive number that will be found later. Taking the derivative of V (¢, x;) along any
trajectory of the solution of System (12), we get:

V(t, xt) iVI £ xt), (15)
i=1
where:
Vi =2aB1e* x%(t) 4 2812 x ()% (t)
=2aB1e* X% (t) 4 21 x(t) {dlx(t) —ax(t) —dyx(t —t(t)) —dq / x(s)ds
+btanhx(t —o(t)) — px(t — ©(t)) + dot(t)x(t — T(t)) — T(t)x%(t — T(t))
+e /t_h( ) x(s)ds +f/t_l(t) tanhx(s)ds]
+ 2w e* x (1) [dlx(t) —ax(t) —x(t) —dyx(t —t(t)) —dq x(s)ds
+btanhx(t — o (t)) — pa‘c(t —1(t)) +dat(t)x(t — T(t)) — T(t)%(t — T(t))
+e/t7h( ROLES Y tanhx(s)ds]
+ 2wpe® % (1) [dlx( ) —ax(t) —x(t) —dyx(t —t(t)) — dq x(s)ds

+btanhx(t —o(t)) — px(t —T(t)) + dat ()% (t — T(t)) — T(£)x(t — T(¢))
t t
+e /tih(t) x(s)ds +f/H(t) tanhx(s)ds]
+ 2wze* tanh x(t — o (t)) {dlx(t) —ax(t) —x(t) —dx(t —t(t)) — dq / i x(s)ds
+btanhx(t —o(t)) — px(t — T(t)) +dot(8)%(t — T(t)) — T(£)%(t — 7(¢))
+e /t_h(t) x(s)ds +f/t_l(t) tanhx(s)ds]
+ 2wy 5 (t — T(t)) [dlx(t) —ax(t) —x(t) —dyx(t —t(t)) — dq /ti " x(s)ds

Fhtanhx(t — o (t)) — pi(t — T(t)) + dot(£)2(t — T(£)) — T()2(t — T(t))

t t
+e /tfh(t) x(s)ds _'—f/tfl(t) tanhx(s)ds]

+ 2wse /t x(s)ds [dlx(t) —ax(t) —x(t) —dyx(t —t(t)) — dq t x(s)ds
t—1(t) t=(t)

+btanhx(t —o(t)) — px(t —T(t)) + dat ()% (t — T(t)) — T(£)x(t — T(¢))

t t
+e /tih(t) x(s)ds +f/H(t) tanhx(s)ds] . (16)
=B, [EZoctxZ(t) o2 (tf'rz)XZ(t _ TZ)} + B3 |e { 20t Z(t) o2 (t7‘72)x2(t _ U’Z)}
+ ﬁ4 [62atx2(t) _ (EZa(t—T(t)) ( ) 1 _ T t }
+ Bs [82’”5(2(1’) _ (eZa(tfa(t)) 2( ) t }

+1 [eZatXZ(t) _ eZa(tfrl)xZ(t _ Tl)} + 172[ o2t Z(t) _ e (tfal)XZ(t _ (71)]
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Sincety < 1(t) < 1,01 < o(t) < 0p,7(t) < 77 and 0 (t) < 0y, we have:

V, < e [/Bzxz(t) — Bae 22 x2(t — 1) + Bax?(t) — Bae 22x3(t — o) + By (1)
— Bae 22t — (1)) + a2t — (1)) + Bsi2(t) — pe PRt — (1)
+oyPse” N (t— o (1) + At (1) — e 2T (= 1) + y2x?(1)

— fppe” X2 (¢ — 0'1)} .

0 0
Vs :ﬁ6T2{/T esztxZ(t)dG_/T eZa(t+9)x2(t+9)d9]
-7 7

0 0
—|—,B7(72{/ ) e21xtx2(t)d9_ / ) eZa(t-i—G)xZ(t_'_G)de}
2 J=0

0
+173T1{/ Q232 ( 7/ eZa(t+9)x2(t+9)d9}
-7 J—T

0
+ a0 | / 232 (1)d6 — / 20021 4 6)do).
o

By Lemma 1, we get:

(17)

Vs <62 | Berda®(t) + Broda(t) + natfa (1) + maodad(t)

t t 2 ot 2
— Bepe 24T (/ ) — Brope 200 (/ x(s)ds) — 3T 2T </ x(s)ds)
t Tz t—oy t—n
t
7206(71
—Maone (/ )
t lTl

0 0
Vy =BT { [ emimdo— [ et (t+e)d9]
—T2 T

+175T1[/_0T1 eZ“fo(t)de—/OTl 20(t+0) (t+9)de]

(18)

By Lemma 4, we get:

V, <X [58T22e2“2x2(t) + y5T2%(F) + 502 ( /t ; x(s)ds>2]
+ o2t [x(t) x(t— (1)) x(t—rz)]

—Bs  Ps—s s x(t)
x  —2Bg+2s Pg—s| |x(t—1(t)] . (19)
* * —Bs x(t— 1)
Vs =Boe®! tanh? x(t) — Boe®!=7() tanh? x(t — o (t))
e?* tanh? x(t)d6

—0

0
+ Boor (1) =0) tanh? x(t — o (1)) + Proco /
o

0 0
— B1o2 / e2(10) tanh? x(t+0)do + neoy / ¢? tanh? x(t)d6
—o

0
— 1601 / (149 tanh? x(t + 6)d6.
oy



Mathematics 2019, 7, 737 9of 18

Since tanh? x(t) < ¥2(t) and using Lemma 1, we get:
Vs <e?™ [ﬁgxz(t) — Boe 2472 tanh? x(t — o'(t)) + Booge 2%t tanh? x(t — o (t))

t
+ ﬁloo’%xz(t) — ﬁ100'2€_2a02 (/t

-0

tanh x(s)ds) ’ + 107X (t)

e ( /t tm tanh x(s)ds) ’ |- (20)
v :177112[/_0}12 (ezuctxZ(t) _ ezx(t+9)xz(t+ 9)) d@}

+ n3la [ /012 (ez"‘t tanh? x(t) — e24(0) tanh? x(t + 9)) d@}

o[ [ (020 - 204221 -+.0)) ]

0
+ ol [/_l (62"“ tanh? x(t) — e22(+0) tanh? x(t + 9)) dG} .

1

Since tanh? x(t) < x2(t) and using Lemma 3, we get:

) t 2 t—h(t) 2
Ve <e?™ {177h%x2(t) — yppe—20hn </ x(s)ds> — yppe— 200 </ x(s)ds) }
t—h(t) t—hy
t
2 [[sat(n) — e 2

2
tanh x(s)ds)
t1()

t—1(t) 2
— yge— 24k (/ l tanhx(s)ds) ] + 2 {ngh%x2(t)
Ji-1,
2

t 2 t
— fjge— 20 </ x(s)ds) } 4 2 [Ulol%xz(t) — 108”20 (/ tanhx(s)ds> } (21)
t*hl t7’1

From the Newton-Leibniz formula, we have:

2 [ylx(t) +yox(t) +yzx(t —7(t)) + ya /t;(t) x(s)ds + ys tanh x(t — o (t))
t

e [ anhx(s)ds +yy [ tanhx(s)ds] [x(t) x(t-t) - [ Y x<s>ds] @

Combining Equations (16)—(22), we get:

where w(t) = [x(t),x(t),tanhx(t—a(t)) x(t—t(t)), ft (1) X(s)ds, ft (i )ds
ft () tanhx(s)ds, x(t — 1), x (t—az) x(t—1), x(t—al) ft o, X(s)ds, ft o, X(5)ds,
ftiﬁ ds,ftﬂT s)ds, ft o, X(5)ds, ft o tanhx(s)ds,ftig1 tanhx( )ds, [ - h(t) x(s )ds,
ftf_—llz(t) tar1h3c(s)czls,f)Hl1 x(s)ds, ftfll tanhx(s)ds} ,
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and E is identified in Equation (13). Due to & < 0, we get V* < 2w’ (t)Ew(t) < 0. Hence, there is a
positive number A such that:

Ve <Al [II?’C(f)H2 + (D17 + | tanhx(t — o ()| + [Jx(t = T2 + |5t — (1))

s [ sl o) el

+H/ %W+H/ mmwﬁmﬁ+wu—nmﬁuvu—@m2
+ |Jx(t=)[[> + [|x(t — o1) ||2+||/ ds||2+||/ (s)ds| |2

_1
—O—H/ ds||2+||/ tanh x(s )ds||2+||/ tanh x(s)ds||*

H/ ds||2+||/ tanhx ds||2—|—||/ (s)ds||?
+H/ tanh x(s)ds| }
-1

< — A |x (1))

Calculating the derivative of V7 along any trajectory of Equation (4) and applying Lemma 2, then
we obtain:

V7 = 29! [x () %(F) + ax?(1)]
t
= 29e* |x { (1) (—ax(t) +btanhx(t —o(t)) — px(t —7(t)) + E/t—h(t) x(s)ds
+f/t—l(t) tanhx(s)ds) —i—txxz(t)]
PN [_axz(t) + bx () tanh x(t — o(£)) — px(£)E(E — T(t)) + ex(t) /:h(t) x(s)ds
+Fx(t) /til , tanhx(s)ds + ocxz(t)]

< et [(7201 +20)x%() + b tanh? x(t — o (1)) + pPa2(t — T(t))

e (/tih(f) x(s)ds)z e (/til(t) tanh x(s)ds>2] .

We select: 111 1
- Zmin{bz'?'ei']ﬁ}’ if —2a+2x<0
' Amin{ L 111 i} if otherwise
2 —2a 420" b2’ p2e2’ f277
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We have V(t,x;) ZV (t,x¢) < %ez”‘tHx(if)H2 < 0. From the conditions that 0 < 7(t) <
7,0 < o(t) < opand V(¢, xt) is negative definite, we get V (¢, x;) < V(0,xg), Vt > 0, with:
7
V(0,x0) =Y V;i(0,x0)

i=1

=B1x*(0) + B2 [ e?x%(s)ds + B3 /O e x%(s)ds

—0

0 t
20s .2 205 .2
+ B4 /4(0)@ X (s)ds+[35/ e“*x(s)ds

—o(0)

0 t
205 .2 d / 25 ,.2 d
+m /_T(O)e x*(s)ds + 1 _U(O)e x*(s)ds

0 /0 0 /0
+ ,861‘2/ / 2% x2(s)dsd6 + ,370'2/ / e?x2(s)dsd6
-1 Jo -0y JO
0 /0 0 /0
+ 173T1/ / 2 x%(s)dsdf + 401 / / 25 x2(s)dsd6
-1 JO -0 J0

0 0 0 0
+ ,BgTz/ / e? 32 (s)dsd + 57y / / e?*x2(s)dsd6
—1 /0 -1 JO

0 0 0
+ B9 / ®* tanh? x(s)ds + B1902 / / e tanh? x(s)dsdf
—o(0) -0y JO
0 0 0 0
+ 160 / / e tanh?® x(s)dsd6 + 17h; / / e?x2(s)dsd6
-0 0 —hz 0
0 0 0 0
+ ngly / / ¢?* tanh? x(s)dsd6 + nohy / / e?x2(s5)dsd6
—1, Jo —m Jo

0 0
+ 110l /l /9 ¢?* tanh? x(s)dsd6 + x> (0)
-4
A
< {ﬁ1 + Bo + B30 + BaTr + Bs0n + 11Ty + 1101 + ﬁe* + 1377 + (o
0.3 3 0.3 03 3 hS 13 h3
Ry +f38 55 +ﬁ9f72+[310 +776 +777 +778 +779

otk 4+ ma 11 141}
= Amax{] |, |||}
= AN,

Lo S G G |
where A = B1 + oty + P32 + faa + P52 + 1T + 01+ Po— + Pro F i35 Fias + s+
03 3 0.3 h3 l3 h3 l3
5 +ﬁ9(72+,3107+7762 +i7 2 1187 + 105 + 1oy + 7, N = max{][x[[3, [1%]|7}
From ye?*x2(t) < V(x(t)) < AN we obtaln

AN
lx(B)]] < Me™, M= -

This completes the poof. [

We show the delay-dependent criteria for the problem of the exponential stability of Equation (4)
where s =0y =e=f =0.



Mathematics 2019, 7, 737

12 0f 18

Corollary 1. Consider real constants di € R and positive real constants 1, 14,02 and 0. Equation (4) is
exponentially stable with a delay rate & > O, for any positive real constants B;,i = 1,2,...,10 and real constants

wy, My, k=1,2,...,6 such that:
5 <0,

where % = [CDz‘i,j)] and [CIDZ‘j’i)] = [CIDZ‘i,j)],

CDZ“LU = 2wy + Ba+ B5 + BsTaT2 — 2we,

d)’(*lrz) = —wq + wady] — Wwaa + Yy — Wea,

@15 = —wad1 — Y1,

Cbz‘w) = —wyd] —ws — Y1,

@?1’6) = wyb — w3 + web,

CDE‘W) = —Wyp — Wy — WeP,

CD’(kzlz) =20B1 +2B1d1 — 2B1a + 2wdy — 2wia + B + B3 + PeTa 2 + Broaos — ﬁgefzunz + Bo

+B100202 + 2y3,
= —P1dy — widy + Bse 2 — 51—y + y3,

)
)
@?215) = —B1d1 — wydy + wsdy — aws — Yo + Y4,
) = ﬁlb + wlb + W3d1 — w3a + s,

) = —B1p — wip + wady — wya,

(2,12) = Yor

= —2pge” 4™ + 251 — 23,

CI>2‘3,7 = —wWqydq,

P510) = Ve

q>>(k4’4) — _'Bze—ZaTZ _ 1386—20(1'2,
55 = —2wsdy — 2ya,

@?5’6) = —w3dy + wsb — ys,
@?5,7) = *ZU4d1 — Wsp,

P510) = Yo

P 6) = 2w3b — Boe™ % + ooy,
@2‘6’7) = —w3p + wab,

q>>(k7,7) = —2wyp + TyPa — Pae” P2,
DPlgg) = —pae 2

Do) = —Pse 2 + oups,
q)?lo,lo) _ _'Bée—ZaTz,

cD?ll,ll) — _ﬁ7e—2atfz,

Q1210 = —Proe

other terms are zero.

(23)
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Proof. Consider the Lyapunov—Krasovskii functional candidates:
6
V(tx) =Y Vilt,xy),
i=1
where:

Vilt,x) = Pre®xi(t),

Vz(t,xt) = ‘Bz t 62“5x2( )d5+53/

t—1

:B / Zocs 2 S,

V3(t,x) = ,867/ / 2 (s—0 )dsd9+ﬁ7(72/ / 257032 (5)dsd,
-1 Jt+60 o Jt40

Vy(t,x) = ,38’(/ /t+9 e2(5=0) 32 (5)dsdo,
—

t
V5(t,xt) = lBg/ 2% tanhzx(s)derﬁlOcrz/ / ¢24(5=0) tanh? x ( )dsd@,
t—ot

Ve(t,xt) = ye®x%(t).

t
e?x2(s)ds + ,54/ e 3% (s)ds

1% t—1(t)

As stated by Theorem 1, we get the delay-dependent criteria for the exponential stability of
Equation (4) where 1y =01 =e=f=0. O

Remark 2. We know that the delay-dependent condition is generally considered as less conservative than
the delay-independent when the delay is small. Therefore, our criteria in Theorem 1 and Corollary 1 are
delay-dependent on Ty, 0, hy, and lp, which are less conservative than the delay-independent criteria considered
in[2,6,8,27].

Remark 3. We know that unbounded delays are more general than bounded delays, often including bounded
delays as their special cases. In practical systems, there are many works such as the HIV-spread model,
the modeling of oscillators, and the analysis of neural networks where infinite delays exist or modeling of one is
need. Therefore, it is worth pointing out that we can extend this method to a more general system with infinite
delays in future works.

4. Numerical Examples

In this part, numerical examples are presented to show the effectiveness of our main consequences,
which compare the maximum allowable upper bounds ¢ and the parameter b in addition to
investigating the rate of convergence. The feasibility of all criteria is obtained by using the LMI
control toolbox in MATLAB.

Example 1. Consider the neutral differential equation with mixed interval time-varying delays as follows:

%[x(t)+0.2x(t—1’(t))]+0.6x( t) —btanhx(t — o 01/ ds—OZ/ tanhx(s)ds = 0. (24)

Solving the LMI (13) when b = 0.15,a = 0.0038,7(t) = 01+ <50 o(t) = 0.1+ S0,
h(t) = 0.1+ k(ﬁﬂ and 1(t) = 0.1 + ‘Sin:%ﬂ, we get a set of parameters to guarantee the exponential
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stability as follows:

11 = 108.2939, 12 = 108.2939, 13 = 264.6443, Mg = 264.6443,

15 = 268.6166, 16 = 505.1453, 17 = 290.0963, ng = 427.4140,

o = 264.6443, 10 = 264.6443, By = 15575 x 103, B, = 104.3766,

B3 = 108.3823, B4. = 2444721, 5 = 338.3978, Be = 173.6726,

By =173.6726,  Pg =2489316, Po = 336.7202, Bro = 173.6726,

wy = —229.6065, w, = 487.9487, ws = 124.9935, wy = —1.5458 x 10719,
ws = —14.5680,

Moreover, Table 1 lists the maximum upper bounds b for different values of o, vy, 0. Table 2 lists the
maximum upper bounds for the rate of convergent o with different values of b, 73, 05. The maximum allowable
bounds on b for different values of w, T3, 04 can be found in Table 3. We investigate the maximum allowable
bounds on the rate of convergent « in Table 4 with different values of b, ty,04. In Table 5, we show the
maximum allowable bounds on b for the exponential and asymptotic stabilities of Example 1 for different values
of a, e. Table 6 provides the maximum allowable bounds on « for the exponential and asymptotic stabilities of
Example 1 for different values of e, b. Table 7 provides the maximum allowable bounds on b for the asymptotic
and exponential stabilities of Example 1 for different values of w, f. Furthermore, Table 8 presents the maximum
allowable bounds on « for the asymptotic and exponential stabilities of Example 1 for different values of f,b.

Table 1. Maximum allowable upper bounds b of Example 1 for « = 0.0038.

Tg=05 0c=02 0c=03 =04 0c=05 0c=06

0.1 0.4226 0.4224 0.4223 0.4221 0.4220
0.2 0.3984 0.3990 0.3978 0.3979 0.3970
0.3 0.3726 0.3724 0.3722 0.3720 0.3719
0.4 0.3460 0.3447 0.3445 0.3443 0.3440
0.5 0.3148 0.3145 0.3141 0.3142 0.3138

Table 2. Maximum allowable upper bounds ¢ of Example 1 for « = 0.0038.

Ty=o03 b=01 b=02 b=03 b=04

0.05 302.5884 181.7944 90.5145 20.6635
0.1 249.3654 157.9067 78.0361 13.1826

0.15 211.5763 137.6965 66.6394  6.1042

0.2 182.2537  120.1813 56.1530  4.0409

Table 3. Maximum allowable upper bounds b of Example 1.

y=0c4 a=0 =01 a«a=02 a=03 a=04

0.1 0.4269  0.3036 0.1950 0.0971 0.0130
0.2 0.4024  0.2838 0.1793 0.0886 0.0108
0.3 03764 0.2622 0.1633 0.0792 0.0094
0.4 0.3485  0.2410 0.1456 0.0685 0.0078
0.5 0.3181  0.2129 0.1253 0.0558 0.0057

Table 4. Maximum allowable upper bounds « of Example 1.

Ty=0; b=005 b=01 b=02 b=03 b=04

0.05 0.3563 0.3012 0.2009 0.1111 0.0296
0.1 0.3538 0.2969 0.1942 0.1031 0.0208
0.15 0.3509 0.2930 0.1880 0.0946 0.0116
0.2 0.3477 0.2867  0.1791 0.0855 0.0019

0.25 0.3439 0.2806  0.1705 0.0757  0.0110
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Table 5. Maximum allowable upper bounds b of Example 1.

e xa=0 a«a=01 a=015 a=02 «a=025

0.05 0.3358 0.2292 0.1825 0.1401 0.1022
0.1 03181 0.2129 0.1670 0.1253 0.0883
0.15 0.3005  0.1965 0.1513 0.1106 0.0744
02 02828 0.1802 0.1357 0.1019 0.0605
025 0.2651 0.1638 0.1201 0.0820 0.0466

Table 6. Maximum allowable upper bounds « of Example 1.

e b=005 b=01 b=015 b=02 b=025

0.05 0.3317 0.2531 0.1879 0.1307 0.0792
0.1 0.3099 0.2335 0.1697 0.1135 0.0629
0.15 0.2881 0.2150 0.1515 0.0964 0.0464
0.2 0.2664 0.2010 0.1334 0.0792 0.0301
0.25 0.2447 0.1749 0.1154 0.0622 0.0138

Table 7. Maximum allowable upper bounds b of Example 1.

f a«=0 a=01 a=015 a«=02 a=025

0.05 03712 0.2619 0.2137 0.1697 0.1310
0.1 03536 0.2456 0.1981 0.1549 0.1161
0.15 0.3358  0.2292 0.1825 0.1401 0.1022
02 03181 0.2129 0.1669 0.1253 0.0883
0.25 0.3005  0.1965 0.1513 0.1106 0.0745

Table 8. Maximum allowable upper bounds « of Example 1.

f b=005 b=01 b=015 b=02 b=025

0.05 0.3748 0.2930 0.2242 0.1651 0.1130
0.1 0.3534 0.2726 0.2061 0.1479 0.1010
0.15 0.3317 0.2531 0.1879 0.1307 0.0792
0.2 0.3099 0.2335 0.1697 0.1135 0.0629
0.25 0.2881 0.2150 0.1515 0.0964 0.0464

Example 2. Consider the equation focused on in [14,15] as follows:

%[x(t) +0.2x(t — t(f))] +0.6x(t) —0.5tanh x(t —o(£)) =0, >0,

2
when oy = 0.2. and T(t) = cos”(t)

Solving our criterion (23) for guaranteeing uniformly-exponential stability, « = 0.0038 is given, then we
get the maximum allowable upper bound of the delay o = 9.00. Table 9 presents the comparison of the maximum
allowable value of o obtained in Corollary 1. We can see that our results are much better than those obtained
in [14,15].

Table 9. Maximum allowable upper bounds ¢ for Example 2.

Methods « = 0.0038 « = 0.028
H.Chen and X. Meng [15] infeasible  infeasible
P. Keadnarmol and T. Rojsiraphisal [14] 7.5231 0.0321

Our result (23) 9.00 0.1850
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Example 3. Consider the neutral differential equation focused on in [1,9,14,15] as follows:

%[x(t) +0.2x(F— 01)] + 0.6x(f) — 03tanh x(f — ) =0, t3> 0.
Solving our criterion (23) to guarantee uniformly-exponential stability, o« = 0.0038 is given, then we get the
maximum allowable upper bound of the delay o = 175.3543. Table 10 presents the comparison of the maximum

allowable value of o obtained in Corollary 1. We can see that our results are much better than the other works.

Table 10. Maximum allowable upper bounds ¢ of Example 3.

Methods « = 0.0038
H. Chen [1] 175.2890
H. Chen and X. Meng [15] 102! (No «)
T. Rojsiraphisal and P. Niamsup [9] 1.9470
P. Keadnarmol and T. Rojsiraphisal [14] 175.3540
Our result (23) 175.3543

5. Conclusions

We improved the criteria for the exponential stability of a new certain nonlinear neutral differential
equation with a more generally interval-distributed and discrete time-varying delays. By using the
Lyapunov-Krasovkii functional, descriptor model transformation, the Leibniz-Newton formula,
and utilization of the zero equation, the exponential stability criteria were in the form of linear
matrix inequalities (LMIs). Finally, we presented numerical examples to show the effectiveness of the
theoretical results and to illustrate less conservative conditions than many other works.
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