
mathematics

Article

Calculating the Weighted Moore–Penrose Inverse by
a High Order Iteration Scheme

Haifa Bin Jebreen

Mathematics Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
hjebreen@ksu.edu.sa

Received: 16 July 2019; Accepted: 7 August 2019; Published: 10 August 2019
����������
�������

Abstract: The goal of this research is to extend and investigate an improved approach for calculating
the weighted Moore–Penrose (WMP) inverses of singular or rectangular matrices. The scheme is
constructed based on a hyperpower method of order ten. It is shown that the improved scheme
converges with this rate using only six matrix products per cycle. Several tests are conducted to reveal
the applicability and efficiency of the discussed method, in contrast with its well-known competitors.

Keywords: iteration scheme; Moore–Penrose; rectangular matrices; rate of convergence;
efficiency index

MSC: 15A09; 65F30

1. Introduction

1.1. Background

Constructing and discussing different features of iterative schemes for the calculation of outer
inverses is an active topic of current research in Applied Mathematics (for more details, refer to [1–3]).
Many papers have been published in the field of outer inverses over the past few decades, each having
their own domain of validity and usefulness. In fact, in 1920, Moore was a pioneer of this field and
published seminal works about the outer inverse [4,5]. However, several deep works were published
during the 1950s (as reviewed and observed in [4]). It is also noted that pseudo-inverse operator was
first introduced by Fredholm in [6].

The method of partitioning (due to Greville) was a pioneering work in computing generalized
inverses, which was re-introduced and re-investigated in [4,7]. This scheme requires a lot of operations
and is subject to cancelation and rounding errors. Among the generalized inverses, the weighted
Moore–Penrose (WMP) inverse is important, as it can be simplified to a pseudo-inverse, as well as
a regular inverse. Several applications of computing the WMP inverse can be observed, with some
discussion, in the recent literature [8,9]; including applications to the solution of matrix equations.
See [10–13] for further discussions and applications.

Furthermore, for large matrices, or as long as the weight matrices in the process of computing the
WMP inverse are ill-conditioned, symbolic computation of the current algorithms may not properly
work due to several reasons, such as time consumption, requiring higher memory space, or instability.
On the other hand, several numerical methods for the weighted Moore–Penrose (WMP) inverse are
not stabie or possess slow convergence rates. Hence, it is necessary to investigate and extend novel
and useful iterative matrix methods for such an objective; see, also, the discussions in [14,15].

Mathematics 2019, 7, 731; doi:10.3390/math7080731 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0001-9394-7305
http://dx.doi.org/10.3390/math7080731
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/7/8/731?type=check_update&version=2

Mathematics 2019, 7, 731 2 of 11

1.2. Definition

Let us consider that M and N are two square Hermitian positive definite (HPD) matrices of
sizes m and n (m ≤ n) and A ∈ Cm×n. Then, there is a unique matrix X satisfying the following
identities [16]:

1. AXA = A,
2. XAX = X,
3. (MAX)∗ = MAX,
4. (NXA)∗ = NXA.

Then, X ∈ Cn×m is called the WMP inverse of A, and is shown by A†
MN . Noting that, as long as

M = Im×m and N = In×n, then X is the Moore–Penrose (MP) inverse, or simply the pseudo-inverse of
A, and we show it by A† [17]. Furthermore, when the matrix A is non-singular, then the pseudo-inverse
will be simplified to the regular inverse.

The weighted singular value decomposition (WSVD), first introduced in [18], is normally applied
to define this generalized inverse. Consider that the rank of A is r. Then, we have U ∈ Cm×m and
V ∈ Cn×n, satisfying the following relations:

U∗MU = Im×m, (1)

and
V∗N−1V = In×n, (2)

such that

A = U

(
D 0
0 0

)
V∗. (3)

Thus, A†
MN is furnished as follows:

A†
MN = N−1V

(
D−1 0

0 0

)
U∗M, (4)

where we have a diagonal matrix D = diag(σ1, σ2, . . . , σr), for σ1 ≥ σ2 ≥ . . . ≥ σr > 0, while σ2
i is the

non-zero eigenvalue of N−1 A∗MA. In addition,

‖A‖MN = σ1, ‖A†
MN‖NM =

1
σr

. (5)

In this work, A# = N−1 A∗M is used as the weighted matrix of the conjugate transpose of A.
See [19] for more details.

1.3. Literature

Schulz-type methods for the calculation of the WMP inverse are sensitive to the choice of the
initial value; that is, the initial choice of matrix must be close enough to the generalized inverse so as
to guarantee the scheme to converge [20]. More precisely, convergence can only be observed if the
starting matrix is chosen carefully. However, this starting value can be chosen simply for the case of
the WMP inverse. The pioneering work in [21] gave several suggestions, along with deep discussions,
about how to make such a choice quickly.

Let us, now, briefly provide some of the pioneering and most important matrix iterative methods
for computing the WMP inverse.

Mathematics 2019, 7, 731 3 of 11

The second–order Schulz scheme for finding the WMP inverse, requiring only two matrix products
per computing cycle, is given by [22]:

Xk+1 = Xk(2I − AXk), k = 0, 1, 2, · · · . (6)

Throughout the work, I stands for the identity matrix, unless clearly stated otherwise.
An improvement of (6) with third-order convergence, known as Chebyshev’s method, was

discussed in [23] for computing A†
MN as follows:

Xk+1 = Xk(3I − AXk(3I − AXk)), k = 0, 1, 2, · · · . (7)

The authors in [23] proposed another third-order iterative formulation, having one more matrix
multiplication, as follows:

Xk+1 = Xk

[
I +

1
2
(I − AXk)(I + (2I − AXk)

2)

]
, k = 0, 1, 2, · · · . (8)

It is necessary to recall that a general class of iteration schemes for computing the WMP
inverse and some other kinds of other generalized inverses was discussed and investigated in [24]
(Chapter 5) to have p-th order using a total of p matrix products. An example could be the following
fourth-order iteration:

Xk+1 = Xk(I + Bk(I + Bk(I + Bk))), k = 0, 1, 2, · · · , (9)

where Bk = I − AXk. As another instance, a tenth-order matrix method could be furnished as
follows [25]:

Xk+1 = Xk(I + Bk(I + Bk(I + Bk(I + Bk(I + Bk(I
+Bk(I + Bk(I + Bk(I + Bk))))))))), k = 0, 1, 2, · · · .

(10)

1.4. Motivation and Organization

The main motivation behind proposing and extending new iterative methods for the WMP
inverse is to apply them in practical large scale problems [26], as well as to improve the computational
efficiency, which is directly linked to the concept of numerical analysis for designing new iterative
expressions which are economically useful, in being able to reduce computational complexity and
time requirements.

Hence, with this motivation at hand, to increase the computational efficiency index as well as to
contribute in this field, the main focus of this work is to investigate a tenth-order method requiring
only six matrix multiplications per cycle. We prove that this can provide an improvement of the
computational efficiency index in calculating the WMP inverse.

The paper is organized as follows. Section 1 discusses the preliminaries and literature of this topic
very briefly, to prepare the reader for the analytical discussions of Section 2, in which we describe an
effective iteration formulation for the WMP inverse. It is investigated that the method needs only six
matrix multiplications to reach its tenth order of convergence.

Concrete proofs of convergence are furnished in Section 3. Section 4 discusses the application of
our formulation to the WMP inverses of many randomly generated matrices of various dimensions.
Numerical evidence demonstrates the usefulness of this method for computing the WMP inverse, in
terms of the elapsed computation time. Finally, several concluding remarks and comments are given
in Section 5.

Mathematics 2019, 7, 731 4 of 11

2. A High Order Scheme for the WMP Inverse

For the use of iterative methods, such as the ones described in Section 1, it is required to employ
a starting value when computing the WMP inverse. As in [27], one general procedure to find this
starting matrix is of the following form:

X0 = λA#, (11)

where A# = N−1 A∗M is the matrix of weighted conjugate transpose (WCT) for the input matrix A and

λ =
1
σ2

1
. (12)

Recall that, in (12), σ1 is the the largest eigenvalue of N−1 A∗MA.

2.1. Derivation

Another reason for proposing a higher order method is that methods based on improvements of
the Schulz iteration scheme are slow in the initial phase of iteration. This means that the convergence
order cannot be observed at the beginning, it can be seen only after performing several iterates. On the
other hand, by incorporating a stop condition using matrix norms, we can increase the elapsed time of
executing the written programs for finding the WMP inverse.

Accordingly, to contribute and extend a high order matrix iteration scheme in this context, we first
take into account a tenth-order scheme having ten matrix multiplications per cycle, as follows:

Xk+1 = Xk(I + Bk + B2
k + · · ·+ B9

k). (13)

Now, to develop the performance of (13), we factorize (13) to reduce the number of products. So,
we can write

Xk+1 = Xk (I + Bk) [(I − Bk + B2
k − B3

k + B4
k)(I + Bk + B2

k + B3
k + B4

k)]. (14)

This formulation for the matrix iteration requires seven matrix products. However, it is possible
to reduce this number of products by considering a more tight formulation for (14). Hence, we write

Xk+1 = Xk (I + Bk) Mk, (15)

where
Mk = [(I + χB2

k + B4
k)(I + κB2

k + B4
k)]. (16)

To find the unknown weighting coefficients in (15) and, more specifically, in (16), we need to solve
a symbolic problem. As such, a Mathematica code [28] was employed to do such a task, as follows:

ClearAll["Global‘*"];
fact1 = (1 + a B^2 + B^4);
fact2 = (1 + b B^2 + B^4);
sol = fact1*fact2 + (c B^2) // Expand
S = Table[
s[i] = Coefficient[sol, B^i], {i, 2, 6, 2}
] // Simplify
Solve[
s[2] == 1 && s[4] == 1 && s[6] == 1, {a, b, c}
] // Simplify
{a, b, c} = {a, b, c} /. %[[1]] // Simplify
Chop@sol // Simplify

Mathematics 2019, 7, 731 5 of 11

This was given only to ease understanding of the procedure of obtaining the coefficient. Now,
we obtain:

χ =
1
2

(
1−
√

5
)

, κ =
1
2

(
1 +
√

5
)

. (17)

This means that (15) requires only six matrix products per cycle to hit a convergence speed of ten.

2.2. Several Lemmas

Before providing the main results concerning the convergence analysis of the proposed scheme,
we furnish the following lemmas, inspired by [29], which reveal how the iterates generated by (15)
have some specific important relations and, then, show a relation between (4) and (15).

Lemma 1. For {Xk}k=∞
k=0 produced by (15) using the starting matrix (11), for any k ≥ 0, it holds that

(MAXk)
∗ = MAXk,

(NXk A)∗ = NXk A,
Xk AA†

MN = Xk,
A†

MN AXk = Xk.

(18)

Proof. The proof can be done by employing mathematical induction. When k = 0 and X0 is the
suitable initial matrix, the first two relations in (18) are straightforward. Hence, we discuss the last two
relations by applying the following identities:

(AA†
MN)

= AA†
MN , (19)

and
(A†

MN A)# = A†
MN A. (20)

Accordingly, we have:
X0 AA†

MN = λA# AA†
MN

= λA#(AA†
MN)

#

= λA#(A†
MN)

A#

= λ(AA†
MN A)#

= λA#

= X0,

(21)

and also
A†

MN AX0 = λA†
MN AA#

= λ(A†
MN A)# A#

= λ(A#(A†
MN)

A#)

= λ(A(A†
MN A)#

= λA#

= X0.

(22)

Subsequently, now the relation is valid for k > 0, then we discuss that it will still be true for k + 1.
Taking our matrix iteration (15) into consideration, we have:

(MAXk+1)
∗ = (MA(Xk (I + Bk) [(I + χB2

k + B4
k)(I + κB2

k + B4
k)]))

∗

= [MAXk
(

I + Bk + B2
k + B3

k + B4
k + B5

k + B6
k + B7

k + B8
k + B9

k
)
]∗

= MA[Xk
(

I + Bk + B2
k + B3

k + B4
k + B5

k + B6
k + B7

k + B8
k + B9

k
)
]

= MAXk+1,

using that
(M(AXk))

∗ = MAXk, (23)

Mathematics 2019, 7, 731 6 of 11

M is a Hermitian positive definite matrix (M∗ = M), and similar facts, such as:

(M(AXk)
2)∗ = (M(AXk)(AXk))

∗

= (AXk)
∗(M(AXk))

∗

= (AXk)
∗(M(AXk))

= (AXk)
∗M∗(AXk)

= (M(AXk))
∗(AXk)

= M(AXk)(AXk)

= M(AXk)
2.

(24)

Hence, the first relation in (18) is true for k + 1, and the 2nd relation could be investigated similarly.
For the other relation in (18), by employing the assumption that

Xk AA†
MN = Xk, (25)

and (15), we have:

Xk+1 AA†
MN = (Xk (I + Bk) [(I + χB2

k + B4
k)(I + κB2

k + B4
k)])AA†

MN
= (Xk + XkBk + XkB2

k + XkB3
k + XkB4

k + XkB5
k + XkB6

k
+XkB7

k + XkB8
k + XkB9

k)AA†
MN

= Xk AA†
MN + XkBk AA†

MN + XkB2
k AA†

MN + XkB3
k AA†

MN + XkB4
k AA†

MN
+XkB5

k AA†
MN + XkB6

k AA†
MN + XkB7

k AA†
MN + XkB8

k AA†
MN + XkB9

k AA†
MN

= (Xk + XkBk + XkB2
k + XkB3

k + XkB4
k + XkB5

k
+XkB6

k + XkB7
k + XkB8

k + XkB9
k)

= Xk+1.

Therefore, the third relation in (18) is valid for k + 1. The final relation could be investigated in a
similar way, and the result follows. The proof is, thus, complete.

Lemma 2. Employing the assumptions of Lemma 1 and (3), then for (15) we have:

(V−1N)Xk(M−1(U∗)−1) = diag(Tk, 0), (26)

where Tk is a diagonal matrix, V∗N−1V = In×n, U∗MU = Im×m, V ∈ Cn×n, U ∈ Cm×m, and A = UΣV∗.

Proof. Assume that T0 = λD and that σ2
i are the non-zero eigenvalues of the matrix N−1 A∗MA, while

D = diag(σ1, σ2, . . . , σr), σi > 0 for any i. Thus, we can write that:

Tk+1 := ϕ(Tk) = Tk (I + (I − DTk)) [(I + χ(I − DTk)
2 + (I − DTk)

4)

×(I + κ(I − DTk)
2 + (I − DTk)

4)].
(27)

Applying mathematical induction, one can write that

(V−1N)X0(M−1(U∗)−1) = λ(V−1N)A#(M−1(U∗)−1)

= λ(V−1N)N−1 A∗(MM−1(U∗)−1)

= λ(V−1N)N−1Vdiag(D, 0)U∗(MM−1(U∗)−1)

= diag(λD, 0).

(28)

Mathematics 2019, 7, 731 7 of 11

In addition, when (31) is satisfied, then using (15), one can get that:

(V−1N)Xk+1(M−1(U∗)−1) = (V−1N)Xk(M−1(U∗)−1)

×
(
2I − (V−1N)AXk(M−1(U∗)−1)

)
×[(I + χ(V−1N)(I − AXk)

2(M−1(U∗)−1)

+(V−1N)(I − AXk)
4(M−1(U∗)−1))

×(I + κ(V−1N)(I − AXk)
2(M−1(U∗)−1)

+(V−1N)(I − AXk)
4)(M−1(U∗)−1)].

(29)

Using the fact that A = U∗MUdiag(D, 0) = V∗NV, one attains

(V−1N)Xk+1(M−1(U∗)−1) = diag(ϕ(Tk), 0), (30)

which shows that (27) is a diagonal matrix. This completes the proof.

3. Error Analysis

The objective of this section is to provide a matrix analysis for the convergence of the iteration
scheme (15).

Theorem 1. Let us consider that A is an m× n matrix whose WSVD is provided by (4). Furthermore, assume
that the starting value is given by (11). Thus, the matrix sequence from (15) tends to A†

MN .

Proof. In light of (4), to prove our convergence for the WMP inverse, we now just need to prove that

lim
k→∞

(V−1N)Xk(M−1(U∗)−1) = diag(D−1, 0). (31)

It is obtained, using Lemmas 1 and 2, that

Tk = diag(τ(k)
1 , τ

(k)
2 , . . . , τ

(k)
r), (32)

where
τ
(0)
i = λσi (33)

and
τ
(k+1)
i = τ

(k)
i

(
2I + σiτ

(k)
i

)
[(I

+χ(σiτ
(k)
i)2 + (σiτ

(k)
i)4)(I

+κ(σiτ
(k)
i)2 + (σiτ

(k)
i)4)].

(34)

The sequence produced by (34) is the result of employing (15) in calculating the zero σ−1
i of

the function
φ(τ) = σi − τ−1, (35)

using the starting condition τ
(0)
i .

We observe that convergence to σ−1
i can be achieved, as long as

0 < τ
(0)
i <

2
σi

, (36)

which results in a criterion on λ (the selection in formula (12) has now been shown). Hence,
{Tk} → Σ−1, and (31) is satisfied. It is now clear that {Xk}k=∞

k=0 → A†
MN when k→ ∞. This concludes

the proof.

Mathematics 2019, 7, 731 8 of 11

4. Computational Tests

In this section, our aim is to study the efficiency of the proposed approach for calculating the
WMP inverse computationally and analytically. To do this, we considered several competitors from
the literature in our comparisons, such as those from (6), (7), (10), and (15), denoted by “SM2”, “CM3”,
“KMS10”, and “PM10”, respectively.

Note that all computations were done in Mathematica 11.0 [30] and the time is reported in seconds.
The hardware used was a CPU Intel Core i5 2430-M with 16 GB of RAM.

We know that the efficiency index is expressed by [31]:

EI = ρ
1
κ , (37)

where ρ and κ stand for the speed and the whole cost in each cycle, respectively.
As such, the efficiency index of different methods (6–10) and (15) are reported by: 2

1
2 ' 1.414,

3
1
3 ' 1.442, 3

1
4 ' 1.316, 4

1
4 ' 1.414, 10

1
10 ' 1.258, and 10

1
6 ' 1.467, respectively. Clearly, our

investigated iterative expression has better a index and can be more useful in finding the WMP inverse.

Example 1. [29] The purpose of this experiment was to examine the calculation of WMP inverses for 10 uniform
randomly provided m1× n1 = 200× 210 matrices, as follows:

SeedRandom[12]; no = 10; m1 = 200; n1 = 210;
ParallelTable[A[k] = RandomReal[{1}, {m1, n1}];, {k, no}];

where the ten various HPD matrices M and N were given by:

ParallelTable[MM[k] = RandomReal[{2}, {m1, m1}];, {k, no}];
ParallelTable[MM[k] = Transpose[MM[k]].MM[k];, {k, no}];
ParallelTable[NN[k] = RandomReal[{3}, {n1, n1}];, {k, no}];
ParallelTable[NN[k] = Transpose[NN[k]].NN[k];, {k, no}];

The results by applying the stop termination

||Xk+1 − Xk||2 ≤ 10−10, (38)

are reported in Tables 1 and 2, based on the number of iterations, elapsed CPU time (in seconds), and
X0 = 1

σ2
1

A#. As can be observed from the results, the best scheme in terms of number of iterations and

time was (15).

Table 1. Comparison based on the number of iterations and the required mean in Experiment 1.

Methods SM2 CM3 KMS10 PM10

A1 68 43 22 22
A2 69 44 22 22
A3 67 43 21 21
A4 71 46 23 23
A5 72 46 23 23
A6 72 46 23 23
A7 66 42 21 21
A8 78 50 25 25
A9 63 41 20 20
A10 69 44 22 22

Mean 69.5 44.5 22.2 22.2

Mathematics 2019, 7, 731 9 of 11

Table 2. Comparison based on the elapsed CPU time and its mean in Experiment 1.

Methods SM2 CM3 KMS10 PM10

A1 1.4954 1.04826 0.996155 0.755317
A2 1.4563 1.08006 0.984057 0.767785
A3 1.37301 1.03847 0.967427 0.720294
A4 1.53201 1.10927 1.0365 0.789994
A5 1.50908 1.10164 0.998853 0.794098
A6 1.51215 1.11421 1.03361 0.823177
A7 1.39481 1.00116 0.915244 0.743779
A8 1.62742 1.24438 1.12434 0.87007
A9 1.32916 0.999683 0.903072 0.709523
A10 1.49738 1.05736 0.985084 0.764156

Mean 1.47267 1.07945 0.994434 0.773819

Example 2. The iterative methods were compared for five randomly generated dense m1× n1 = 500× 500
matrices produced in Mathematica environment by the following piece of code:

m1 = 500; n1 = 500; no = 5; SeedRandom[12];
ParallelTable[A[k] = RandomReal[{0, 1}, {m1, n1}];, {k, no}];
ParallelTable[MM[k] = RandomReal[{0, 1}, {m1, m1}];, {k, no}];
ParallelTable[MM[k] = Transpose[MM[k]].MM[k];, {k, no}];
ParallelTable[NN[k] = RandomReal[{0, 1}, {n1, n1}];, {k, no}];
ParallelTable[NN[k] = Transpose[NN[k]].NN[k];, {k, no}];

Here, we applied the stopping condition

||Xk+1 − Xk||∞ ≤ 10−10, (39)

with a change in the initial approximation as X0 = 1.5
σ2

1
A#. Noting that the weights M and N were very

ill-conditioned, as we had produced them to be. We report the results in Tables 3 and 4, which reveal
that the novel approach was superior to the existing solvers.

Table 3. Comparison based on the number of iterations and the required mean in Experiment 2.

Methods SM2 CM3 KMS10 PM10

A1 98 61 30 30
A2 86 55 27 27
A3 83 53 26 26
A4 85 54 27 27
A5 81 52 26 26

Mean 86.6 55. 27.2 27.2

Table 4. Comparison based on the elapsed time and its mean in Experiment 2.

Methods SM2 CM3 KMS10 PM10

A1 7.89745 7.20885 12.1801 7.11963
A2 6.90346 6.6397 10.933 6.50042
A3 2.34013 2.23622 3.75341 2.20977
A4 2.23133 2.15679 3.78848 2.23819
A5 2.44316 2.26733 3.79153 2.2391

Mean 4.36311 4.10178 6.88929 4.06142

One other application of (15), aside from computing the WMP inverse, is in finding good
approximate inverse pre-conditioners for Krylov methods when tackling large sparse linear system of

Mathematics 2019, 7, 731 10 of 11

equations (see, e.g., [29]). In fact, to apply our scheme in such environments, we can employ several
commands, such as SparseArray[] for handling sparse matrices.

The main advantage of the proposed method is the improvement of convergence order obtained
by improving the computational efficiency index. Although this computational efficiency index
improvement was not observed to be drastic, in solving practical problems in higher dimensions it
leads to a clear reduction of computation time.

5. Ending Notes

We have investigated a tenth order iterative method for computing the WMP inverse requiring
only six matrix products. The WMP inverse has many applications, from the numerical solution of
non-linear equations (those involving singular linear systems [32]) to direct engineering applications.
Clearly, the efficiency index will reach 101/6 ' 1.46, which is better than the Newton–Schulz and
Chebyshev methods for calculating the WMP inverse. The convergence order of the scheme was
supported and upheld analytically. The extension of this improved version of the hyperpower family
for computing other types generalized inverses, such as outer and inner inverses, under special criteria
and initial matrices provides a direction for future works in this active topic of research.

Funding: This research project was supported by a grant from the “Research Center of the Female Scientific and
Medical Colleges”, Deanship of Scientific Research, King Saud University.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bin Jebreen, H.; Chalco-Cano, Y. An improved computationally efficient method for finding the Drazin
inverse. Disc. Dyn. Nat. Soc. 2018, 2018, 6758302. [CrossRef]

2. Niazi Moghani, Z.; Khanehgir, M.; Mohammadzadeh Karizaki, M. Explicit solution to the operator equation
AXD + FX∗B = C over Hilbert C∗-modules. J. Math. Anal. 2019, 10, 52–64.

3. Stanimirović, P.S.; Katsikis, V.N.; Srivastava, S.; Pappas, D. A class of quadratically convergent iterative
methods. RACSAM 2019, 1–22. [CrossRef]

4. Ben-Israel, A.; Greville, T.N.E. Generalized Inverses: Theory and Applications, 2nd ed.; Springer: New York, NY,
USA, 2003.

5. Godunov, S.K.; Antonov, A.G.; Kiriljuk, O.P.; Kostin, V.I. Guaranteed Accuracy in Numerical Linear Algebra;
Springer: Dordrecht, The Netherlands, 1993.

6. Fredholm, I. Sur une classe d’équations fonctionnelles. Acta Math. 1903, 27, 365–390. [CrossRef]
7. Wang, G.R. A new proof of Grevile’s method for computing the weighted M-P inverse. J. Shangai Norm. Univ.

1985, 3, 32–38.
8. Bakhtiari, Z.; Mansour Vaezpour, S. Positive solutions to the system of operator equations TiX = Ui and

TiXVi = Ui. J. Math. Anal. 2016, 7, 102–117.
9. Xia, Y.; Chen, T.; Shan, J. A novel iterative method for computing generalized inverse. Neural Comput. 2014,

26, 449–465. [CrossRef]
10. Courriee, P. Fast computation of Moore-Penrose inverse matrices. arXiv preprint 2008, arXiv:0804.4809.
11. Lu, S.; Wang, X.; Zhang, G.; Zhou, X. Effective algorithms of the Moore-Penrose inverse matrices for extreme

learning machine. Intell. Data Anal. 2015, 19.4, 743–760. [CrossRef]
12. Sheng, X.; Chen, G. The generalized weighted Moore-Penrose inverse. J. Appl. Math. Comput. 2007, 25,

407–413. [CrossRef]
13. Soleymani, F.; Soheili, A.R. A revisit of stochastic theta method with some improvements. Filomat 2017, 31,

585–596. [CrossRef]
14. Söderström, T.; Stewart, G.W. On the numerical properties of an iterative method for computing the

Moore-Penrose generalized inverse. SIAM J. Numer. Anal. 1974, 11, 61–74. [CrossRef]
15. Stanimirović, P.S.; Ciric, M.; Stojanović, I.; Gerontitis, D. Conditions for existence, representations, and

computation of matrix generalized inverses. Complexity 2017, 2017, 6429725. [CrossRef]

http://dx.doi.org/10.1155/2018/6758302
http://dx.doi.org/10.1007/s13398-019-00681-w
http://dx.doi.org/10.1007/BF02421317
http://dx.doi.org/10.1162/NECO_a_00549
http://dx.doi.org/10.3233/IDA-150743
http://dx.doi.org/10.1007/BF02832365
http://dx.doi.org/10.2298/FIL1703585S
http://dx.doi.org/10.1137/0711008
http://dx.doi.org/10.1155/2017/6429725

Mathematics 2019, 7, 731 11 of 11

16. Gulliksson, M.E.; Wedin, P.A.; Wei, Y. Perturbation identities for regularized Tikhonov inverse and weighted
pseudo inverse. BIT 2000, 40, 513–523. [CrossRef]

17. Roy, F.; Gupta, D.K.; Stanimirović, P.S. An interval extension of SMS method for computing weighted
Moore-Penrose inverse. Calcolo 2018, 55, 15. [CrossRef]

18. Van Loan, C.F. Generalizing the singular value decomposition. SIAM J. Numer. Anal. 1976, 13, 76–83.
[CrossRef]

19. Zhang, N.; Wei, Y. A note on the perturbation of an outer inverse. Calcolo 2008, 45, 263–273. [CrossRef]
20. Ghorbanzadeh, M.; Mahdiani, K.; Soleymani, F.; Lotfi, T. A class of Kung-Traub-type iterative algorithms for

matrix inversion. Int. J. Appl. Comput. Math. 2016, 2, 641–648. [CrossRef]
21. Pan, V.Y. Structured Matrices and Polynomials: Unified Superfast Algorithms; BirkhWauser: Boston, MA, USA;

Springer: New York, NY, USA, 2001.
22. Schulz, G. Iterative Berechnung der Reziproken matrix. Z. Angew. Math. Mech. 1933, 13, 57–59. [CrossRef]
23. Li, H.-B.; Huang, T.-Z.; Zhang, Y.; Liu, X.-P.; Gu, T.-X. Chebyshev-type methods and preconditioning

techniques. Appl. Math. Comput. 2011, 218, 260–270. [CrossRef]
24. Krishnamurthy, E.V.; Sen, S.K. Numerical Algorithms—Computations in Science and Engineering; Affiliated

East-West Press: New Delhi, India, 1986.
25. Sen, S.K.; Prabhu, S.S. Optimal iterative schemes for computing Moore-Penrose matrix inverse. Int. J.

Syst. Sci. 1976, 8, 748–753. [CrossRef]
26. Grevile, T.N.E. Some applications of the pseudo-inverse of matrix. SIAM Rev. 1960, 3, 15–22. [CrossRef]
27. Huang, F.; Zhang, X. An improved Newton iteration for the weighted Moore-Penrose inverse. Appl. Math.

Comput. 2006, 174, 1460–1486. [CrossRef]
28. Sánchez León, J.G. Mathematica Beyond Mathematics: The Wolfram Language in the Real World; Taylor & Francis

Group: Boca Raton, FL, USA, 2017.
29. Zaka Ullah, M.; Soleymani, F.; Al-Fhaid, A.S. An efficient matrix iteration for computing weighted

Moore-Penrose inverse. Appl. Math. Comput. 2014, 226, 441–454. [CrossRef]
30. Trott, M. The Mathematica Guide-Book for Numerics; Springer: New York, NY, USA, 2006.
31. Ostrowski, A.M. Sur quelques transformations de la serie de LiouvilleNewman. CR Acad. Sci. Paris 1938,

206, 1345–1347.
32. Soheili, A.R.; Soleymani, F. Iterative methods for nonlinear systems associated with finite difference approach

in stochastic differential equations. Numer. Algor. 2016, 71, 89–102. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1023/A:1022319830134
http://dx.doi.org/10.1007/s10092-018-0257-4
http://dx.doi.org/10.1137/0713009
http://dx.doi.org/10.1007/s10092-008-0155-2
http://dx.doi.org/10.1007/s40819-015-0083-1
http://dx.doi.org/10.1002/zamm.19330130111
http://dx.doi.org/10.1016/j.amc.2011.05.036
http://dx.doi.org/10.1080/00207727608941969
http://dx.doi.org/10.1137/1002004
http://dx.doi.org/10.1016/j.amc.2005.05.050
http://dx.doi.org/10.1016/j.amc.2013.10.046
http://dx.doi.org/10.1007/s11075-015-9986-5
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Definition
	Literature
	Motivation and Organization

	A High Order Scheme for the WMP Inverse
	Derivation
	Several Lemmas

	Error Analysis
	Computational Tests
	Ending Notes
	References

